CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
DAIXiao‑gan, WENYu‑shi, HUANGHui, et al. Impact response characteristics of a cyclotetramethylene tetranitramine based polymer‑bonded explosives under different temperatures [J]. J Appl Phys, 2013, 114: 114906.
参考文献 2
肖玮, 李亮亮, 苏健军, 等. TNT在热和撞击加载作用下的点火性能[J]. 火炸药学报. 2013, 36(2):38-41.
XIAOWei, LILiang‑liang, SUJian‑jun, et al. Ignition performances of TNT under temperature and impact loading actions[J]. Chinese Journal of Explosives and Propellants, 2013, 36(2): 38-41.
参考文献 3
代晓淦,文玉史,申春迎,等. 热和枪击复合环境试验中PBX‑2炸药的响应特性[J]. 火炸药学报. 2009, 32(4): 41-44.
DAIXiao‑gan, WENYu‑shi, SHENChun‑ying, et al. Reaction characteristics of PBX‑2 under heat and bullet impacting multiple test[J].Chinese Journal of Explosives and Propellants, 2009, 32(4): 41-44.
参考文献 4
吴博,代晓淦,文玉史,等. 加热前后PBX‑2炸药的撞击响应[J]. 火炸药学报, 2011, 34(4):34-36.
WUBo, DAIXiao‑gan, WENYu‑shi, et al. Impact response of unheated and heated PBX‑2 explosive[J]. Chinese Journal of Explosives and Propellants, 2011,34(4):34-36.
参考文献 5
UrtiewP A, TarverC M, MaienscheinJ L, et al. Effect of confinement and thermal cycling on the shock initiation of LX‑17[J]. Combustion and Flame 1996,105: 43-53.
参考文献 6
UrtiewP A, TarverC M, ForbesJ W, et al. Shock sensitivity of LX‑04 at elevated temperatures[C]//Shock Compression of Condensed Matter‑1997, AIP Conference Proc. 429, Amherst, MA, 2000: 727-730.
参考文献 7
ForbesJ W, TarveC M. The effect of confinement and temperature on the shock sensitivity of solid explosives[C]//11th International Detonation Symposium. Snow‑mass,1998:145-152.
参考文献 8
DavidJ F, GaryW L, PaulD P, et al. Measurement of the stress/strain response of energetic materials as a function of strain rate and temperature: PBX 9501 and Mock 9501[C]// In Shock Compression of Condensed Matter‑1997, AIP Conference Proceedings429, New York, 1998: 583-586.
参考文献 9
HsuP C, DehavenM, McClellandM, et al. Characterization of damaged materials[C]//13th International Detonation Symposium. 2006: 284-292.
参考文献 10
HerrmannM, EngelW, EisenreichN. Thermal analysis of the phases of HMX using X‑ray diffraction[J]. Zeitschrift für Kristallographie. 1993, 204(Part‑1): 121-128.
参考文献 11
DAIXiaogan, XUJinjiang, WENYushi, et al. Delay Mechanism of β→ δ phase transition of cyclotetramethylene tetranitramine in polymer bonded explosive formulations by heat conduction obstacle[J]. Propellants, Explosies, Pyrotechnics, 2016, 41: 637-640
参考文献 12
DAIXiaogan, WENYushi, WENMiaoping,et al. Projectile impact ignition and reaction violent mechanism for HMX‑based polymer bonded explosives at high temperature[J]. Propellants, Explosives, Pyrotechnics, 2017, 42: 799-808
参考文献 13
中国兵器工业总公司. GJB 772A-1997:炸药试验方法[S]. 北京:中国标准出版社, 1997.
China North Industries Group Corporation. GJB 772A-1997: Explosive test method[S]. Beijing: China Standard Press, 1997.
参考文献 15
WeeseR K, MaiensheinJ L, PerrinoC T. Kinetics of the β→δ solid‑solid phase transitions of HMX, octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine[J].Thermochimica Acta, 2003, 401: 7-14
参考文献 16
ChengK S. Kinetics of HMX and phase transitions: effects of grain size at elevated temperature[C]//12th International Detonation Symposium, San Diego, California 92101, August 11‑16th, 2002.
参考文献 17
MichaelH, WalterE, NorbertE. Thermal expansion, transitions, sensitivities and burning rates of HMX[J]. Propellants, Explosives, Pyrotechnics,1992, 27: 190-195
参考文献 18
SmilowitzL, HensonB F, AsayB W, et al. A model of the β→δ phase transition in PBX9501[C]//Shock Compression of Condensed Matter, 2001: 1077-1080.
参考文献 19
薛超, 孙杰, 宋功保, 等, HMX的β→δ晶型转变研究进展, 含能材料, 2008,16(6):753‑757
XUEChao, SUNJie, SONGGong‑bao, et al. Review on β→δ phase transition of HMX[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(6): 753-757
参考文献 20
徐文峥, 庞兆迎, 王晶禹, 等, 超声辅助喷雾法制备超细高品质HMX及其晶型控制[J]. 含能材料, 2018, 26(3): 260-266.
XUWen‑zheng, PANGZhao‑ying, WANGJing‑yu, et al. Ultrafine high quality HMX prepared by ultrasonic assisted spray method and its crystal type control[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(3): 260-266.
参考文献 21
SmilowitzL, HensonB F, AsayB W, et al. The β‑δ phase transition in the energetic nitroamine: octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine: Kinetics[J]. J Chem Phys,2002,117:3789-3797.
目录 contents

