CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
PagoriaP F, LeeG S, MitchellA R, et al. A review of energetic materials synthesis[J]. Thermochimica Acta, 2002, 384(1‑2): 187-204.
参考文献 2
FriedL E, ManaaM R, PagoriaP F, et al. Design and synthesis of energetic materials[J]. Annual Review of Materials Research, 2001, 31(1): 291-321.
参考文献 3
BadgujarD M, TalawarM B, AsthanaS N, et al. Advances in science and technology of modern energetic materials: an overview[J]. Journal of Hazardous Materials, 2008, 151(2‑3): 289-305.
参考文献 4
KlapötkeT M. Chemistry of high‑energy materials[M]. Walter de Gruyter GmbH & Co KG, 2017: 228-257.
参考文献 5
LichtH H, RitterH. New energetic materials from triazoles and tetrazines[J]. Journal of Energetic Materials, 1994, 12(4): 223-235.
参考文献 6
ChavezD E, HiskeyM A. 1, 2, 4, 5‑tetrazine based energetic materials[J]. Journal of Energetic Materials, 1999, 17(4): 357-377.
参考文献 7
SikderA K, SikderN. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications[J]. Journal of Hazardous Materials, 2004, 112(1): 1-15.
参考文献 8
施明达, 洪关林.含能材料合成研究进展[J]. 爆炸与冲击, 1992, 12(2): 185-192.
SHIMing‑da, HONGGuan‑lin. Research and development on synthesis for energetic materials[J]. Explosion and Shock Waves, 1992, 12(2): 185-192.
参考文献 9
AxthammerQ J. Investigation on oxygen‑rich materials based on nitrocarbamates and FOX‑7[D]. Ludwig Maximilians University of Munich, 2016.
参考文献 10
ZohariN, AbrishamiF, ZeynaliV. Using the QSPR approach for estimating the density of azole‐based energetic compounds[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2017, 643(24): 2124-2137.
参考文献 11
AxthammerQ J, KettnerM A, KlapötkeT M, et al. Progress in the development of high energy dense oxidizers based on CHNO (F) Materials[C]//16th New Trends in Research of Energetic Materials Seminar, Pardubice, Czech Republic. 2013: 29-39.
参考文献 12
KlapötkeT M, KrummB, MollR, et al. Asymmetric fluorodinitromethyl derivatives of 2,2,2‑trinitroethyl‑N‑(2,2,2‑trinitroethyl) carbamate[J].Journal of Fluorine Chemistry, 2013, 156(6): 253-261.
参考文献 13
KlapötkeT M, KrummB, RestS F, et al. (2‑Fluoro‑2,2‑dinitroethyl)‑2,2,2 trinitroethylnitr‑amine: apossible high‑energy dense oxidizer[J]. European Journal of Inorganic Chemistry, 2013, 2013(34): 5871-5878.
参考文献 14
KlapötkeT M, KrummB, RestS F, et al. Polynitro containing energetic materials based on carbonyldiiso‑cyanate and 2,2‑dinitropropane‑1,3‑diol[J]. Zeitschrift Fur Anorganische UndAllgemeine Chemie, 2014, 640(1): 84-92.
参考文献 15
OyumiY, BrillT B. Thermal decomposition of energetic materials. XV. evidence that decomposition initiates deflagration: high‑rate thermolysis of FEFO, TEFO, and DITEFO[J]. Propellants, Explosives, Pyrotechnics, 1986, 11(2): 35-39.
参考文献 16
GidaspovA A, BakharevV V, SuponitskyK Y, et al. High‑density insensitive energetic materials: 2,4,6‑tris(2‑fluoro‑2,2‑dinitroethoxy)‑1,3,5‑triazine[J]. RSC Advances, 2016, 6(106): 104325-104329.
参考文献 17
ChavezD E, ParrishD A, MitchellL, et al. Energetic trinitro‑ and dinitro‑fluoroethyl ethers of 1,2,4,5‑tetrazines [J]. Angewandte Chemie, International Edition, 2016, 55(30): 8666-8669.
参考文献 18
MaQ, LuZ, LiaoL, et al. 5, 6‑Di(2‑fluoro‑2, 2‑dinitroethoxy) furazano [3,4‑b] pyrazine: a high performance melt‑cast energetic material and its polycrystalline properties[J]. RSC Advances, 2017, 7(62): 38844-38852.
参考文献 19
MaQ, GuH, LuH, et al. Synthesis of 5, 6‑di(2‑fluoro‑2, 2‑dinitro ethoxy)‑2,3‑dicyanopyrazine by one‑step nucleophilic substitution and its energetic properties[J]. Chemistry Select, 2017, 2(16): 4567-4571.
参考文献 20
MaJ, YangH, ChengG. Study on the synthesis of 2‑fluoro‑2, 2‑dinitroethyl esters as a potential melt cast matrix in explosive charges[J]. New Journal of Chemistry, 2017, 41(21): 12700-12706.
参考文献 21
WangW, ChengG, XiongH, et al. Fluorodinitroethylamino functionalization derivatives based on azole: anew family of insensitive energetic materials[J]. New Journal of Chemistry, 2018, 42(4): 2994-3000
参考文献 22
DeHopeA, PagoriaP F, ParrishD. New polynitro alkylamino furazans[R]. Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2013.
参考文献 23
马卿, 卢欢唱, 廖龙渝, 等.N, N′‑二(氟偕二硝基乙基)‑3,4‑二氨基呋咱(LLM‑208)的晶体结构及热性质[J]. 含能材料, 2017, 25(7): 579-584.
QingMA, LUHuan‑chang, LIAOLong‑yu, et al. N,N′‑bis(2‑fluoro‑2,2′‑dinitroethyl)‑3,4‑diaminofurazan[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2017,25(7):579-584.
参考文献 24
OyumiY, BrillT B, RheingoldA L. Thermal decomposition of energetic materials. 7. High‑rate FTIR studies and the structure of 1,1,1,3,6,8,8,8‑octanitro‑3,6‑diazaoctane[J]. The Journal of Physical Chemistry, 1985, 89(22): 4824-4828.
参考文献 25
NationsUnited. Committee of Experts on the Transport of Dangerous Goods. Recommendations on the transport of dangerous goods: model regulations[M]. United Nations Publications, 2009.13.4.2 Test 3(ii): BAM Fall hammer, pp. 75-82; 13.5.1 Test 3 (i): BAM frictionapparatus, pp. 104-107.
参考文献 26
欧育湘.炸药学[M]. 北京: 北京理工大学出版社, 2014: 290-291.
Yu‑xiangOU. Explosives[M].Beijig: Beijing Institute of Technology Press, 2014: 290-291.
参考文献 27
MaQ, LiaoL, LuH, et al. Energetic π‑conjugated vinyl bridged triazoles: a thermally stable and insensitive heterocyclic cation[J]. Dalton Transactions, 2017, 46(23): 7467-7479.
目录 contents

