联吡唑含能化合物合成及性能研究进展

罗义芬1, 肖川1, 毕福强1, 李祥志1, 王伯周1, 2

（1. 西安近代化学研究所，陕西 西安 710065；2. 中国兵器科学研究院，北京 010000；3. 氧氮化工资源高效开发与利用国家重点实验室，陕西 西安 710065）

摘要：联吡唑结构具有氮含量高，结构致密，钝感且热稳定性好的性质，是构建高能量密度材料理想的含能骨架。基于单吡唑环C—C、C—N及N—N不同键合方式，从联吡唑环构建，爆轰基团引入策略与衍生物性能评价等方面，对近几年在含能材料领域已报道的5种联吡唑结构单元2H, 2'H-3,3'-联吡唑（I）、1H, 1′H-4,4’-联吡唑（II）、1'H-1,4’-联吡唑（Ⅲ）、2'H-1,3'-联吡唑（IV）、1'H, 2H-3,3'-联吡唑（V）相关含能化合物的最新进展进行了简要综述。从合成方法及物化爆轰性能等方面梳理了联吡唑含能化合物合成研究发展方向与趋势。指出以下几点是今后联吡唑含能化合物发展的重点方向：筛选已报道的性能优异的联吡唑含能化合物进行合成优化及应用研究；通过引入不同的爆轰基团和富氮阳离子，设计合成更多高性能的联吡唑含能化合物；完善联吡唑含能化合物研究体系，加强几种报道较少的联吡唑单元（如2'H-1,3'-联吡唑（IV）、1'H, 2H-3,3'-联吡唑（V）和1’H-联吡唑（VI））含能化合物的制备与性能研究。

关键词：联吡唑含能化合物；合成；性能；含能材料；综述；进展

1 引言

吡唑结构单元含有较多的N—N, C—N, C=N三键，这些化学键对标准生成焓的贡献大都为正值，非常有利于设计，合成新型含能材料，并提高其爆热和单元比冲。联吡唑骨架结构中含有两个吡唑环，由于氮原子的电负性高，能形成类苯结构的共轭平面大π键结构，因此联吡唑能含能化合物具有钝感且热稳定性好的特性。另外，利用联吡唑骨架上N—H的反应活性引入含能基团，可显著提高含能化合物生成焓，例如，在吡唑环上引入第二个硝基比单硝基的生成焓可提高108 kJ·mol⁻¹，基于此采用在联吡唑环上引入含能基团的方式可设计合成高能低感的含能材料。联吡唑骨架结构含能材料性能表现突出，目前已成为含能材料研究领域的热点之一。近年来，一系列性能优异联吡唑含能化合物的合成，受到了科研工作者的高度关注。联吡唑骨架中两个吡唑环根据键合方式不同，可以分为2H, 2'H-3,3'-联吡唑（I）、1H, 1′H-4,4’-联吡唑（II）、1’H-1,4’-联吡唑（Ⅲ）、2'H-1,3'-联吡唑（IV）、1'H, 2H-3,3'-联吡唑（V）和1’H-联吡唑（VI）6种结构[3]。在含能材料研究领域，科研工作者关注更多的联吡唑结构单元主要是I、II、III三种，这三种联吡唑母体环更有利于引入含能基团，近年来已合成了多种性能优良的含能化合物并初步进行了性能研究；对于联吡唑母体结构Ⅳ、Ⅴ，也开展了一部分合成研究工作，但性能研究较少；对于联吡唑母体结构VI，目前还没有相关含能材料方面的研究报道。

为了推动联吡唑骨架结构在含能材料中的应用，以不同结构联吡唑骨架单元化合物分类，重点归纳了在含能材料领域已开展研究的5种联吡唑骨架含能化合物的母体构建及性能基团引入方法，总结了联吡唑骨架含能化合物的研究进展，并对相同结构联吡唑骨架含能化合物的性能进行了梳理对比，重点介绍了近
年来部分性能突出的新型联吡唑含能化合物的研发，为联吡唑骨架含能化合物的设计制备提供借鉴。

图1 不同的联吡唑母体环结构

Fig.1 Different bipyrazole structures

2 2H,2′H-3,3′-联吡唑含能化合物

2.1 2H,2′H-3,3′-联吡唑母体结构(I)的构建

1965年,F.Effenberger等[14]报道了2H,2′H-3,3′-联吡唑母体环的合成方法。以乙烯基乙醚和草酰氯为原料，首先在乙醚溶液中经过加成反应，然后再在三氯化铝的作用下发生消除，脱去氯化氢，最后以70%~80%的收率得到化合物1；后再在无水甲醇中，-10℃下化合物1与肼发生环化反应得到2H,2′H-3,3′-联吡唑(Scheme 1)，收率为60%~75%。2004年，Virgina Vicente等[15]以1为原料，改进了2H,2′H-3,3′-联吡唑的合成方法。在四氢呋喃溶液中，通过加入催化剂对甲苯磺酸，常温下化合物1与水合肼发生环化反应得到2H,2′H-3,3′-联吡唑，收率75%。

