文章编号:1006-9941(2021)02-0141-08

全含能侵彻战斗部对多层钢介质的毁伤威力表征技术

沈波,李延

(北京航天长征飞行器研究所,北京 100076)

摘 要: 为实现全含能侵彻战斗部毁伤威力的有效评价,基于125 mm火炮建立了全含能战斗部毁伤威力表征试验系统,从侵彻 扩孔、高温高压、纵火引燃等多个方面对战斗部毁伤威力进行了多物理场信息描述。结果表明,16 kg战斗部在952 m·s⁻¹速度条件 下侵彻5层钢靶能够形成强烈火光,持续时间约120 ms,最大扩散范围超6 m×10 m,最高温度约2100 ℃,相比于惰性战斗部,温度 增益约1270 ℃,1.2 m处的超压增益约为0.16~0.5 MPa,对5层钢靶破孔面积的累计增益达到300%以上,对油箱燃油有良好的纵 火引燃效果。

关键词:全含能侵彻战斗部;威力表征;侵彻扩孔;纵火引燃 中图分类号:TJ410.4;O614;O62 文

文献标志码:A

DOI: 10.11943/CJEM2020256

1 引言

传统侵彻战斗部由金属壳体、炸药及引信等部件 组成,在战斗部设计过程中,需要保证壳体具有一定的 结构强度、炸药具有一定的安定性,同时需要保证引信 具有可靠的引战配合功能。近年来,各类高速飞行器 不断涌现,侵彻战斗部的结构、炸药及引信等各方面性 能都面临着极大的风险和挑战。对于现役侵彻战斗部 来说,炸药是主要的能量输出来源,作为传统含能材 料,其高能与高钝感设计技术几乎趋于瓶颈。随着新 型含能结构材料技术的不断发展,全含能侵彻战斗部 的概念应运而生。战斗部由高强高韧含能壳体及堵 盖、低密度高释能含能内芯材料组合而成。在侵彻多 层钢介质过程中,战斗部能够逐层发生破碎及释能效 应,实现侵彻扩孔、高温高压及纵火引燃等功能,对目 标形成多层级立体式打击,从而脱离平台速度提升带 来的弹体强度、装药安定及引信可靠性等一系列限制, 为舰船类目标的有效打击带来新的思路。

含能侵彻战斗部最早以横向效应增强型侵彻体

收稿日期: 2020-09-10; 修回日期: 2020-10-27 网络出版日期: 2020-12-02 作者简介: 沈波(1975-),男,研究员,主要从事飞行器设计研究。 通信联系人: 李延(1991-),男,工程师,主要从事弹药设计研究。 e-mail:446032176@qq.com (PELE)的概念提出,该侵彻体外壳由钢或钨等重金属 材料制备,内核由金属/氟聚物低密度含能材料填充。 涂胜元^[1]、朱永清^[2]、李干^[3]采用光滑粒子流体动力学 (SPH)仿真算法描述了PELE侵彻金属靶的应力演化 与破碎飞散过程;殷艺峰^[4]、张田育子^[5]利用Powder Burn模型模拟了PELE的爆燃反应;朱建生^[6]从理论和 试验两个方面研究了弹体材料及着靶速度对破片飞散 的影响。近年来,含能材料开始应用于侵彻战斗部壳 体,杨华^[7]设计了由含能壳体和钢壳体组成的复合壳 体侵彻战斗部,通过侵彻5层建筑靶标试验验证了含 能壳体应用于侵彻战斗部的可行性。汪涛^[8]通过真空 电弧熔炼技术制备得到侵彻战斗部壳体所需材料,通 过成分优化找出材料强韧性匹配成分点。

从国内外公开发表的文献来看,目前含能侵彻体 多采用部分含能结构,即壳体含能或内芯含能,而有关 全含能侵彻战斗部的研究较少。此外,研究多关注战 斗部的侵彻能力、膨胀破裂等力学行为,研究手段多为 理论分析和数值模拟。而有关含能侵彻战斗部冲击释 能特性的研究仍然较少,特别是释能威力的表征,几乎 是空白。为此,本文通过试验方法,对战斗部侵彻扩 孔、高温高压、纵火引燃等毁伤效应开展研究,研究结 果对全含能侵彻战斗部的设计和效能评估具有一定的 参考价值。

引用本文:沈波,李延. 全含能侵彻战斗部对多层钢介质的毁伤威力表征技术[J]. 含能材料,2021,29(2):141-148. SHEN Bo, LI Yan. Characterization Technology of Damage Power of All-Energetic Penetrating Warhead to Multilayer Steel Medium[]]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2021,29(2):141-148.