    摘要

    0 ℃下,用发烟硝酸(98%)/乙酸酐(体积比10∶8)体系对N,N′‑二(氟偕二硝基乙基)‑3,4‑二氨基呋咱(LLM‑208)进行硝化,由LLM‑208得到硝胺化合物N,N′‑二(氟偕二硝基乙基)‑3,4‑二硝胺呋咱(LLM‑209)。在无水甲醇中挥发培养,获得LLM‑209的单晶,用X射线单晶衍射仪测试了其单晶结构。通过热重及差示扫描量热仪(TG‑DSC)研究了LLM‑209的热分解性能,用热重‑红外联用仪测试了其气态分解产物,用EXPLO5(V6.02)程序预估了其爆速和爆压,用感度测试仪测试了其撞击感度和摩擦感度。结果表明,LLM‑209属于单斜晶系,空间群P21/n,298 K下的晶体密度为1.94 g·cm-3。LLM‑209有一个熔化吸热峰(94.27 ℃)和两个明显的分解放热峰(179.96 ℃和233.86 ℃)。LLM‑209的气态分解产物主要为NO2、CO2、CO和N2O。LLM‑209的理论爆速和爆压分别为8981 km·s-1和40.3 GPa。LLM‑209的撞击感度和摩擦感度分别为4 J和48 N。

    Abstract

    N,N'‑Bis(fluorodinitroethyl)‑3,4‑diamino furazan (LLM‑208) was nitrated using the nitration system of 98% fuming nitric acid/acetic anhydride (10∶8 in volume) at 0 ℃. N,N′‑bis(2‑fluoro‑2,2′‑dinitroethyl)‑3,4‑dinitraminefurazan (LLM‑209) was prepared from LLM‑208. The single crystal of LLM‑209 was obtained by volatilization culture in anhydrous methanol. The single crystal structure was measured by X‑ray single crystal diffractometer. The thermal decomposition of LLM‑209 was studied by thermogravimetry and differential scanning calorimeter(TG‑DSC). The gaseous products of thermal decomposition of LLM‑209 were measured by TG‑IR. The detonation velocity and detonation presure of LLM‑209 were predicted by EXPLO5(V6.02) program. Its impact and friction sensitivities were measured by sensitivity test.Results show that the crystal of LLM‑209 belongs to the monoclinic system, space group P21/n, and its density at 298 K is 1.94 g·cm-3. LLM‑209 has a melting endothermic peak at 94.27 ℃ and two distinct decomposition exothermic peaks at 179.96 ℃ and 233.86 ℃. The gaseous products of thermal decomposition of LLM‑209 are mainly NO2,CO2,CO and N2O. The theoretical detonation velocity and detonation presure of LLM‑209 are 8981 km·s-1 and 40.3 GPa, respectively, and the impact and friction sensitivities are 4 J and 48 N, respectively.