    摘要

    为了研究高温下炸药撞击安全性中存在的多因素耦合问题,设计了高温炸药撞击感度试验装置,并提出了高温炸药撞击感度试验方法。结合扫描电镜和X射线衍射技术,采用所建立的试验方法,研究了奥克托今(HMX)晶体颗粒高温撞击过程下的响应。结果表明,随着温度升高,HMX晶体颗粒的落锤撞击感度逐渐升高。同时,HMX晶体品质随着温度升高逐渐变差,140 ℃时有少部分晶体碎裂,180 ℃时较多的晶体碎裂,当达到200 ℃时,HMX晶体全部碎裂;HMX的β→δ相变温度发生在184~186 ℃。降至常温后δ相晶体逐渐恢复为β相,撞击过程有助于β相的恢复。影响热加载前后HMX晶体颗粒撞击感度的主导因素包括温升、微裂纹和相变,不同影响因素起作用的温度段是不同的。

    Abstract

    To study the multi‑factor coupling problem existed in the impact safety of explosive at high temperature, an impact sensitivity testing installation of explosive at high temperature was designed and an impact sensitivity testing method at high temperature was proposed. Combined with the scanning electron microscopy and X‑ray diffraction techniques, the response of octogen (HMX) crystal particles under impact process at high temperature was studied by the established test method. Results show that with the increase of temperature, the drop hammer impact sensitivity of HMX crystal particles increases gradually. Meanwhile, the quality of HMX crystal is gradually reduced as temperature increasing. At 140 ℃, a small number of crystals are fragmented, and more crystals are fragmented at 180 ℃. When temperature reaches 200 ℃, all HMX crystals are fragmented. The βδ phase transition temperature of HMX occurs between 184 ℃ and 186 ℃. After the temperature is reduced to room temperature, δ phase crystal gradually returns to β phase, and the impact process is helpful to the recovery of β phase. The main factors affecting the impact sensitivity of HMX crystal particles before and after thermal loading include temperature increasing, micro cracks and phase transition. The temperature range acted by different influence factors is different.

    Graphic Abstract

    图文摘要

    html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image009.png

    An impact sensitivity testing installation of explosive at high temperature was designed and an impact sensitivity testing method at high temperature was proposed. Combined with the scanning electron microscopy and X‑ray diffraction techniques, the impact ignition thresholds of HMX crystal particles to impact process at high temperature were studied by the established test method. The main factors affecting the impact sensitivity of HMX crystal particles before and after thermal loading include temperature increasing, micro cracks and phase transition.

  • 1 引 言

    1

    炸药材料在生产及服役过程中,可能会遇到火灾、地震,实验室操作失误、战场作战环境等一些特殊场景,炸药可能暴露在高温和低强度撞击耦合作用[1]。为评估此类环境中炸药的安全性,需要开展高温下的撞击安全性研究。

    在试验方法方面,高温下炸药撞击响应研究刚刚起步,国内外的相关研究都还比较少。西安近代化学研究所采用大落锤加载装置研究了压装梯恩梯(TNT)在热和撞击复合加载下的点火性能,探讨了加热至

    50 ℃时温度对(TNT)点火性能的影[2];中国工程物理研究院化工材料研究所采用模拟破片撞击的方式初步研究了加热前后PBX‑2炸药的响应特[3,4]。在机理研究方面,高温下炸药撞击安全性的影响因素或机制非常复杂,包括密度变化、力学性能、温度、相变及微裂纹等等。国外研究分析了升温下炸药热膨胀性能以及密度、动态力学性能等变[5,6,7,8],发现随着炸药高温膨胀,高聚物粘接炸药(polymer bonded explosive, PBX)的压缩强度和弹性模量随温度的增加而降低。Hsu[9]研究了LX‑04、LX‑07等混合炸药的高温热损伤行为,发现随着温度升高,炸药孔隙率升高、密度降低,导致损伤炸药的模量降低、气体渗透性增大,这增加了炸药点火后成长为高等级反应的风险。