CHINESE JOURNAL OF ENERGETIC MATERIALS

2 毁伤效应试验

2.1 试验件状态

全含能侵彻战斗部由含能壳体、含能堵盖及含能 内芯组成,如图1所示。弹体采用卵形头+直筒形弹身 外形结构,壳体及堵盖均由多元高熵合金材料制备而 成,具有较高的强度和韧性,密度5.6g·cm⁻¹。内芯由 金属/氟聚物复合材料浇注成型,具有高释能特性,密 度1.9g·cm⁻³。试验弹总质量16kg,其中内芯材料质 量3.6kg,占总质量的22.5%。

a. all-energy penetration warhead test piece

b. all-energy penetration warhead test piece
 图1 全含能侵彻战斗部

Fig.1 All-energy penetration warhead

取高熵合金壳体材料 8 mg,以氧化铝为坩埚进行 线性升温综合热分析,初始温度 30 C,加热速率 10 k·min⁻¹,终止温度 1300 C,测试气氛为工业纯 N₂ 和 O₂按 4:1体积比合成的模拟大气。图 2a 为合金材 料差示扫描量热(DSC)曲线和热重(TG)曲线。在大 气气氛线性升温过程中,材料氧化增重达 20.24%,出 现明显氧化放热峰,放热峰值 1032.9 C,热氧化放热 值(放热峰面积)16953 J·g⁻¹。收集少量内芯材料在模 拟大气中进行 DSC 和 TG 分析,如图 2b 所示,材料氧 化减重达 50%,同样出现明显氧化放热峰,放热峰值 约 600 C,热值 5215 J·g⁻¹。相比于内芯材料,壳体材 料热值更高,然而由于内芯材料反应温度较低,分子活 化能较高,且材料为树脂基材料,其力学性能与合金壳 体材料具有显著差异,在战斗部侵靶过程中破碎更为 完全,反应接触面积更大,因此内芯材料更易于激发化 学反应,达到更高的释能效率。

为了表征含能侵彻战斗部与惰性动能侵彻战斗部的 毁伤威力差异,本试验设计了1发惰性试验件作为对比 参照,壳体与堵盖均采用45#钢材料,弹体内部采用空心 结构,试验弹质量16 kg,与含能侵彻战斗部保持一致。

图 2 含能壳体材料与内芯材料的TG-DSC曲线 Fig. 2 TG-DSC curves of high-entropy alloy energetic shell material and inner core material

图3 惰性侵彻战斗部试验件

Fig.3 Inert penetration warhead test piece

2.2 试验系统

全含能侵彻战斗部威力表征试验系统主要由

125 mm火炮、侵彻靶板、效应物靶标、高速运动分析 仪、超压测试仪及温度测试仪组成,试验系统布置如 图4所示。侵彻靶板由5层Q345钢板组成,各层靶板 与地面保持垂直,靶面尺寸1m×1m,靶板厚度依次 为22,8,16,8,8 mm,靶面间距依次为1,3,1,1 m。 第二层与第五层靶板后方分别放置油箱作为效应物靶 标,油箱由3mm厚LY12铝板焊接而成,敞口放置,油 箱尺寸 500 mm(长)×150 mm(宽)×500 mm(高),内 装0#航空煤油,油面高度约为油箱高度的1/3。高速 运动分析仪、超压测试仪及温度测试仪均放置于靶板 侧方掩体内部。其中高速运动分析仪用于记录战斗部 侵靶过程,拍摄频率5000 Hz,曝光时间158 ms;超压 测试仪用于记录战斗部在侵靶过程中产生的超压信息, 三路压电传感器放置于1~4层靶板之间的地面处,距离 炮击迹线1.2 m,通过导线连接掩体内部数据采集器;温 度测试仪采用高速红外相机,用于记录战斗部在侵靶过 程中产生的温度场效应,拍摄频率400 Hz。此外,靶前 放置测速网靶,用于测量战斗部的着靶速度。

b. physical map of shooting range layout

图4 全含能侵彻战斗部毁伤试验系统

Fig.4 All-energy penetration warhead damage test system

3 结果与讨论

3.1 战斗部侵靶过程分析

高速运动分析仪记录的全含能侵彻战斗部侵靶过 程如图 5 所示,图像中判读战斗部着靶速度 952 m·s⁻¹。

CHINESE JOURNAL OF ENERGETIC MATERIALS

战斗部侵彻第一层靶板瞬间激发强烈化学反应,释放大 量能量,在3m×3.6m范围内形成强烈火光。随后在撞 击每一层靶板过程中,战斗部携带含能结构材料均不断 激发反应,火光分布范围不断扩大,亮度逐渐增强,在 20ms贯穿5层靶板后,火光分布范围已超过6m×10m, 在40ms时,火光范围和亮度均达到最大值,随着含能 材料不断反应消耗,在随后的一段时间里,火光强度不 断削弱,120ms时火光接近熄灭。由于高速相机拍摄 故障,未记录到惰性战斗部的侵靶过程。