另外还有两种不同原料合成2H,2′H-3,3′-联吡唑的方法，2009年，V.K.Yakovlev等[16]在室温下，以苯为溶剂，采用二氧化锰对4,4′,5,5′-四氢-3H,3′H-3,3′-联吡唑进行氧化得到2H,2′H-3,3′-联吡唑(Scheme 2)，此方法虽然步骤少，但收率较低，仅为27%。

2001年，T.M.Shironina等[17]以2,4,5,7-四酮辛烷和肼为原料，在四氯化碳溶液中发生环化得到4,4′-二硝基-3,5′-二甲基联吡唑(Scheme 3)(化合物2)，收率为48%。化合物2是一种重要的联吡唑中间体，可以设计合成其他高能低感的联吡唑含能化合物。

2.2 2H,2′H-3,3′-联吡唑衍生物的合成

2.2.1 多硝基2H,2′H-3,3′-联吡唑含能化合物

2018年，Dheeraj Kumar等[18]以2H,2′H-3,3′-联吡唑为原料,采用(CH₃CO)O/100%HNO₃对其进行硝化得到化合物3，收率为71%，接着在苯胺中高温下重排，以56%的收率得到化合物4。最后采用100%HNO₃/H₂SO₄对化合物4进行硝化，得到化合物5，收率为81%。反之，若采用(CH₃CO)O/100%HNO₃对化合物4进行硝化，却得到化合物6，收率为87%。若采用100%HNO₃/H₂SO₄对2H,2′H-3,3′-联吡唑进行硝化得到化合物7，收率为83%，再采用(CH₃CO)O/100%HNO₃/H₂SO₄对化合物6进行硝化，以91%的收率得到化合物8，但在苯中回流得不到化合物5(Scheme 4)。联吡唑硝化条件及研究结果表明，若采用的是(CH₃CO)O/H₂SO₄体系，通常得到的是N—NO₂；若采用的是HNO₃/H₂SO₄体系，得到的C—NO₂。性能化合物3~8及HNS和RDX的性能数据见表1。从表中可以看出，相较于耐热炸药HNS(Tₑ=320℃,D=8026m·s⁻¹)和化合物4(Tₑ=376℃,D=1400m·s⁻¹)，化合物5(Tₑ=160℃,D=900m·s⁻¹)和6(Tₑ=100℃,D=500m·s⁻¹)具有更好的耐热性能。
联吡唑含能化合物合成及性能研究进展

8026 m·s⁻¹) 和 6 (T₀ = 365 °C, D = 8120 m·s⁻¹) 表现出更好的热稳定性及爆发性能。且化合物 4 (Iₗ = 40 J, Fₛ = 360) 和 6 (Iₛ = 40 J, Fₛ = 360) 非常钝感。这两种化合物在不敏感炸药和耐热炸药中具有广泛的应用前景，化合物 3 (Iₗ = 20 J, Fₛ = 240 N) 和 5·H₂O (Iₛ = 30 J, Fₛ = 360 N) 的感度比 4 和 6 稍高，但是爆发性能 (D = 8301 m·s⁻¹) 优于化合物 4 和 6。综合性能较为优异，在这些多硝基联吡唑化合物中化合物 7 (Iₗ = 2 J, Fₛ = 40 N, D = 8869 m·s⁻¹) 和 8 (Iₛ = 2 J, Fₛ = 60 N, D = 8926 m·s⁻¹) 的爆发性能最好，量性能优于 RDX (D = 8795 m·s⁻¹)，但感度也较高。

2.2.2 硝基氨基 2H, 2’H-3, 3’-联吡唑化合物

2018 年，Tatyana K. Shkineva 等[21] 以 2H, 2’-H-3, 3’-联吡唑为原料，间合成 4, 4’-二硝基-5, 5’-二硝基-1H, 1’-H-3, 3’-联吡唑 (化合物 9)。利用硝酸混酸对 2H, 2’-H-3, 3’-联吡唑进行氧化获得 6 后，试图通过异常亲核取代基 (VNS) 反应 synthesizes to give the precursor 9, however, did not reach a desirable goal (Scheme 5)。改变研究思路，先对 2H, 2’-H-3, 3’-联吡唑进行 C-硝化，然后再进行 N-硝化得到化合物 7，然后再在 7 的基础上进行 5-位取代等后续的相关反应得到化合物 9 (Scheme 6)。另外，4, 4’, 5, 5’-四硝基-1H, 1’-H-3, 3’-联吡唑 (化合物 9) 高压下在氨水中进行氨解，或者在 FeCl₃·6H₂O 的催化作用下，进行酯解，均可以获得化合物 9，但是收率均较低；化合物 9 在硝酸体系中进行硝化，可以得到硝胺含能化合物 13 (Scheme 7)，收率均较高