    范桂娟(1983-),女,副研究员,主要从事含能材料的合成与表征研究。e‑mail:fanguijuan@caep.cn

  • 1 引 言

    1

    追求高能量、高密度是含能化合物合成研究领域永恒的主题,一些西方国家以致密的张力环和笼型结构为母体结构单元,引入—NO2等含能基团设计、合成出了八硝基立方烷(ONC)和六硝基六氮杂异伍兹烷(CL‑20)等高能量密度化合[1,2,3]。但上述含能化合物合成步骤多、合成难度大、制造成本和感度较高,严重制约其在武器装备中的应用。近年,在现有氮杂母体结构上引入新型含能基团制备含能化合物的方法,已经成为制备新型含能材料的研究热[4,5,6]

    含三硝基甲基或偕二硝基甲基为致爆基的修饰策略是近年来含能材料合成研究中最为活跃的研究方向之[7]。然而含三硝基甲基或偕二硝基的氮杂环化合物具有较多的硝基使得含能化合物的感度较高,热稳定性较[8,9,10]。因此,为了改善多硝基含能化合物的这些缺点,有些研究者提出向含能分子中引入氟元素以合成氟二硝基取代基来改善化合物的稳定[11,12,13,14]

    多年来,含能材料合成工作者在这一研究领域内进行了广泛的研究,并合成了一系列含氟偕二硝基类含能材料。美国海[15]在20世纪60年代末研制出的二(氟偕二硝基乙基)缩甲醛(FEFO)可应用于高能炸药和高能推进剂配方,具有良好的增塑性能、热稳定性和化学安定性。2013-2014年德国慕尼黑大学Klapötke TM课题[12,13]以氨基甲酸和硝胺烷烃为主要结构合成了一系列氟偕二硝基及三硝基乙基酯类化合物,这类化合物具有较低的感度和热稳定性,可以替代高氯酸铵(AP),应用于含能氧化剂和火箭推进剂中。由于氟偕二硝基的优良性能,近几年相继报道了许多氟偕二硝基乙基取代的化合物,2016年Gidaspov A A[16]与Chavez D E[17]合成了氟二硝基乙醚取代的三嗪和四嗪类含能化合物;本课题组马卿[18,19]合成了二氰基吡嗪和呋咱吡嗪类的氟偕二硝基乙醚类含能材料;南京理工大学程广[20,21]课题组报道了多个氟偕二硝基乙醚类和氟偕二硝基乙酯类的乙二酰酯、丙二酰酯、富马酰酯、苯甲酸酯类含能化合物,并基于三唑和四唑骨架合成了氟偕二硝基乙基胺类、硝胺类含能化合物。上述研究表明,在氮杂环骨架上引入氟偕二硝基乙基,通过进一步结构调控可以获得能量、感度和热稳定性优异的含能分子。

    2013年,Alan DeHope[22]首次报道了多种基于三硝基和氟偕二硝基乙基修饰的呋咱化合物,其中N,N′‑二(氟偕二硝基乙基)‑3,4‑二氨基呋咱(LLM‑208)的性能明显较优。随后马卿[23]成功培养出LLM‑208的单晶,并对其性质做了进一步研究。LLM‑208以较低的机械感度和热稳定性受到关注,但其能量和爆轰性能相对不足,因此Alan DeHope[22]又合成了硝胺化的LLM‑209化合物。

    但文献[22]中只报道了LLM‑209的热安定性及特性落高,其合成路径及相关晶体数据却未见报道。为此,本研究探索了LLM‑209的硝化合成方法,以期提升化合物的密度和能量水平。同时在无水甲醇中培养得到了LLM‑209的单晶,并对LLM209的热性质和分解产物进行了表征。

    表 1 LLM‑209的晶体结构数据和结构精修参数

    Table 1 Crystallography data and structure refinement details for LLM‑209

    parameterLLM‑209
    empirical formulaC6H4F2N10O13
    formula mass462.19
    T / K296(2)
    wave length / Å0.71073
    crystal systemmonoclinic
    space groupP21/c
    a / Å13.3354(4)
    b / Å11.4129(4)
    c / Å11.4005(3)
    α / (°)90
    β / (°)114.4130(10)
    γ / (°)90
    V / Å31579.97(8)
    Z4
    Dc / g·m-31.943
    μ / mm-10.201
    F(000)928
    V / mm30.17×0.12×0.07
    θ / (°)2.449 to 25.499
    index ranges-15≤h≤16, -12≤k≤13, -13≤l≤13
    reflections collected16974
    independent reflections2931 [Rint= 0.0347]
    (1/θ) / %99.5
  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    试剂:碳酸钾,分析纯,天津科密欧试剂有限公司;乙酸乙酯、无水乙醇、丙酮、无水甲醇、乙腈,分析纯,成都科龙试剂有限公司;发烟硝酸、乙酸酐,分析纯;3,4‑二氨基呋咱(HPLC分析纯度为98.6%)和氟偕二硝基乙醇(HPLC分析纯度大于99.5%),均为自制。