    对于如六硝基六氮杂异伍兹烷(CL‑20)、奥克托今(HMX)等具有多种晶相的炸药,其高温相变及热损伤更是影响炸药高温撞击感度的重要原因。HMX作为目前综合性能最好的单质炸药,其晶体存在α,β,γ,δ四种晶[10],普遍认为常温下β相最稳定,而δ相最不稳定,研究发现,当温度升高到180 ℃以上时,β‑HMX会向δ‑HMX转[11],相变时,会导致体积膨胀、密度降低,严重影响其安全性[12]。因此,研究HMX β→δ相变机理有助于加深对HMX热安全性的理解,但相变和裂纹对安全性的劣化作用是耦合在一起的,关于其各自作用过的解耦和量化区分尚未见相关报道。HMX发生相变后,随着温度的降低,相变会逐渐恢复,而由相变产生的微结构是不可逆的,这为研究两者的作用机制和区别提供了机会。此外,虽然可以确定HMX高温相变对炸药的反应烈度具有显著影响,但相变与点火阈值的关系尚未清楚。总体来讲,由于高温相变与撞击加载耦合作用在实验手段上比较困难,耦合作用机制复杂,具有较大的不确定性,目前关于HMX高温相变对撞击安全性变化的影响规律尚缺乏系统性的研究与认识。

    为此,本研究基于上述对高温下炸药性能变化、高温相变、高温下炸药撞击响应等研究现状和需求分析,以HMX晶体颗粒为对象,设计并建立了高温炸药撞击感度试验装置和方法,结合炸药受热损伤表征以及高温相变过程诊断,对高温下HMX晶体撞击响应变化规律及其影响机制进行了研究,提出了相应的试验方法。

  • 2 试验装置与研究方法

    2
  • 2.1 试验装置

    2.1

    为了研究高温下HMX晶体撞击感度变化规律,设计了一种可测试不同温度条件下炸药晶体撞击感度的试验装置(简称高温炸药撞击感度试验装置),装置示意图如图1所示,包括底座、击套、击柱、加热带等部件,实物照片见图2。底座上设置有击套,击套的中心设置有下击柱和上击柱,上击柱与下击柱之间放置炸药样品颗粒,击套的一侧留有测温孔,底座的外周围安装有加热带,试验装置上方设置有落锤。试验时通过加热带对底座加热,进而通过热传导对炸药颗粒进行加热,采用K型热电偶测量测温孔温度,当加热达到预定温度时,释放落锤撞击上击柱,实现撞击加载。

    图1
                            高温炸药撞击感度试验装置示意图

    图1 高温炸药撞击感度试验装置示意图

    Fig.1 Schematic diagram of impact sensitivity testing installation of explosive at high temperature

    注:1—落锤, 2—上击柱, 3—击套, 4—下击柱, 5—加热带, 6—底座, 7—测温孔, 8—炸药颗粒

    NOTE: 1—drop hammer, 2—up pillar, 3—sheath, 4—down pillar, 5—heating band, 6—base, 7—hole for temperature testing, 8—HMX particle

    图2
                            高温炸药撞击感度试验装置照片

    图2 高温炸药撞击感度试验装置照片

    Fig.2 Picture of impact sensitivity testing installation of explosive at high temperature

  • 2.2 研究方法

    2.2

    研究对象为经过重结晶的β‑HMX晶体,平均颗粒度27 μm,纯度大于99.5%,由化工材料研究所提供。采用WL‑1型标准落锤仪,采用2.5 kg落锤,使用国军标GJB 772A-1997规定的上下[13]测试了不同高温下HMX晶体颗粒的特性落高H50。试验时空气湿度为60%RH,温度为25 ℃,每发试验药量35 mg。控制装配一致性和温湿度条件,试验验误差控制小于2%。采用与文献[14]相同的条件,通过X射线衍射方法(X‑ray diffraction, XRD),结合扫描电子显微镜(scanning electron microscope, SEM),获得不同温度下HMX的晶型情况及晶体微裂纹状态。根据以上信息分析加热后HMX相变及降温后相变恢复情况,分析温度、相变及裂纹对H50的影响。

    为了精确控制炸药样品的温度,需要对比加热过程中装置测温孔温度与样品温度之间的差异,因此,正式试验前,采用热电偶同时测试了装置测温孔温度与样品温度,对加热过程中装置测温孔内温度与样品实际温度进行标定,结果如图3所示。正式试验时,依据图3可由装置测温孔内温度得出样品实际温度。

    图 3
                            标定的加热过程中装置测温孔内温度与样品实际温度

    图 3 标定的加热过程中装置测温孔内温度与样品实际温度

    Fig.3 The temperature in measuring hole of the device and actual sample temperature obtained during heating process for calibration