2018 年，Yongxing Tang 等[22] 以 4, 4’-二硝基-5, 5’-二硝基-2H, 2’-H-3, 3’-联吡唑为原料，经过酰化、氨解、重排三步反应得到化合物 9 (Scheme 8)。4, 4’-二硝基-5, 5’-二甲基联吡唑 (化合物 2) 用 Na₂Cr₂O₇/H₂SO₄ 氧化可以方便的得到原料 4, 4’-二硝基-5, 5’-二甲基联吡唑。

Table 1	The performances of physico-chemistry and detonation for 3–8 and HNS, RDX and Pb[N₃]₂							
No.	No	Mass density/ g·cm⁻³	Detonation velocity/ m·s⁻¹	Detonation pressure/ GPa	Heat of formation/ kJ·mol⁻¹	Decomposition temperature/ °C	Impact sensitivity/ J	Friction sensitivity/ N
3	1.81	8301	28.8	413.9	183	20	240	
4	1.84	8026	26.2	229.1	376	>40	>360	
5·H₂O	1.84	8556	32.3	42.7	243	30	360	
6	1.83	8120	26.9	221.0	365	>40	>360	
7	1.85	8869	34.5	407.1	206	2	40	
8	1.85	8926	35.4	444.1	152	2	60	
HNS	1.745	7629	24.5	78.0	320	5	>360	
RDX	1.80	8795	34.0	92.6	204	7.5	120	

Scheme 6 Synthesis of compound 9 with compound 7 as primary material[21]
基于联吡唑作用下得到化合物[24]

首先在氨化试剂对甲，为原料可降低其感度，年2017，

N→H使分子内氨，热稳定性较差193℃，137℃，

\[
\begin{array}{c}
\text{Scheme 7 Synthesis of compound 9 and 13 with compound 5 as primary material}^{[21]} \\text{NH}_2OH \text{HNO}_2 \text{MeOH} \\
\end{array}
\]

\[
\begin{array}{c}
\text{Scheme 8 Synthesis of compound 9 with 4,4'-dinitro-5,5'-dicarboxybipyrazole}^{[22]} \\text{MeOH \ SO}_2 \\
\end{array}
\]

2.2.3 4,4',5,5'-四硝基-1H,1'H-3,3'-联吡唑（5）含能衍生物

化合物5是一类性能优异含能化合物，也是一种重要的含能材料合成中间体，其密度为1.84 g·cm⁻³，爆速8556 m·s⁻¹，爆压32.3 GPa，撞击感度31 J，摩擦感度60 N以及分解点243℃。由于多硝基的强吸电子作用，导致化合物5呈酸性，可以合成多种有机盐。利用吡唑环上N-H的反应活性，可以衍生得到一系列的含能化合物。2018年，Yongxing Tang等[23]以5为原料，经过氯丙酮取代，然后再在硝硫混酸中进行硝化得到化合物14（Scheme 9），总收率为24％；化合物14密度为1.882 g·cm⁻³，爆速8987 m·s⁻¹，爆压36.0 GPa，撞击感度5 J以及摩擦感度240 N，但是其分解点太低，仅有150℃；同样以5为原料，在氯化试剂THA作用下，得到化合物15。试图在NO₂BF₄作用下进行硝化，没有成功，仅得到化合物5的单钾盐；以化合物5为原料，与多种碱性物质发生中和反应，得到9种含能离子盐。将所得到化合物的性能数据列于表2。从表2中可以看出，化合物9的含能离子盐5b(D=8851 m·s⁻¹)和5h(D=8952 m·s⁻¹)的爆轰性能与RDX(D=8795 m·s⁻¹)相当，撞击感度低于RDX(D=31 GPa)，但是其分解点分别为T₀=173℃，T₅₀=193℃，热稳定性较差。

含能化合物5结构中活泼N—H的酸性，严重影响了其在武器装备中的应用。因此，通过氯化反应，在联吡唑分子结构中引入两个N—NH，使分子内氮基偶联形成吡唑环结构，可降低其感度。2017年，Yongxing Tang等[24]以5为原料，首先在氯化试剂对氨基苯酸羟胺（THA）作用下得到化合物15，基于联吡唑环上两个氨基与吡唑平面垂直的特性，在氯化偶联试剂t-BuCl作用下，得到1,2,9,10-四硝基联吡唑[1,5-d;5',6'-f][1,2,3,4]四嗪（17）（Scheme 10），总收率为23.1％。将化合物15,17,RDX, HMX及CL-20的物化及爆轰性能数据列于表2中。从表2中可以看出，化合物15(D=8504 m·s⁻¹, p=31.0 GPa)的爆轰性能略低于RDX(D=8795 m·s⁻¹, p=34.9 GPa)；然而化合物17性能优异，其密度为1.955 m·s⁻¹，起始分解点
为233℃，可能由于环本身的骨架特点以及吡嗪环的特性，是迄今为止热稳定性最好的1,2,3,4-四嗪化合物；其理论爆速为9631 m·s⁻¹，理论爆压为44 GPa，撞击感度10 J，摩擦感度240 N，综合性能优于HMX，略低于CL-20，但感度低于CL-20，在混合炸药和固体推进剂中有潜在的应用前景。