    仪器:XRD单晶衍射采用Bruker SMART APEX ⅡCCD面探X射线单晶衍射仪;瑞士METTLER TOLEO公司差示扫描量热‑热重联用仪(TGA/DSC2, STARe),Al2O3坩埚,N2气氛,流速20 mL·min-1,升温速率5 K·min-1。美国Therm和BFH Pex型轻量级落锤撞击感度测试仪。

  • 2.2 实验方法

    2.2

    首先依据文献[22]得到LLM‑208,然后把LLM‑208(0.75 g,2 mmol)在0 ℃下溶于20 mL发烟硝酸(98%)中,在磁力搅拌下保持0 ℃缓慢滴加10 mL乙酸酐试剂,0 ℃保温搅拌5 h,用冰水淬灭析出白色固体,过滤水洗干燥得到0.718 g LLM‑209,产率为78%。合成路线见Scheme 1

    取约100 mg LLM‑209白色固体,先后分别以丙酮、乙腈、无水乙醇、无水甲醇为溶剂,采用溶剂挥发法培养单晶,室温下自然挥发2 d,最终在无水甲醇中获得淡黄色块状晶体。

    Scheme 1 Synthesis route of N,N′‑bis(2‑fluoro‑2,2′‑dinitroethyl)‑3,4‑dinitraminefurazan (LLM‑209)

  • 3 结果与讨论

    3
  • 3.1 LLM‑209的单晶结构表征与分析

    3.1

    选取尺寸为0.17 mm×0.12 mm×0.07 mm的单晶,将其置于Bruker SMART APEX Ⅱ CCD面探X射线单晶衍射仪上扫描得到的晶体结构数据和结构精修的结果见表1。所有参数经过Lp因子和经验吸收校正,该单晶数据被英国剑桥晶体学数据库收录(CCDC号:1526856)。

    1为LLM‑209的单分子晶体结构示意图,晶胞堆积图如图2所示。从图2可以看出LLM‑209的分子堆积主要依靠分子间氢键和分子间卤键作用。其中,分子间氢键作用为亚甲基上的氢原子与氟偕二硝基上的氟原子形成的C—H…F氢键,平均距离为2.529 Å。另外,分子间卤键作用主要是氟偕二硝基上F原子与硝基上的O原子之间的所形成的C—F…O卤键,平均距离约为2.878 Å。

    LLM‑209晶体的部分键长和键角数据分别列于表2和表3。由表2可看出,LLM‑209中C—F键的平均键长(14.105 Å)比LLM‑208的C—F键平均键长(1.191 Å)要长,说明N—NO2的引入使得分子中C—F键的稳定性变差。硝胺中N—O键的平均键长(1.213 Å)比氟二硝基中N—O键的平均键长(1.193 Å)稍长,这可能使由于硝胺基团中N—N键与N—O键之间存在π电子密度的共轭效[24]

    图1
                            LLM‑209的晶体结构

    图1 LLM‑209的晶体结构

    Fig.1 Crystal structure of LLM‑209

    图2
                            LLM‑209的晶胞堆积图(虚线表示分子间氢键作用)

    图2 LLM‑209的晶胞堆积图(虚线表示分子间氢键作用)

    Fig.2 Molecular packing diagram of LLM‑209 (Dashed lines indicate intermolecular hydrogen‑bond interaction)

    表 2 LLM‑209的键长

    Table 2 Bond length for LLM‑209

    bondlength / Åbondlength / Å
    F(1)—C(4)1.314(3)N(8)—O(9)1.205(3)
    N(1)—C(1)1.293(3)N(9)—O(10)1.182(5)
    N(1)—O(1)1.372(3)N(9)—O(11)1.190(5)
    N(2)—C(2)1.301(3)N(9)—C(6)1.523(5)
    N(2)—O(1)1.373(3)F(2)—C(6)1.507(8)
    N(3)—N(4)1.383(3)N(10)—O(13)1.106(11)
    N(3)—C(1)1.397(3)N(10)—C(6)1.394(10)
    N(3)—C(3)1.459(3)N(10)—O(12)1.396(9)
    N(4)—O(2)1.211(3)N(10′)—O(13')1.249(12)
    N(4)—O(3)1.215(3)N(10′)—O(12')1.316(12)
    N(5)—O(5)1.200(3)N(10')—C(6)1.323(9)
    N(5)—O(4)1.201(3)F(2')—C(6)1.728(8)
    N(5)—C(4)1.537(3)C(1)—C(2)1.431(4)
    N(6)—O(6)1.194(3)C(3)—H(3A)0.9700
    N(6)—O(7)1.209(3)C(3)—H(3B)0.9700
    N(6)—C(4)1.541(3)C(5)—C(6)1.465(5)
    N(7)—C(2)1.401(3)C(5)—H(5A)0.9700
    N(7)—N(8)1.432(3)C(5)—H(5B)0.9700
    N(7)—C(5)1.458(3)C(3)—H(3A)0.9700
    N(8)—O(8)1.198(3)C(3)—H(3B)0.9700
    表 2
                    LLM‑209的键长
  • 3.2 LLM‑209的热性质