    按照上述方法测试下述三种情况β‑HMX晶体的撞击感度:(1)常温、加热条件下(2)加热至190 ℃,冷却至常温(3)加热190 ℃,冷却至常温再放置40天。

  • 3 结果与讨论

    3
  • 3.1 热处理后β‑HMX晶体形貌SEM图像

    3.1

    为了研究不同高温对HMX晶体颗粒造成的热损伤效应,以3 ℃·min-1的升温速率,分别将HMX晶体加热到30,100,140,180,190,200 ℃,保温5 min后,降温到室温,再进行电子显微镜扫描成像。经不同高温处理后的HMX单质晶体形貌如图4所示。

    html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image004.png

    a. 30 ℃ b. 100 ℃

    html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image005.png

    c. 140 ℃ d. 180 ℃

    html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image006.png

    e. 190 ℃ f. 200 ℃

    图4 不同高温处理后HMX晶体的形貌

    Fig.4 Morphology of HMX crystals after treatment at various temperatures

    从图4可以看出,随着温度的升高,HMX晶体品质变差,140 ℃时有少部分晶体碎裂,180 ℃时较多的晶体碎裂,未破碎晶体也存在明显的裂纹,温度继续升高,发生碎裂的HMX晶体进一步增多,这主要是由于HMX晶体发生了β→δ晶相转[15],对于HMX晶体,180 ℃以上时发生相变,缺陷增大,晶体破裂,导致HMX的表面积将增大103~105倍;当达到200 ℃时,HMX晶体全部碎裂,已经没有完整大块的晶体存在。

  • 3.2 试验样品及残留物晶型转变XRD分析结果

    3.2

    HMX的热相变问题比较复杂,例如与粒度有[16]。不同温度下平均粒径27 μm的HMX晶体颗粒的XRD结果如图5所示。由图5可见,184 ℃和186 ℃的衍射曲线存在明显的差异,两种曲线存在不同的衍射峰,说明相变温度发生在184~186 ℃。与HMX标准谱图对比发现,该相变是β→δ相变。其他温度没有发现明显的波峰差异,因而未发现其他形式的相变。

    图 5
                            不同温度下HMX晶体颗粒的XRD图谱

    图 5 不同温度下HMX晶体颗粒的XRD图谱

    Fig.5 XRD patterns of HMX crystal particles at different temperatures

    图6
                            不同温度下HMX晶体颗粒相变的XRD谱分析

    图6 不同温度下HMX晶体颗粒相变的XRD谱分析

    Fig.6 XRD pattern analysis of the phase transition of HMX crystal particles at different temperatures

    对加热至190 ℃的β‑HMX,降温到常温,立即进行XRD测试,结果如图6a所示。由图6a可以看出,测定晶型后发现晶体已经完全转变为δ相。等待24 h及48 h后重新测量,晶型主要依然保持为δ相,有少量δ相转化为了β相,分别见图6b及图6c。降温到常温后δ→β晶型转化程度和时间有[17],时间越长,转化率越高,即48 h含有的δ相比24 h时含有的要少一些。

    对样品β‑HMX,加热至190 ℃,保温0.5 h,降温到常温,开展撞击试验,对未反应样品进行XRD测试。测定晶型后发现晶体转变为βδ的混合相,如图6d所示,可见撞击过程有助于δ→β晶体转变的发生,这可能和β晶体密度更高有关。

  • 3.3 HMX晶体高温撞击感度试验结果

    3.3

    HMX晶体高温撞击感度试验测量结果见表1,包括不同温度环境下HMX晶体颗粒特性落高测量结果、试验条件、晶型情况、裂纹情况等,其中试验升温速率3 ℃·min-1,晶型状态见参考文献[10,14,17,18,19,20]及图6。表1中的第6号及第7号试验对应加热至190 ℃并自然冷却至常温的试验。不同温度下HMX晶体颗粒特性落高变化趋势见表1

    表1 不同温度下HMX晶体颗粒特性落高测量结果

    Table 1 Measured results of the characteristic drop height (H50 ) of HMX crystal particles at different temperatures

    No.temperature / ℃H50 / cmcrystal phaseH50 variation to normal temperature′s/%main mechanism
    12540.6β0-
    26531.0β-23.6T1)
    317016.8β-58.6T+cracks
    418014.5β-64.2T+cracks
    519013.1δ-67.7T+cracks+PT2)
    6190→2515.7δ-61.3cracks+PT
    7190◇25, kept for 40 days before test25.1β-38.2cracks
    表1
                    不同温度下HMX晶体颗粒特性落高测量结果

    NOTE: T is the temperature rise,PT is the phase transition.