2018年，Yongxing Tang等[25]以5为原料，在二甲基甲酰胺的磷酸氢钠溶液中，分别与二溴乙烷、二溴丙烷作用发生环化反应得到乙撑基甲酰胺的碳酸氢钠溶液中。从表2数据分可以看出，引入乙撑基和丙撑基，相比于原料5(Tₚ=243 ℃)，化合物18(Tₚ=261 ℃)和19(Tₚ=280 ℃)，能量有所下降但具有更好的热稳定性；将18(D=8135 m·s⁻¹，p=28.1 GPa)和19(D=7700 m·s⁻¹，p=24.1 GPa)的爆轰性能分别与TNT、TATB比较，二者能量均优于TNT，其中18与TATB接近，感度与TNT相当，但热稳定性相对较低。

表2 化合物5衍生物[25-28]及几种常用炸药的物化及爆轰性能

<table>
<thead>
<tr>
<th>No.</th>
<th>ρ(se)/g·cm⁻³</th>
<th>D(se)/m·s⁻¹</th>
<th>ρ(p)/GPa</th>
<th>ΔHᵢ⁺/kJ·mol⁻¹</th>
<th>Tₚ/℃</th>
<th>IS/°J</th>
<th>FS/°N</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1.882</td>
<td>9897</td>
<td>36.0</td>
<td>347.4</td>
<td>150</td>
<td>5</td>
<td>240</td>
</tr>
<tr>
<td>15</td>
<td>1.760</td>
<td>8504</td>
<td>31.0</td>
<td>457.5</td>
<td>252</td>
<td>30</td>
<td>360</td>
</tr>
<tr>
<td>16</td>
<td>1.916</td>
<td>8035</td>
<td>28.9</td>
<td>-50.7</td>
<td>228</td>
<td>6</td>
<td>120</td>
</tr>
<tr>
<td>17</td>
<td>1.955</td>
<td>9631</td>
<td>44.0</td>
<td>792.2</td>
<td>233</td>
<td>10</td>
<td>240</td>
</tr>
<tr>
<td>18</td>
<td>1.762</td>
<td>8135</td>
<td>28.1</td>
<td>326.6</td>
<td>261</td>
<td>15</td>
<td>>360</td>
</tr>
<tr>
<td>19</td>
<td>1.677</td>
<td>7700</td>
<td>24.1</td>
<td>280.1</td>
<td>280</td>
<td>28</td>
<td>>360</td>
</tr>
<tr>
<td>Sα</td>
<td>2.029</td>
<td>7769</td>
<td>27.3</td>
<td>-125.2</td>
<td>323</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Sβ</td>
<td>1.854</td>
<td>8851</td>
<td>35.8</td>
<td>220.6</td>
<td>137</td>
<td>8</td>
<td>240</td>
</tr>
<tr>
<td>Sс</td>
<td>1.769</td>
<td>8670</td>
<td>31.5</td>
<td>220.9</td>
<td>155</td>
<td>10</td>
<td>240</td>
</tr>
<tr>
<td>Sd</td>
<td>1.764</td>
<td>8343</td>
<td>29.4</td>
<td>116.2</td>
<td>193</td>
<td>10</td>
<td>240</td>
</tr>
<tr>
<td>Se</td>
<td>1.692</td>
<td>8136</td>
<td>25.2</td>
<td>353.3</td>
<td>196</td>
<td>15</td>
<td>360</td>
</tr>
<tr>
<td>Sf</td>
<td>1.750</td>
<td>8306</td>
<td>27.3</td>
<td>791.9</td>
<td>186</td>
<td>16</td>
<td>360</td>
</tr>
<tr>
<td>Sg</td>
<td>1.763</td>
<td>8219</td>
<td>26.5</td>
<td>565.4</td>
<td>206</td>
<td>12</td>
<td>360</td>
</tr>
<tr>
<td>Sh</td>
<td>1.809</td>
<td>8952</td>
<td>34.2</td>
<td>1359.4</td>
<td>193</td>
<td>10</td>
<td>360</td>
</tr>
<tr>
<td>Si</td>
<td>1.795</td>
<td>8542</td>
<td>28.9</td>
<td>1269.7</td>
<td>250</td>
<td>18</td>
<td>360</td>
</tr>
<tr>
<td>21</td>
<td>2.021</td>
<td>9320</td>
<td>40</td>
<td>522.5</td>
<td>123</td>
<td>9</td>
<td>215</td>
</tr>
<tr>
<td>TNT³¹</td>
<td>1.654</td>
<td>6681</td>
<td>19.5</td>
<td>-59.3</td>
<td>300</td>
<td>15</td>
<td>353</td>
</tr>
<tr>
<td>TATB³¹</td>
<td>1.930</td>
<td>8179</td>
<td>30.5</td>
<td>-139.7</td>
<td>350</td>
<td>50</td>
<td>>360</td>
</tr>
<tr>
<td>ADN³⁴</td>
<td>1.81</td>
<td>8430</td>
<td>29</td>
<td>-140.19</td>
<td>159</td>
<td>3~5</td>
<td>64~72</td>
</tr>
<tr>
<td>RDX³⁶</td>
<td>1.800</td>
<td>8795</td>
<td>34.9</td>
<td>92.6</td>
<td>204</td>
<td>7.4</td>
<td>120</td>
</tr>
<tr>
<td>HMX³⁶</td>
<td>1.905</td>
<td>9144</td>
<td>39.2</td>
<td>74.8</td>
<td>275</td>
<td>7.4</td>
<td>120</td>
</tr>
<tr>
<td>CL-20³⁰</td>
<td>2.038</td>
<td>9706</td>
<td>45.2</td>
<td>415.5</td>
<td>195</td>
<td>4</td>
<td>48</td>
</tr>
</tbody>
</table>