    3.2

    LLM‑209的TG和DSC曲线如图3所示。由图3中TG曲线可知,LLM‑209在115~200 ℃有一个明显的快速质量损失阶段,质量损失为80%,在210~350 ℃有一个缓慢的质量损失阶段,质量损失为15%;图3中DSC曲线显示,在0~400 ℃相应地出现了一个熔化吸热峰(94.27 ℃)和两个分解放热峰(179.96 ℃和239.37 ℃),其中熔化吸热峰的吸热量为73.29 J·g-1,初始熔化温度为74.6 ℃,。而对应于第一个快速质量损失阶段的分解放热峰的放热量为222.35 J·g-1,初始分解温度为136.85 ℃,对应于缓慢质量损失阶段的第二个分解放热峰的放热量为185.53 J·g-1,初始分解温度为203.58 ℃。

  • 3.3 热重-红外联用分析LLM‑209的热分解行为

    3.3

    采用FT‑IR实时分析了LLM‑209在高纯氮气和5 K·min-1等速升温条件下的热分解行为及其热分解产物,得到谱图如图4与图5所示。图4的三维立体吸收光谱能够明显观察出各分解产物的透过率随时间变化的情况,然后通过比较图4三维分解吸收光谱与图5的二维图像发现:在2911 cm-1波段出现了较强的波峰,再将图5与气体分解产物红外标准谱图对照发现,LLM‑209的分解产物主要为NO2(2911,1627 cm-1)、CO2(2352 cm-1)、CO(1905 cm-1)、N2O(1292 cm-1)。

    表 3 LLM‑209的键角

    Table 3 Bond angles for LLM‑209

    bondangle/ (°)bondangle/ (°)
    C(1)—N(1)—O(1)105.6(2)N(3)—C(1)—C(2)131.6(2)
    C(2)—N(2)—O(1)105.6(2)N(2)—C(2)—N(7)119.7(2)
    N(4)—N(3)—C(1)116.96(19)N(2)—C(2)—C(1)108.4(2)
    N(4)—N(3)—C(3)117.6(2)N(7)—C(2)—C(1)131.7(2)
    C(1)—N(3)—C(3)122.7(2)N(3)—C(3)—C(4)111.3(2)
    O(2)—N(4)—O(3)127.5(2)N(3)—C(3)—H(3A)109.4
    O(2)—N(4)—N(3)116.8(2)C(4)—C(3)—H(3A)109.4
    O(3)—N(4)—N(3)115.6(2)N(3)—C(3)—H(3B)109.4
    O(5)—N(5)—O(4)127.0(3)C(4)—C(3)—H(3B)109.4
    O(5)—N(5)—C(4)115.8(2)H(3A)—C(3)—H(3B)108.0
    O(4)—N(5)—C(4)117.2(2)F(1)—C(4)—N(5)106.7(2)
    O(6)—N(6)—O(7)127.1(3)F(1)—C(4)—C(3)114.7(2)
    O(6)—N(6)—C(4)116.2(2)N(5)—C(4)—C(3)111.4(2)
    O(7)—N(6)—C(4)116.6(2)F(1)—C(4)—N(6)106.9(2)
    C(2)—N(7)—N(8)114.71(19)N(5)—C(4)—N(6)103.48(19)
    C(2)—N(7)—C(5)120.4(2)C(3)—C(4)—N(6)113.0(2)
    N(8)—N(7)—C(5)115.3(2)N(7)—C(5)—C(6)110.8(3)
    O(8)—N(8)—O(9)127.8(3)N(7)—C(5)—H(5A)109.5
    O(8)—N(8)—N(7)115.7(2)C(6)—C(5)—H(5A)109.5
    C(1)—N(1)—O(1)105.6(2)N(7)—C(5)—H(5B)109.5
    O(9)—N(8)—N(7)116.5(2)C(6)—C(5)—H(5B)109.5
    O(10)—N(9)—O(11)129.3(4)H(5A)—C(5)—H(5B)108.1
    O(10)—N(9)—C(6)116.9(5)N(10')—C(6)—C(5)129.6(5)
    O(11)—N(9)—C(6)113.5(4)N(10)—C(6)—C(5)124.1(4)
    N(1)—O(1)—N(2)111.28(18)N(10)—C(6)—F(2)104.9(6)
    O(13)—N(10)—C(6)116.9(8)C(5)—C(6)—F(2)99.2(4)
    O(13)—N(10)—O(12)127.4(10)N(10')—C(6)—N(9)114.9(4)
    C(6)—N(10)—O(12)115.7(9)N(10)—C(6)—N(9)111.9(4)
    O(13')—N(10')—O(12')149.9(11)C(5)—C(6)—N(9)112.2(3)
    O(13′)—N(10')—C(6)98.7(8)F(2)—C(6)—N(9)100.3(5)
    O(12′)—N(10')—C(6)110.9(10)N(10′)—C(6)—F(2')93.8(6)
    N(1)—C(1)—N(3)119.3(2)C(5)—C(6)—F(2')98.2(4)
    N(1)—C(1)—C(2)109.1(2)N(9)—C(6)—F(2')96.0(4)
    图3
                            5 K·min-1下LLM‑209的TG‑DSC曲线