    根据表1,总体上看,随着温度从常温逐渐上升到190 ℃,HMX的H50逐渐降低,即随着温度的升高HMX撞击感度逐渐增加。从190 ℃降到常温后,随着时间的延长,HMX的H50逐渐升高,这伴随着晶型转变的逐渐恢复,即β相含量越来越高,HMX撞击感度降低。根据图4以及图5的XRD结果,此时HMX没有产生相变和微裂纹,导致HMX撞击感度显著上升的主控因素为温升。根据图5的XRD结果可知此时HMX是β相,从图4可以看出,此时晶体已有少量裂纹,此时导致高温下HMX撞击感度显著上升的主控机制为温升和微裂纹的产生。在190 ℃时HMX的H50为本次试验结果最低值13.1 cm,此时导致高温下H50显著降低的因素有三个,即温升、微裂纹和相变。由此可见,不同温度段影响HMX撞击感度的因素不同,在常温~140 ℃温度下,相变还未发生,裂纹也没有出现,此时温升是撞击感度变化的主控因素;在140~180 ℃,裂纹逐渐增多,相变未发生,但撞击感度随温度的变化出现明显拐点(如表1所示),此时裂纹是撞击感度变化的主控因素;在180~190 ℃,微裂纹、相变是撞击感度变化的主控因素。

    根据表1还可以看出,影响撞击感度的主导因素越多,带来的撞击感度变化量越大,各种因素带来的撞击感度变化大体上具有可累加性。

    此外,为了比较HMX相变和微结构对撞击感度影响的相对大小,对1号试验、6号试验和7号试验进行了对比分析。7号试验(根据Michael的研[21],此时HMX已经完全恢复β相)的H50为25.1 cm,即常温下晶体碎裂导致的H50比常温下初始状态的H50降低了15.5 cm,约38.2%。6号试验和7号试验结果则显示,在常温及有裂纹的状态下,δH50相比β相降低了9.4 cm,约37.4%。通过分析可发现在本试验条件下,HMX晶体β→δ相变和微裂纹对撞击感度影响基本相当。

  • 4 结 论

    4

    针对目前高温下撞击安全性研究中存在的多因素耦合问题,设计了高温炸药撞击感度试验装置,并提出了相应的试验方法,实现了温度与撞击耦合加载,试验温度范围最高可达200 ℃。利用建立的装置和方法,对高温下影响炸药晶体撞击安全性的主要因素进行了研究,得到了以下几点结论:

    (1)扫描电镜技术测量结果显示,随着温度的升高HMX晶体品质变差,140 ℃时有少部分晶体碎裂,180 ℃时较多的晶体碎裂,当达到200 ℃时,HMX晶体全部碎裂,已经没有完整大块的晶体存在。以上热损伤带来的裂纹对HMX撞击感度具有显著影响。X射线衍射技术测量结果显示,试验使用的平均粒径27 μm HMX的β→δ相变温度发生在184~186 ℃。β‑HMX加热到190 ℃再降温到常温,完全转变为δ相的HMX会逐渐恢复β相。此时撞击过程有助于δ→β晶体转变的发生。

    (2)热加载前后影响HMX晶体颗粒撞击感度的主导因素主要包括温升、微裂纹和相变,而不同影响因素起作用的温度段不同。在25~140 ℃时温升是影响撞击感度变化的主控因素,在140~180 ℃时裂纹与温度共同影响撞击感度的变化,其中裂纹是主控因素。而在180~190 ℃高温段,裂纹、温度以及相变都影响着撞击感度的变化,其中相变为主控因素。

    本工作建立的装置和方法,能有效用于研究不同温度下炸药的撞击感度变化。研究结果可以为其它炸药高温下晶体颗粒撞击感度的相关研究提供一定参考。

  • 参考文献

    • 1

      DAI Xiao‑gan, WEN Yu‑shi, HUANG Hui, et al. Impact response characteristics of a cyclotetramethylene tetranitramine based polymer‑bonded explosives under different temperatures [J]. J Appl Phys, 2013, 114: 114906.

    • 2

      肖玮, 李亮亮, 苏健军, 等. TNT在热和撞击加载作用下的点火性能[J]. 火炸药学报. 2013, 36(2):38-41.

      XIAO Wei, LI Liang‑liang, SU Jian‑jun, et al. Ignition performances of TNT under temperature and impact loading actions[J]. Chinese Journal of Explosives and Propellants, 2013, 36(2): 38-41.

    • 3

      代晓淦,文玉史,申春迎,等. 热和枪击复合环境试验中PBX‑2炸药的响应特性[J]. 火炸药学报. 2009, 32(4): 41-44.