Note: 1) Density, measured with a gas pycnometer (25 ℃). 2) Detonation velocity calculated with EXPLO5 v6.01. 3) Detonation pressure calculated with EXPLO5 v6.01. 4) Heat of formation. 5) Decomposition temperature (onset temperature). 6) Impact sensitivity. 7) Friction sensitivity.
2018年，Dalinger等[26]以5为原料，在甲醇溶液中经溴丙酮取代得到中间体20，然后再在硝硫混酸作用下发生硝化反应得到4,4'·5,5'-四硝基-2,2'-双(三硝甲基)-2H,2'H-3,3'-联吡嗪(21)(Scheme 12)。总收率为50%；化合物21氧平衡为(10.5%)，可作为氧化剂使用。化合物21的物化性能见表2。从表2可以看出，化合物21密度为2.021 g·cm⁻³，熔点123 °C，起始分解温度为125 °C，理论爆速为9320 m·s⁻¹，理论爆压为40 GPa，爆轰性能优于ADN；其撞击感度9 J，摩擦感度215 N，较ADN感度显著降低，有望取代ADN应用于固体推进剂中。

Scheme 12 Synthesis of compound 21[26]

2.2.4 4,4’-二硝基-5,5’-二氨基-3H,1’H-3,3’-联吡啶(9)衍生物

2018年，Yongxing Tang等[27]以化合物9为原料，在NaNO₃/HCl作用下发生重氮化反应，然后再与硝基

乙腈钠盐作用得到中间体22，最后化合物22在甲醇溶液中还原，发生环化反应得到化合物23(Scheme 13)。总收率为61.6%；将化合物9, 23, TATB以及2,6-二氨基-3,5-二硝基吡嚏-1-氧化物(LLM-105)的物化及爆轰性能列于表3中。从表3可以看出，将化合物9进行重氮化再环化得到化合物23，其爆轰性能，热稳定性，安全性均得到较大的提升。化合物23密度2.035 g·cm⁻³，起始分解点为315 °C，理论爆速为8572 m·s⁻¹，理论爆压为31.4 GPa，撞击感度>60 J，摩擦感度>360 N，表明其爆轰性能优于TATB，与LLM-105相当。

从前期的研究可以得到[27-28]，重氮化合物也是一种能量较高的含能材料，并且可以稳定存在。2019年，Yongxing Tang等[29]将化合物9的重氮化产物进行了分离，成功获得一种新的重氮内盐化合物24(Scheme 14)，其密度为1.85 g·cm⁻³，起始分解点为150 °C，理论爆速为8943 m·s⁻¹，理论爆压为34.0 GPa，撞击感度1 J，摩擦感度20 N。将24的性能与常用的起爆药二硝基重氮化合物(DDNP)和叠氮化铅(Pb(N₃)₁)进行比较，结果列于表3。从表3可以看出，相较于DDNP和Pb(N₃)₁，化合物24具有更好的爆轰性能和更好的摩擦感度，但是其热稳定性较差，分解点只有150°C；将其与4-氮基基-3,5-二硝基吡嚏(DDNPz)进行对比，两者有接近的爆轰性能和热稳定性。

Scheme 13 Synthesis of compound 23[22]