    图3 5 K·min-1下LLM‑209的TG‑DSC曲线

    Fig.3 TG‑DSC curve of LLM‑209 at 5 K·min-1

    图4
                            LLM‑209的热重红外三维分解吸收光谱

    图4 LLM‑209的热重红外三维分解吸收光谱

    Fig.4 Three‑dimensional absorption spectra for the decomposition of LLM‑209 by TG‑IR

    图5
                            LLM‑209的热重红外气体分解产物

    图5 LLM‑209的热重红外气体分解产物

    Fig.5 Gaseous products of the thermal decomposition of LLM‑209 by TG‑IR

  • 3.4 LLM‑209的爆炸与感度性能

    3.4

    参照联合国危险品运输标[25]中的BAM落锤测试方法(13.4.2)和BAM摩擦感度测试方法(13.5.1)测试LLM‑209的撞击感度为4 J,摩擦感度为48 N。采用EXPLO 5(V6.02)程序预估LLM‑209的爆压为40.3 GPa,爆速为8981 km·s-1(1.94 g·cm-3),结果见表3。为了比较,同时将CL‑20、RDX、HMX的文献结果列于表3。由表3可见,LLM‑209的爆压接近CL‑20[26],爆速接近RDX[27],可以作为优异的高能量密度炸药。

    表3 LLM‑209的爆炸与感度性能

    Table 3 The detonation and sensitivity properties of LLM‑209

    compoundρ / g·cm‑3Tmelt / ℃Tdec / ℃IS / JFS / ND / km·s-1p / GPaΔH / kJ·mol-1
    LLM‑2091.9494.27179.96448898140.3-290.7
    RDX[26]1.812052107.5120887234.780.0
    HMX[26]1.902752797120925439.2104.8
    CL‑20[25]2.035-21015-20100950043

    NOTE: ρ is the density of crystals; Tmelt is the initial melting temperature; Tdec is the inital decomposition temperature; IS is the impact sensitivity; FS is the friction sensitivity; D is the detonation velocity; p is the detonation pressure; ΔH is the enthalpy of formation.

  • 4 结 论

    4

    (1) 实验得到了N,N′‑二(氟偕二硝基)‑3,4‑二硝胺呋咱(LLM‑209)的硝化合成方法,在无水甲醇中培养得到其单晶,采用X射线单晶衍射仪测得其单晶结构,表明LLM‑209属于单斜晶系,空间群P21/n,298 K下的晶体密度为1.94 g·cm-3

    (2) TG‑DSC结果表明,LLM‑209有一个熔化吸热峰和两个明显的分解放热峰,其熔化峰值温度为94.27 ℃,分解峰温分别为179.96 ℃和233.86 ℃;热重红外热分解吸收光谱表明,LLM‑209的分解产物主要为NO2、CO2、CO、N2O。

    (3) EXPLO 5(V6.02)程序预估LLM‑209的爆压为40.3 GPa,爆速为8981 km·s-1,撞击感度为4 J,摩擦感度为48 N,说明LLM‑209是具有优异爆轰性能的高能量密度炸药。

  • 参考文献

    • 1

      Pagoria P F, Lee G S, Mitchell A R, et al. A review of energetic materials synthesis[J]. Thermochimica Acta, 2002, 384(1‑2): 187-204.

    • 2

      Fried L E, Manaa M R, Pagoria P F, et al. Design and synthesis of energetic materials[J]. Annual Review of Materials Research, 2001, 31(1): 291-321.

    • 3

      Badgujar D M, Talawar M B, Asthana S N, et al. Advances in science and technology of modern energetic materials: an overview[J]. Journal of Hazardous Materials, 2008, 151(2‑3): 289-305.