      DAI Xiao‑gan, WEN Yu‑shi, SHEN Chun‑ying, et al. Reaction characteristics of PBX‑2 under heat and bullet impacting multiple test[J].Chinese Journal of Explosives and Propellants, 2009, 32(4): 41-44.

    • 4

      吴博,代晓淦,文玉史,等. 加热前后PBX‑2炸药的撞击响应[J]. 火炸药学报, 2011, 34(4):34-36.

      WU Bo, DAI Xiao‑gan, WEN Yu‑shi, et al. Impact response of unheated and heated PBX‑2 explosive[J]. Chinese Journal of Explosives and Propellants, 2011,34(4):34-36.

    • 5

      Urtiew P A, Tarver C M, Maienschein J L, et al. Effect of confinement and thermal cycling on the shock initiation of LX‑17[J]. Combustion and Flame 1996,105: 43-53.

    • 6

      Urtiew P A, Tarver C M, Forbes J W, et al. Shock sensitivity of LX‑04 at elevated temperatures[C]//Shock Compression of Condensed Matter‑1997, AIP Conference Proc. 429, Amherst, MA, 2000: 727-730.

    • 7

      Forbes J W, Tarve C M. The effect of confinement and temperature on the shock sensitivity of solid explosives[C]//11th International Detonation Symposium. Snow‑mass,1998:145-152.

    • 8

      David J F, Gary W L, Paul D P, et al. Measurement of the stress/strain response of energetic materials as a function of strain rate and temperature: PBX 9501 and Mock 9501[C]// In Shock Compression of Condensed Matter‑1997, AIP Conference Proceedings429, New York, 1998: 583-586.

    • 9

      Hsu P C, Dehaven M, McClelland M, et al. Characterization of damaged materials[C]//13th International Detonation Symposium. 2006: 284-292.

    • 10

      Herrmann M, Engel W, Eisenreich N. Thermal analysis of the phases of HMX using X‑ray diffraction[J]. Zeitschrift für Kristallographie. 1993, 204(Part‑1): 121-128.

    • 11

      DAI Xiaogan, XU Jinjiang, WEN Yushi, et al. Delay Mechanism of β→ δ phase transition of cyclotetramethylene tetranitramine in polymer bonded explosive formulations by heat conduction obstacle[J]. Propellants, Explosies, Pyrotechnics, 2016, 41: 637-640

    • 12

      DAI Xiaogan, WEN Yushi, WEN Miaoping,et al. Projectile impact ignition and reaction violent mechanism for HMX‑based polymer bonded explosives at high temperature[J]. Propellants, Explosives, Pyrotechnics, 2017, 42: 799-808

    • 13

      中国兵器工业总公司. GJB 772A-1997:炸药试验方法[S]. 北京:中国标准出版社, 1997.

      China North Industries Group Corporation. GJB 772A-1997: Explosive test method[S]. Beijing: China Standard Press, 1997.

      XUE Chao, SUN Jie, KANG Bin, et al. The β→δ phase transition and thermal expansion of octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine[J]. Propellants, Explosives, Pyrotechnics. 2010, 35: 333-338

    • 15

      Weese R K, Maienshein J L, Perrino C T. Kinetics of the β→δ solid‑solid phase transitions of HMX, octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine[J].Thermochimica Acta, 2003, 401: 7-14

    • 16

      Cheng K S. Kinetics of HMX and phase transitions: effects of grain size at elevated temperature[C]//12th International Detonation Symposium, San Diego, California 92101, August 11‑16th, 2002.

    • 17

      Michael H, Walter E, Norbert E. Thermal expansion, transitions, sensitivities and burning rates of HMX[J]. Propellants, Explosives, Pyrotechnics,1992, 27: 190-195

    • 18

      Smilowitz L, Henson B F, Asay B W, et al. A model of the β→δ phase transition in PBX9501[C]//Shock Compression of Condensed Matter, 2001: 1077-1080.

    • 19

      薛超, 孙杰, 宋功保, 等, HMX的β→δ晶型转变研究进展, 含能材料, 2008,16(6):753‑757

      XUE Chao, SUN Jie, SONG Gong‑bao, et al. Review on β→δ phase transition of HMX[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(6): 753-757

    • 20

      徐文峥, 庞兆迎, 王晶禹, 等, 超声辅助喷雾法制备超细高品质HMX及其晶型控制[J]. 含能材料, 2018, 26(3): 260-266.

      XU Wen‑zheng, PANG Zhao‑ying, WANG Jing‑yu, et al. Ultrafine high quality HMX prepared by ultrasonic assisted spray method and its crystal type control[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(3): 260-266.

    • 21

      Smilowitz L, Henson B F, Asay B W, et al. The β‑δ phase transition in the energetic nitroamine: octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine: Kinetics[J]. J Chem Phys,2002,117:3789-3797.