针对含能侵彻战斗部的侵靶过程开展数值仿真再现分析,由于含能结构材料具有冲击释能特性,材料模型不仅需要反映材料的力学行为,还需反映释能行为。目前国内学者已尝试采用JWL^[9]、Powder Burn^[10]等模型对该类材料的释能行为进行描述,但仿真结果与试验效果有不小偏差。为此本研究在仿真过程中仍然假设战斗部为惰性,含能壳体及堵盖材料选用MAT_JOHNSON_COOK模型,活性内芯材料选用MAT_PLASTIC_KINEMATIC理想弹塑性模型,材料参数基于力学性能测试数据进行设置。战斗部壳体、堵盖、内芯和靶标均采用单元侵蚀算法来模拟破碎失效。

从仿真结果可以看出,对于16 kg全含能侵彻战 斗部,在952 m·s⁻¹的初始速度条件下,战斗部初始动 能7.25 MJ,在侵靶过程中沿头部向后不断发生侵蚀 破碎,战斗部侵彻各层靶板后的剩余动能依次为5.9, 4.7,3.7,3.2 MJ和2.5 MJ,侵靶结束后的剩余动能约 占初始动能的34%。侵靶过程中,战斗部损失材料依 靠自身自供氧体系发生氧化还原反应,同时与周围氧 气反应生成金属氧化物,通过战斗部的连续侵彻、破碎 与冲击形成能量的自分布释放。

3.2 战斗部侵靶温度场效应分析

高速红外相机记录到含能战斗部与惰性战斗部的侵 靶温度场如图7所示。由图7可以看出,由于含能战斗部 携带含能材料在侵靶过程中不断反应释能,侵彻弹道附 近一定区域内形成强烈高温场,温度场的分布范围和形 态演变与高速摄像记录的火光相一致,且温度值与火光 强度呈正相关性,最高温度约为2100℃。反观惰性战斗 部,战斗部仅在各层靶板侵孔附近很有限的区域内形成 高温场,温度场范围约为1 m×0.5 m,最高温度约 830℃,在14.5 ms时,温度场已消散殆尽。

由此可见,相比于惰性战斗部,含能侵彻战斗部具 有强烈的高温场效应,温度值、分布范围及持续时间均 有显著提升,相比于惰性战斗部,最高温度增益可以达 到约1270℃。

Fig.5 All-energetic penetration warhead

a. penetration-fragmentation process 图6 战斗部侵靶过程数值仿真描述

Fig.6 Numerical simulation description of warhead penetration process

3.3 战斗部侵靶超压场效应分析

超压测试仪记录了两种战斗部在侵靶过程中产生 的超压数据,如图8所示。由图8可以看出,两种战斗 部在三个测压点位均获得连续脉冲信号,压力在很短 的时间内上升至最大值,随后迅速下降,此后又产生了 多个脉冲震荡,这是由于超压在周围介质中不断反射

所造成的。惰性战斗部产生的超压主要源于战斗部在 空气中飞行产生的脱体冲击波,而含能战斗部产生的 超压主要源于含能材料不断冲击释能叠加而产生的爆 燃冲击波。对于含能战斗部来说,三个测压点位测得 初始超压峰值分别为0.23,0.24 MPa和0.57 MPa;对 于惰性战斗部来说,三个测压点位测得初始超压峰值

Penetrating target 4

time / ms

b. kinetic energy-time curve

20

Penetrating target 5

30

8 Kinetic energy curve of warhead Penetrating target 1

10

Penetrating target 2 Penetrating target 3

7

6

5

4 3

2₊ 0

40

图7 含能战斗部与惰性战斗部侵靶温度场效应对比

Fig.7 Comparison of the temperature field effect of energetic warhead and inert warhead

分别为0.07,0.08 MPa和0.07 MPa。

由此可见,相比于惰性战斗部,含能战斗部能够产 生较为强烈的超压场效应,利用含能战斗部与惰性战斗 部的超压差值可以对含能战斗部爆燃超压进行表征,即 含能战斗部爆燃产生的超压增益约为0.16~0.5 MPa。