表3 化合物9及其衍生物[27]和几种常用炸药的物化及爆轰性能

<table>
<thead>
<tr>
<th>No.</th>
<th>p₁/ g·cm⁻³</th>
<th>D₁/ m·s⁻¹</th>
<th>p₁1/ GPa</th>
<th>ΔH₂/ kJ·mol⁻¹</th>
<th>T₀/ °C</th>
<th>IS⁺/ J</th>
<th>FS⁻/ N</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1.72</td>
<td>7779</td>
<td>23.0</td>
<td>212</td>
<td>228</td>
<td>>60</td>
<td>>360</td>
</tr>
<tr>
<td>23</td>
<td>1.85</td>
<td>8572</td>
<td>31.4</td>
<td>899</td>
<td>315</td>
<td>>60</td>
<td>>360</td>
</tr>
<tr>
<td>24</td>
<td>1.85</td>
<td>8943</td>
<td>34.0</td>
<td>987.2</td>
<td>150</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>TATB</td>
<td>1.93</td>
<td>8179</td>
<td>30.5</td>
<td>~139.7</td>
<td>350</td>
<td>50</td>
<td>>360</td>
</tr>
<tr>
<td>LLM-105[19]</td>
<td>1.92</td>
<td>8639</td>
<td>31.7</td>
<td>11</td>
<td>342</td>
<td>20</td>
<td>360</td>
</tr>
<tr>
<td>DDNP[27]</td>
<td>1.72</td>
<td>6900</td>
<td>24.2</td>
<td>321</td>
<td>157</td>
<td>1</td>
<td>24.7</td>
</tr>
<tr>
<td>Pb(N₃)₁[27]</td>
<td>4.8</td>
<td>5877</td>
<td>33.4</td>
<td>450.1</td>
<td>315</td>
<td>2.5−4</td>
<td>0.1−1</td>
</tr>
<tr>
<td>DDNPz[28]</td>
<td>1.81</td>
<td>9038</td>
<td>35.0</td>
<td>407.8</td>
<td>154</td>
<td>2.5</td>
<td><5</td>
</tr>
</tbody>
</table>

Note: 1) Measured densities-gas pycnometer at room temperature. 2) Calculated detonation velocity. 3) Calculated detonation pressure. 4) Calculated heat of formation. 5) Thermal decomposition temperature (onset) under nitrogen gas (DSC, 5 °C·min⁻¹). 6) Impact sensitivity. 7) Friction sensitivity.
3.1 1H,1′H-4,4'-联吡唑化合物的合成及性能

1964年，S.Trofimenko等[20]以3,4-二氰基呋喃为原料，经过选择性还原、偶联以及解体等反应得到化合物25。将所得的1H,1′H-4,4'-联吡唑母体环[21]，再与水合肼发生环化反应，得到1H,1′H-4,4'-联吡唑（Scheme 15）。

3.2 1H,1′H-4,4'-联吡唑化合物的合成及性能

2013年，Kostiantyn V.Domasevitch等[21]以1H,1′H-4,4'-联吡唑为原料，利用不同的硝化条件，得到一系列的1H,1′H-4,4'-联吡唑硝基化合物（Scheme 16）。从表4可以看出，这类化合物有较好的耐热性。

表4 26-30与HNS的物化及爆轰性能

<table>
<thead>
<tr>
<th>No.</th>
<th>D^2</th>
<th>ρ</th>
<th>ΔH_f</th>
<th>T_d</th>
<th>IS^1</th>
<th>FS^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>7873</td>
<td>2.813</td>
<td>314</td>
<td>140</td>
<td>40</td>
<td>>160</td>
</tr>
<tr>
<td>27</td>
<td>6506</td>
<td>1.635</td>
<td>234</td>
<td>100</td>
<td>70</td>
<td>>160</td>
</tr>
<tr>
<td>28</td>
<td>7528</td>
<td>1.749</td>
<td>203</td>
<td>80</td>
<td>28</td>
<td>>160</td>
</tr>
<tr>
<td>29</td>
<td>8256</td>
<td>2.855</td>
<td>224</td>
<td>170</td>
<td>20</td>
<td>>160</td>
</tr>
<tr>
<td>30</td>
<td>8520</td>
<td>2.820</td>
<td>221</td>
<td>170</td>
<td>20</td>
<td>>160</td>
</tr>
<tr>
<td>30-</td>
<td>8451</td>
<td>1.830</td>
<td>10.1</td>
<td>100</td>
<td>20</td>
<td>192</td>
</tr>
<tr>
<td>HNS</td>
<td>7629</td>
<td>1.745</td>
<td>78.0</td>
<td>120</td>
<td>30</td>
<td>>160</td>
</tr>
</tbody>
</table>

注：1）密度（g·cm⁻³）；2）爆轰速度（m·s⁻¹）；3）感度；4）标准生成的摩尔焓；5）热解吸起始点温度；6）比容。
作为一种重要的硝基含能化合物，具有高密度、高能量、低感度的优点，在含能材料领域具有广阔的应用前景。同时 TNP 也是一种重要的含能中间体，以其为原料，Dalinger, I. L. 等（1984）利用 4-位硝基的活性，在 NaOH 水溶液中 80-90 ℃下，与 1H-吡唑发生亲核取代反应，然后再进行酸化得到硝基取代 1H-1,4′-联吡唑类含能化合物（Scheme 18），收率为 52%~80%。