文玉史

机 构:

1. 中国工程物理研究院化工材料研究所, 四川 绵阳 621999

2. 中国工程物理研究院, 四川 绵阳 621999

Affiliation:

1. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

2. China Academy of Engineering Physics, Mianyang 621900, China

邮 箱:wenys@caep.cn

作者简介:文玉史(1983-),男,副研究员,主要从事炸药安全性研究。e‑mail:wenys@caep.cn

文雯

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

代晓淦

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

角 色:通讯作者

Role:Corresponding author

邮 箱:zhangy2005767@sina.com

作者简介:代晓淦(1978-),男,副研究员,主要从事炸药安全性研究。e‑mail:zhangy2005767@sina.com

温茂萍

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

龙新平

机 构:中国工程物理研究院, 四川 绵阳 621999

Affiliation:China Academy of Engineering Physics, Mianyang 621900, China

郑雪

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

姚奎光

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

何松伟

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

李明

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image001.png
html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image002.png
html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image003.png
html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image004.png
html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image005.png
html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image006.png
html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image007.png
html/hncl/CJEM2018116/media/55b9b1a7-5fbb-40a7-a3b5-52dae721268e-image008.png
No.temperature / ℃H50 / cmcrystal phaseH50 variation to normal temperature′s/%main mechanism
12540.6β0-
26531.0β-23.6T1)
317016.8β-58.6T+cracks
418014.5β-64.2T+cracks
519013.1δ-67.7T+cracks+PT2)
6190→2515.7δ-61.3cracks+PT
7190◇25, kept for 40 days before test25.1β-38.2cracks

图1 高温炸药撞击感度试验装置示意图

Fig.1 Schematic diagram of impact sensitivity testing installation of explosive at high temperature

图2 高温炸药撞击感度试验装置照片

Fig.2 Picture of impact sensitivity testing installation of explosive at high temperature

图 3 标定的加热过程中装置测温孔内温度与样品实际温度

Fig.3 The temperature in measuring hole of the device and actual sample temperature obtained during heating process for calibration

图4 不同高温处理后HMX晶体的形貌 -- a. 30 ℃ b. 100 ℃

Fig.4 Morphology of HMX crystals after treatment at various temperatures -- a. 30 ℃ b. 100 ℃

图4 不同高温处理后HMX晶体的形貌 -- c. 140 ℃ d. 180 ℃

Fig.4 Morphology of HMX crystals after treatment at various temperatures -- c. 140 ℃ d. 180 ℃

图4 不同高温处理后HMX晶体的形貌 -- e. 190 ℃ f. 200 ℃

Fig.4 Morphology of HMX crystals after treatment at various temperatures -- e. 190 ℃ f. 200 ℃

图 5 不同温度下HMX晶体颗粒的XRD图谱

Fig.5 XRD patterns of HMX crystal particles at different temperatures

图6 不同温度下HMX晶体颗粒相变的XRD谱分析

Fig.6 XRD pattern analysis of the phase transition of HMX crystal particles at different temperatures

表1 不同温度下HMX晶体颗粒特性落高测量结果

Table 1 Measured results of the characteristic drop height (H50 ) of HMX crystal particles at different temperatures

image /

1—落锤, 2—上击柱, 3—击套, 4—下击柱, 5—加热带, 6—底座, 7—测温孔, 8—炸药颗粒

1—drop hammer, 2—up pillar, 3—sheath, 4—down pillar, 5—heating band, 6—base, 7—hole for temperature testing, 8—HMX particle

无注解

无注解

无注解

无注解

无注解

无注解

无注解

T is the temperature rise,PT is the phase transition.

  • 参考文献

    • 1

      DAI Xiao‑gan, WEN Yu‑shi, HUANG Hui, et al. Impact response characteristics of a cyclotetramethylene tetranitramine based polymer‑bonded explosives under different temperatures [J]. J Appl Phys, 2013, 114: 114906.

    • 2

      肖玮, 李亮亮, 苏健军, 等. TNT在热和撞击加载作用下的点火性能[J]. 火炸药学报. 2013, 36(2):38-41.

      XIAO Wei, LI Liang‑liang, SU Jian‑jun, et al. Ignition performances of TNT under temperature and impact loading actions[J]. Chinese Journal of Explosives and Propellants, 2013, 36(2): 38-41.

    • 3

      代晓淦,文玉史,申春迎,等. 热和枪击复合环境试验中PBX‑2炸药的响应特性[J]. 火炸药学报. 2009, 32(4): 41-44.

      DAI Xiao‑gan, WEN Yu‑shi, SHEN Chun‑ying, et al. Reaction characteristics of PBX‑2 under heat and bullet impacting multiple test[J].Chinese Journal of Explosives and Propellants, 2009, 32(4): 41-44.