3.4 战斗部对钢介质侵彻扩孔效应分析

含能战斗部与惰性战斗部对多层钢靶板的毁伤效 果如图9和图10所示。从图9和图10可以看出,惰性战 斗部侵彻弹道平直,形成的侵孔基本呈现圆形,侵孔直径 与弹体直径相当。从图11统计数据来看,1~5层靶板侵

含能材料

图8 含能战斗部与惰性战斗部侵靶超压对比

Fig.8 Comparison of overpressure between energetic warhead and inert warhead

孔面积分别为153,220,255,375,452 cm²,随着侵彻层 数递增,侵孔面积略有增加,这是由于弹体侵彻姿态发生 改变而造成的。对于含能战斗部来说,首层钢板形成的 侵孔为规整圆形,此后侵孔形状逐渐呈现不规则性,第5 层靶板已发生严重扭曲变形,从图11统计数据来看,1~4 层靶板的侵孔面积分别为175,473,790,2570 cm²,侵 孔面积呈现出迅速递增趋势,这一方面是由于含能战斗 部壳体在侵靶过程中不断发生破裂,提高了弹靶接触面积;另一方面是由于战斗部携带含能材料冲击释能产生 爆燃超压,加剧了侵孔的横向破裂与变形。

由此可见,相比于惰性战斗部,含能战斗部能够对 多层钢介质形成显著的侵彻扩孔行为,对于5层钢靶 板来说,含能战斗部对钢靶的破孔面积累计增益可以 达到300%以上。

图9 含能战斗部侵靶效果

Fig.9 Energetic warhead penetration effect

图10 惰性战斗部侵靶效果

Fig.10 Inert warhead penetration effect

图11 含能战斗部与惰性战斗部侵孔面积对比

Fig.11 Comparison of penetration area of energetic warhead and inert warhead

3.5 含能战斗部对燃油引燃效应分析

含能战斗部对燃油的引燃效果如图 12 所示。由 图 12 可以看出,前油箱内部燃油发生剧烈燃烧,形成 强烈火焰,油箱外表面被明显熏黑。前后两油箱在试 验后均产生少量破孔,其中前油箱的正面和背面各有 破孔 1个,后油箱正面破孔 6-7个,背面破孔 4个。这 是由于战斗部在侵靶过程中,高强高韧含能壳体发生 破碎,形成含能金属破片,对油箱形成了侵彻破孔。随 着战斗部侵靶层数递增,壳体破碎程度加剧,油箱被壳 体破片击中数量增加,破孔数量增多。在含能破片侵 彻油箱的过程中,自身化学反应被进一步激发,释放能 量,对油箱内燃油形成纵火引燃。

由此可见,含能战斗部在侵靶过程中可以形成含 能破片二次杀伤元,对燃油类效应物靶标具有良好的 纵火引燃效果。

a. oil burning

b. front fuel tank-front

d. rear fuel tank-front

e. rear fuel tank-back

图12 含能战斗部引燃油箱

Fig.12 Energetic warhead ignites the fuel tank

4 结论

建立了全含能侵彻战斗部毁伤威力表征试验系统,通过多物理信息测试对全含能战斗部侵彻扩孔、高温 高压、纵火引燃等效应进行了系统全面表征,并揭示了其 与惰性战斗部的毁伤威力差异,主要研究成果如下:

(1)全含能战斗部在侵彻多层钢介质过程中能够 激发强烈爆燃反应,形成大范围火球,16 kg含能战斗 部侵彻5层钢靶板形成火光范围超过6 m×10 m,持续 时间约120 ms,火焰最高温度约2100 ℃,相比于惰性 战斗部,温度增益约1270 ℃。

(2)全含能战斗部侵彻多层钢介质能够在一定范围内形成超压效应,相比于惰性战斗部,16 kg含能战斗部在1.2 m处的超压增益约为0.16~0.5 MPa。

(3)全含能战斗部侵彻多层钢介质具有显著的扩 孔效应,相比于惰性战斗部,16 kg含能战斗部对5层 钢靶破孔面积的累计增益达到300%以上。

(4)全含能战斗部在侵靶过程中可以形成含能破 片二次杀伤元,对燃油类效应物靶标具有良好的纵火 引燃效果。

参考文献:

- [1] 涂胜元,安振涛,王军波,等. 钢合金壳体 PELE 作用机理研究[J]. 弹箭与制导学报,2009,29(2):114-116.
 TU Sheng-yuan, AN Zhen-tao, WANG Jun-bo, et al. Research on the operation mechanism of steel shell PELE [J]. *Journal of Projectiles, Rockets, Missiles and Guidance*, 2009, 29 (2): 114-116.
- [2] 朱永清,张映梅,魏雪婷,等.横向效应增强型侵彻弹横向增效机 理数值模拟[J]. 计算机辅助工程,2011,20(4):39-41.
 ZHU Yong-qing, ZHANG Ying-mei, WEI Xue-ting, et al. Numerical simulation on enhanced lateral effect mechanism of penetrator with enhanced lateral effects [J]. Computer Aided Engineering,2011,20(4):39-41.
- [3] 李干. 不同材料对 PELE 毁伤性能的影响 [D]. 太原: 中北大学, 2017. LI Gan. Effect of materials on damage performance of PELE [D]. Taiyuan: North University of China, 2017.

- [4] 殷艺峰.活性材料增强侵彻体终点侵爆效应研究[D].北京:北京理工大学,2015.
 YIN Yi-feng. Research on terminal penetration-induced initiation and damage effect of reactive material enhanced penetra-
- tor[D].Beijing: Beijing Institute of Technology, 2015.
 [5] 张田育子. 侵爆 PELE 作用多层靶毁伤效应数值模拟[D]. 北京: 北京理工大学, 2016.
 ZHANG Tian-yu-zi. Numerical simulation of damage effect of spaced multi-layered plate impacted by penetration-explosive PELE[D].Beijing: Beijing Institute of Technology, 2016.
- [6] 朱建生,赵国志,杜忠华,等. PELE垂直侵彻薄靶的机理分析[J]. 爆炸与冲击,2009,29(3):281-288.
 ZHU Jian-sheng,ZHAO Guo-zhi,DU Zhong-hua, et al. Mechanism of PELE projectiles perpendicularly impacting on thin target plates [J]. *Explosion and Shock Waves*, 2009, 29 (3): 281-288.
- [7] 杨华,陈云俊,赵勇华,等.活性复合壳体侵爆战斗部技术研究 [C]//第十六届全国战斗部与毁伤技术学术交流会,昆明,2019: 129-131.

YANG Hua, CHEN Yun-jun, ZHAO Yong-hua, et al. Research on active composite shell penetrating explosive warhead technology [C]// 6th National Warhead and Damage Technology Academic Exchange Conference, Kunming, 2019:129–131.

 [8] 汪涛,张陕南,许金亮,等. AlNbTiVZrx 含能结构材料制备与性 能研究[C]//第十六届全国战斗部与毁伤技术学术交流会,昆明, 2019:991-994.
 WANG Tao, ZHANG Shan-nan, XU Jin-liang, et al. Research

on preparation and properties of AlNbTiVZrx energetic structure materials[C]// 6th National Warhead and Damage Technology Academic Exchange Conference, Kunming, 2019: 991–994.

- [9] Jianwei Jiang, Shuyou Wang, Mou Zhang. Modeling and simulation of JWL equation of state for reactive Al/PTFE mixture
 [J]. Journal of Beijing Institute of Technology, 2012, 21(2).
- [10] 肖艳文.活性破片侵彻引发爆炸效应及毁伤机理研究[D].北 京:北京理工大学,2016.
 XIAO Yan-wen. Research on penetration-induced blast effect and damage mechanism of reactive material fragment[D]. Beijing: Beijing Institute of Technology, 2016.

Characterization Technology of Damage Power of All-Energetic Penetrating Warhead to Multilayer Steel Medium

SHEN Bo, LI Yan

(Beijing Institute of Space Long March Vehicle, Beijing 100076)

Abstract: To achieve an effective evaluation of the damage power of all-energetic penetration warhead, a test system for damage power assessment was established based on the 125mm artillery, accompany by a description in multiple physical fields from various aspects such as penetration, reaming, high temperature, high pressure, and arson ignition by arson. Results show that a 16 kg warhead can penetrate a 5-layered steel target at a speed of 952 m·s⁻¹ to form strong fire which lasts for about 120 ms, with a maximum diffusion range of over 6 m×10 m and a maximum temperature of about 2100 °C. Compared with the inert warhead, the gains of temperature and overpressure at 1.2 m are about 1270 °C and 0.16–0.5MPa, respectively, and the cumulative gain of the broken hole area of 5-layered steel target reaches beyond 300%. Moreover, the warhead has a good arson ignition effect on the fuel tank.

Key words: all-energetic penetration warhead; power characterization; penetration and reaming; arsonCLC number: TJ410.4; O614; O62Document code: ADOI: 10.11943/CJEM2020256

(责编: 王艳秀)