Scheme 17 Synthesis of 4-nitro-1H-1,4′-bipyrazole

Scheme 18 Synthesis of 4-R-3′, 5′-trinitro-1H-1,4′-bipyrazole

4.2 1H-1,4′-联吡唑含能化合物的合成及性能

2014 年，Chuan Li 等（2014）采用上述方法二，以 3, 4, 5-三硝基吡唑和 4-氯吡唑为原料，经过亲核取代得到 C-N 相连的 1H-1,4′-联吡唑，随后再在硝硫混酸，氨水中发生硝化、氨解等反应得到化合物 33，总收率为 24%；然后采用 H2O2/H2SO4 对化合物 33 进行氧化，以 40% 的收率得到多硝基取代的 C-N 联吡唑化合物 34；鉴于化合物 33 分子结构本身的酸性，利用 N-H 的活性，对其进行氢化得到中性分子 35，收率为 57%；以化合物 33 为母体，与多种碱性配体作用，得到 9 种含能盐 33a~33i（Scheme 19）。将所得到化合物的性能列表于表 5。从表 5 可以看出，所合成的化合物热稳定性较好，热分解温度均在 228 ℃以上。化合物 33（ρ=1.89 g·cm⁻³, D=8600 m·s⁻¹, p=35.0 GPa, IS=7540 J, Td=242 ℃）和 35（ρ=1.87 g·cm⁻³, D=8648 m·s⁻¹, p=35.1 GPa, IS=8240 J, Td=284 ℃）均有与 RDX 相接近的爆轰性能，另外 33 和 35 比 RDX 具有更好的安全性能。综合性能最为优异的是化合物 34（ρ=1.82 g·cm⁻³, D=8814 m·s⁻¹, p=37.0 GPa, IS=281 J, Td=297 ℃），而且其热分解点接近 300 ℃，具有能量高，感度低及良好的热安定性。另外，所合成的系列有机盐 33a~33i（ρ=1.67~1.88 g·cm⁻³, D=8041~8615 m·s⁻¹, IS=40 J, Td=228~297 ℃）也表现出较为优异的综合性能。在所合成的系列有机盐中，以单铵盐 33a（ρ=1.88 g·cm⁻³, D=8814 m·s⁻¹, p=37.0 GPa, IS=281 J, Td=297 ℃）和 33i（ρ=1.80 g·cm⁻³, D=8536 m·s⁻¹, IS=40 J, Td=228 ℃）为母体

表 5 33~35, 33a~33i 与 TNT, TATB, RDX 的物化及爆轰性能

Note: 1) Measured densities-gas pycnometer at room temperature. 2) Detonation velocity calculated by the EXPLO program, modified nitrogen equivalent method, and Kamlet-Jacobs equations. 3) Detonation pressure calculated using the EXPLO program, modified nitrogen equivalent method, and Kamlet-Jacobs equations. 4) Calculated molar enthalpy of formation. 5) Thermal degradation. 6) Impact sensitivity.
5 2′H-1,3’-联吡唑 (Ⅳ) 含能化合物

室温下，肼溶液中，1,4-二硝基吡唑与肼反应，以较高的收率得到取代 2′H-1,3’-联吡唑化合物[40-47]，然后采用硝化试剂 HNO₃/AcOH/CH₂O 对其进行硝化得到化合物 36(Scheme 20)，收率为 90%。

前期研究表明，TNP 与 1H-吡唑发生亲核取代反应，是在 4 位硝基上发生。2011 年，Daling, I.L. 等[48]将 TNP 替代 1-甲基-3,4,5-三硝基吡唑 (MTNP)[40-42] 进行上述反应时，由于区域特异性，导致 MTNP 5-位硝基上发生取代反应，所得产物的化学结构和硝基取代 2′H-1, 3’-联吡唑化合物 (Scheme 21)。

2019 年，Mao-xi, Zhang 等[49]以 4-氨基-3,5-二硝基吡唑为原料，经过氧化得到 4-重氮基-3,5-二硝基吡唑[50]，然后再与 4-氨基-3,5-二硝基吡唑发生取代反应得到化合物 4-重氮基-双(4-氨基-3,5-二硝基吡唑-1-基)吡唑 (LLM-226) (Scheme 22)，总收率为 51%。其中 LLM-226 密度为 1.83 g·cm⁻³，分解峰温为 (Tₐ) 278 ℃，H₁₀ 为 31 cm(2.5 kg 顶底)，对摩擦，火花不敏感。

6 1′H,2H-3,4’-联吡唑 (Ⅴ) 含能化合物的合成及性能

1′H,2H-3,4’-联吡唑含能化合物的研究较少，只有 1993 年，Shevelev, S. A. 等[51]进行了此方面的报道，且文献只给出了 1′H-2H-3,4’-联吡唑衍生物的结构和合成过程，没有报道性能数据。Shevelev, S. A. 等采用两种原料得到了硝基取代 1′H,2H-3,4’-联吡唑 (37)。一种是 2-(4-硝基-1H-吡唑-3-基) 丙二醛为原料，与肼作用发生缩合反应得到 37，收率为 91%；另外一种是采用 38 为原料与肼发生环化反应得到化合物 37(Scheme 23)，收率为 81%。

利用同样的环化方法，通过改变母体结构得到两种联吡唑化合物 39 和 42。然后对这两种联吡唑化合物进行硝化，采用不同的硝化条件分别得到 N—NO₂ 硝化产物 40 和 41，以及 C—NO₂ 硝化产物 43 和 44 (Scheme 24)。