    • 4

      吴博,代晓淦,文玉史,等. 加热前后PBX‑2炸药的撞击响应[J]. 火炸药学报, 2011, 34(4):34-36.

      WU Bo, DAI Xiao‑gan, WEN Yu‑shi, et al. Impact response of unheated and heated PBX‑2 explosive[J]. Chinese Journal of Explosives and Propellants, 2011,34(4):34-36.

    • 5

      Urtiew P A, Tarver C M, Maienschein J L, et al. Effect of confinement and thermal cycling on the shock initiation of LX‑17[J]. Combustion and Flame 1996,105: 43-53.

    • 6

      Urtiew P A, Tarver C M, Forbes J W, et al. Shock sensitivity of LX‑04 at elevated temperatures[C]//Shock Compression of Condensed Matter‑1997, AIP Conference Proc. 429, Amherst, MA, 2000: 727-730.

    • 7

      Forbes J W, Tarve C M. The effect of confinement and temperature on the shock sensitivity of solid explosives[C]//11th International Detonation Symposium. Snow‑mass,1998:145-152.

    • 8

      David J F, Gary W L, Paul D P, et al. Measurement of the stress/strain response of energetic materials as a function of strain rate and temperature: PBX 9501 and Mock 9501[C]// In Shock Compression of Condensed Matter‑1997, AIP Conference Proceedings429, New York, 1998: 583-586.

    • 9

      Hsu P C, Dehaven M, McClelland M, et al. Characterization of damaged materials[C]//13th International Detonation Symposium. 2006: 284-292.

    • 10

      Herrmann M, Engel W, Eisenreich N. Thermal analysis of the phases of HMX using X‑ray diffraction[J]. Zeitschrift für Kristallographie. 1993, 204(Part‑1): 121-128.

    • 11

      DAI Xiaogan, XU Jinjiang, WEN Yushi, et al. Delay Mechanism of β→ δ phase transition of cyclotetramethylene tetranitramine in polymer bonded explosive formulations by heat conduction obstacle[J]. Propellants, Explosies, Pyrotechnics, 2016, 41: 637-640

    • 12

      DAI Xiaogan, WEN Yushi, WEN Miaoping,et al. Projectile impact ignition and reaction violent mechanism for HMX‑based polymer bonded explosives at high temperature[J]. Propellants, Explosives, Pyrotechnics, 2017, 42: 799-808

    • 13

      中国兵器工业总公司. GJB 772A-1997:炸药试验方法[S]. 北京:中国标准出版社, 1997.

      China North Industries Group Corporation. GJB 772A-1997: Explosive test method[S]. Beijing: China Standard Press, 1997.

      XUE Chao, SUN Jie, KANG Bin, et al. The β→δ phase transition and thermal expansion of octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine[J]. Propellants, Explosives, Pyrotechnics. 2010, 35: 333-338

    • 15

      Weese R K, Maienshein J L, Perrino C T. Kinetics of the β→δ solid‑solid phase transitions of HMX, octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine[J].Thermochimica Acta, 2003, 401: 7-14

    • 16

      Cheng K S. Kinetics of HMX and phase transitions: effects of grain size at elevated temperature[C]//12th International Detonation Symposium, San Diego, California 92101, August 11‑16th, 2002.

    • 17

      Michael H, Walter E, Norbert E. Thermal expansion, transitions, sensitivities and burning rates of HMX[J]. Propellants, Explosives, Pyrotechnics,1992, 27: 190-195

    • 18

      Smilowitz L, Henson B F, Asay B W, et al. A model of the β→δ phase transition in PBX9501[C]//Shock Compression of Condensed Matter, 2001: 1077-1080.

    • 19

      薛超, 孙杰, 宋功保, 等, HMX的β→δ晶型转变研究进展, 含能材料, 2008,16(6):753‑757

      XUE Chao, SUN Jie, SONG Gong‑bao, et al. Review on β→δ phase transition of HMX[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(6): 753-757

    • 20

      徐文峥, 庞兆迎, 王晶禹, 等, 超声辅助喷雾法制备超细高品质HMX及其晶型控制[J]. 含能材料, 2018, 26(3): 260-266.

      XU Wen‑zheng, PANG Zhao‑ying, WANG Jing‑yu, et al. Ultrafine high quality HMX prepared by ultrasonic assisted spray method and its crystal type control[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(3): 260-266.

    • 21

      Smilowitz L, Henson B F, Asay B W, et al. The β‑δ phase transition in the energetic nitroamine: octahydro‑1,3,5,7‑tetranitro‑1,3,5,7‑tetrazocine: Kinetics[J]. J Chem Phys,2002,117:3789-3797.