    • 4

      Klapötke T M. Chemistry of high‑energy materials[M]. Walter de Gruyter GmbH & Co KG, 2017: 228-257.

    • 5

      Licht H H, Ritter H. New energetic materials from triazoles and tetrazines[J]. Journal of Energetic Materials, 1994, 12(4): 223-235.

    • 6

      Chavez D E, Hiskey M A. 1, 2, 4, 5‑tetrazine based energetic materials[J]. Journal of Energetic Materials, 1999, 17(4): 357-377.

    • 7

      Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications[J]. Journal of Hazardous Materials, 2004, 112(1): 1-15.

    • 8

      施明达, 洪关林.含能材料合成研究进展[J]. 爆炸与冲击, 1992, 12(2): 185-192.

      SHI Ming‑da, HONG Guan‑lin. Research and development on synthesis for energetic materials[J]. Explosion and Shock Waves, 1992, 12(2): 185-192.

    • 9

      Axthammer Q J. Investigation on oxygen‑rich materials based on nitrocarbamates and FOX‑7[D]. Ludwig Maximilians University of Munich, 2016.

    • 10

      Zohari N, Abrishami F, Zeynali V. Using the QSPR approach for estimating the density of azole‐based energetic compounds[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2017, 643(24): 2124-2137.

    • 11

      Axthammer Q J, Kettner M A, Klapötke T M, et al. Progress in the development of high energy dense oxidizers based on CHNO (F) Materials[C]//16th New Trends in Research of Energetic Materials Seminar, Pardubice, Czech Republic. 2013: 29-39.

    • 12

      Klapötke T M, Krumm B, Moll R, et al. Asymmetric fluorodinitromethyl derivatives of 2,2,2‑trinitroethyl‑N‑(2,2,2‑trinitroethyl) carbamate[J].Journal of Fluorine Chemistry, 2013, 156(6): 253-261.

    • 13

      Klapötke T M, Krumm B, Rest S F, et al. (2‑Fluoro‑2,2‑dinitroethyl)‑2,2,2 trinitroethylnitr‑amine: apossible high‑energy dense oxidizer[J]. European Journal of Inorganic Chemistry, 2013, 2013(34): 5871-5878.

    • 14

      Klapötke T M, Krumm B, Rest S F, et al. Polynitro containing energetic materials based on carbonyldiiso‑cyanate and 2,2‑dinitropropane‑1,3‑diol[J]. Zeitschrift Fur Anorganische UndAllgemeine Chemie, 2014, 640(1): 84-92.

    • 15

      Oyumi Y, Brill T B. Thermal decomposition of energetic materials. XV. evidence that decomposition initiates deflagration: high‑rate thermolysis of FEFO, TEFO, and DITEFO[J]. Propellants, Explosives, Pyrotechnics, 1986, 11(2): 35-39.

    • 16

      Gidaspov A A, Bakharev V V, Suponitsky K Y, et al. High‑density insensitive energetic materials: 2,4,6‑tris(2‑fluoro‑2,2‑dinitroethoxy)‑1,3,5‑triazine[J]. RSC Advances, 2016, 6(106): 104325-104329.

    • 17

      Chavez D E, Parrish D A, Mitchell L, et al. Energetic trinitro‑ and dinitro‑fluoroethyl ethers of 1,2,4,5‑tetrazines [J]. Angewandte Chemie, International Edition, 2016, 55(30): 8666-8669.

    • 18

      Ma Q, Lu Z, Liao L, et al. 5, 6‑Di(2‑fluoro‑2, 2‑dinitroethoxy) furazano [3,4‑b] pyrazine: a high performance melt‑cast energetic material and its polycrystalline properties[J]. RSC Advances, 2017, 7(62): 38844-38852.

    • 19

      Ma Q, Gu H, Lu H, et al. Synthesis of 5, 6‑di(2‑fluoro‑2, 2‑dinitro ethoxy)‑2,3‑dicyanopyrazine by one‑step nucleophilic substitution and its energetic properties[J]. Chemistry Select, 2017, 2(16): 4567-4571.

    • 20

      Ma J, Yang H, Cheng G. Study on the synthesis of 2‑fluoro‑2, 2‑dinitroethyl esters as a potential melt cast matrix in explosive charges[J]. New Journal of Chemistry, 2017, 41(21): 12700-12706.

    • 21

      Wang W, Cheng G, Xiong H, et al. Fluorodinitroethylamino functionalization derivatives based on azole: anew family of insensitive energetic materials[J]. New Journal of Chemistry, 2018, 42(4): 2994-3000

    • 22

      DeHope A, Pagoria P F, Parrish D. New polynitro alkylamino furazans[R]. Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2013.

    • 23

      马卿, 卢欢唱, 廖龙渝, 等.N, N′‑二(氟偕二硝基乙基)‑3,4‑二氨基呋咱(LLM‑208)的晶体结构及热性质[J]. 含能材料, 2017, 25(7): 579-584.