7 结论与展望

联吡唑骨架结构因其具有 N—N 杂五元芳香环结构，且可以形成共轭大π键，具有高生成焓，高密度，正氧平衡，钝感及热稳定性的优点，因而构建联吡唑骨架含能化合物成为设计合成高能低感或耐热单质炸药的重要途径。基于联吡唑环间键合方式的不同，联吡唑包括 2H, 2’H-3,4’-联吡唑 (Ⅰ)，1H,1’H-4,4’-联吡唑 (Ⅱ)，1′H,1’H,4,4’-联吡唑 (Ⅲ)，2′H-1,3’-联吡唑 (Ⅳ)，1′H,2H-3,4’-联吡唑 (Ⅴ) 和 1,1’-联吡唑 (Ⅵ) 6 种联吡唑结构单元。其中Ⅰ、Ⅱ和Ⅲ三种联吡唑结构单元在含能材料领域的研究较为广泛，已合成出大量的综合性能优异的联吡唑含能化合物；Ⅳ和Ⅴ两种联吡唑结构单元在含能材料领域的研究较少，合成反应的报道，性能研究起步较晚，但从已报道的化合物的性能来看在含能材料领域也有一定的前景，可以作为联吡唑含能化合物发展的一个方向；Ⅵ型联吡唑含能化合物目前还未有合成和性能方面的报道。综上，联吡唑含能化合物进一步的发展趋势应集中在以下几个方面：

(1) 目前，在已合成的化合物中筛选综合性能优异的联吡唑含能化合物，尽快实现其高效制备并开展应用研究，寻找制备更为简单的母体合成及含能基团引入方法。以Ⅰ、Ⅱ和Ⅲ三种联吡唑含能化合物为研
4.1.2 含能化合物的性能特点

对于联吡唑类含能化合物的性能特点，本文将重点介绍其性能的多样性。联吡唑类含能化合物具有良好的化学稳定性和热安定性，可以用于多种类型的含能材料。联吡唑类含能化合物可以用于制作高能量密度的推进剂，也可以用于制作高性能的防爆材料。联吡唑类含能化合物的性能特点决定了其在含能材料领域的重要性。联吡唑类含能化合物的性能特点包括：

4.1.3 联吡唑类含能化合物的性能特点

联吡唑类含能化合物的性能特点包括：

4.1.4 联吡唑类含能化合物的性能特点

联吡唑类含能化合物的性能特点包括：

参考文献:

Scheme 24 Synthesis of 1′H,2H-3,4′-bipyrazole derivatives

Scheme 24 合成1′H,2H-3,4′-bipyrazole衍生物
Chunlin He, Kohler J
耐热炸药

José Elguero, et al.

CHINESE JOURNAL OF ENERGETIC MATERIALS

联吡唑含能化合物合成及性能研究进展

High thermally stable energetic compounds

Herve G. Dinitropyrazole derivatives, their preparation, and energetic compositions comprising them; US, 2009/0186931 [P], 2009.

Chuan Li, Lixuan Liang, Kai Wang, et al. Polynitro-substituted bispyrazoles; A new family of high-performance energetic

Review on Energetic Compounds Based on Bipyrazoles: Synthesis and Property

Luo Yi-fen, Xiao Chuan, Bi Fu-qiang, Li Xiang-zhi, Wang Zi-jun, Wang Bo-zhou

1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China; 2. Ordinance Science Institute of China, Beijing 101000, China; 3. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an 710065, China

Abstract: The characteristics of high nitrogen content, compact structure, low sensitivity, and good thermal stability make the bipyrazole structures ideal energetic backbones for the synthesis of high energy density materials. Based on different linkers, such as C—C, C—N, N—N, between monopyrazole moieties, recent progress of the five bipyrazole based energetic compounds, including 2H, 2′H-3, 3′-bipyrazole(I), 1H, 1′H-4, 4′-bipyrazole(II), 1′H, 1, 4′-bipyrazole(III), 2′H-1, 3′-bipyrazole(IV) and 1′H, 2H-3, 4′-bipyrazole(V), is reviewed from the aspect of synthetic strategy, explosophore introduction and property evaluation. The development and research trends on the synthesis of bipyrazole energetic compounds are analyzed. The key development directions of bipyrazole energetic compounds in the future are as follows: screen reported bipyrazole energetic compounds with excellent performance for synthetic and application research; design and synthesize more bipyrazole compounds with excellent and comprehensive properties by explosophore and nitrogen-rich cation introduction; strengthen the studies on synthesis and properties of several bipyrazole units (such as 2′H-1, 3′-bipyrazole(IV) and 1′H, 2H-3, 4′-bipyrazole(V) and 1′,1′-bipyrazole(III)) and improve the research of bipyrazole energetic compounds.

Key words: bipyrazole energetic compound; synthesis; property; energetic materials

CLC number: TJ55; O62 Document code: A DOI: 10.11943/CEJM2019307