      MA Qing, LU Huan‑chang, LIAO Long‑yu, et al. N,N′‑bis(2‑fluoro‑2,2′‑dinitroethyl)‑3,4‑diaminofurazan[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2017,25(7):579-584.

    • 24

      Oyumi Y, Brill T B, Rheingold A L. Thermal decomposition of energetic materials. 7. High‑rate FTIR studies and the structure of 1,1,1,3,6,8,8,8‑octanitro‑3,6‑diazaoctane[J]. The Journal of Physical Chemistry, 1985, 89(22): 4824-4828.

    • 25

      United Nations. Committee of Experts on the Transport of Dangerous Goods. Recommendations on the transport of dangerous goods: model regulations[M]. United Nations Publications, 2009.13.4.2 Test 3(ii): BAM Fall hammer, pp. 75-82; 13.5.1 Test 3 (i): BAM frictionapparatus, pp. 104-107.

    • 26

      欧育湘.炸药学[M]. 北京: 北京理工大学出版社, 2014: 290-291.

      OU Yu‑xiang. Explosives[M].Beijig: Beijing Institute of Technology Press, 2014: 290-291.

    • 27

      Ma Q, Liao L, Lu H, et al. Energetic π‑conjugated vinyl bridged triazoles: a thermally stable and insensitive heterocyclic cation[J]. Dalton Transactions, 2017, 46(23): 7467-7479.

李杰

机 构:西南石油大学材料科学与工程学院, 四川 成都 610500

Affiliation:School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China

邮 箱:771018196@qq.com

作者简介:李杰(1993-),男,硕士研究生,主要从事含能材料的合成研究。e‑mail:771018196@qq.com

马卿

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

唐水花

机 构:西南石油大学材料科学与工程学院, 四川 成都 610500

Affiliation:School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China

角 色:通讯作者

Role:Corresponding author

邮 箱:spraytang@hotmail.com

作者简介:唐水花(1969-),女,教授,主要从事新能源材料与器件/含能材料研究。e‑mail:spraytang@hotmail.com

范桂娟

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

parameterLLM‑209
empirical formulaC6H4F2N10O13
formula mass462.19
T / K296(2)
wave length / Å0.71073
crystal systemmonoclinic
space groupP21/c
a / Å13.3354(4)
b / Å11.4129(4)
c / Å11.4005(3)
α / (°)90
β / (°)114.4130(10)
γ / (°)90
V / Å31579.97(8)
Z4
Dc / g·m-31.943
μ / mm-10.201
F(000)928
V / mm30.17×0.12×0.07
θ / (°)2.449 to 25.499
index ranges-15≤h≤16, -12≤k≤13, -13≤l≤13
reflections collected16974
independent reflections2931 [Rint= 0.0347]
(1/θ) / %99.5
html/hncl/CJEM2018072/media/fc19add7-97a2-46c7-9b84-4873d8ec725f-image001.png
html/hncl/CJEM2018072/media/fc19add7-97a2-46c7-9b84-4873d8ec725f-image002.png
html/hncl/CJEM2018072/media/fc19add7-97a2-46c7-9b84-4873d8ec725f-image003.png
bondlength / Åbondlength / Å
F(1)—C(4)1.314(3)N(8)—O(9)1.205(3)
N(1)—C(1)1.293(3)N(9)—O(10)1.182(5)
N(1)—O(1)1.372(3)N(9)—O(11)1.190(5)
N(2)—C(2)1.301(3)N(9)—C(6)1.523(5)
N(2)—O(1)1.373(3)F(2)—C(6)1.507(8)
N(3)—N(4)1.383(3)N(10)—O(13)1.106(11)
N(3)—C(1)1.397(3)N(10)—C(6)1.394(10)
N(3)—C(3)1.459(3)N(10)—O(12)1.396(9)
N(4)—O(2)1.211(3)N(10′)—O(13')1.249(12)
N(4)—O(3)1.215(3)N(10′)—O(12')1.316(12)
N(5)—O(5)1.200(3)N(10')—C(6)1.323(9)
N(5)—O(4)1.201(3)F(2')—C(6)1.728(8)
N(5)—C(4)1.537(3)C(1)—C(2)1.431(4)
N(6)—O(6)1.194(3)C(3)—H(3A)0.9700
N(6)—O(7)1.209(3)C(3)—H(3B)0.9700
N(6)—C(4)1.541(3)C(5)—C(6)1.465(5)
N(7)—C(2)1.401(3)C(5)—H(5A)0.9700
N(7)—N(8)1.432(3)C(5)—H(5B)0.9700
N(7)—C(5)1.458(3)C(3)—H(3A)0.9700
N(8)—O(8)1.198(3)C(3)—H(3B)0.9700
bondangle/ (°)bondangle/ (°)
C(1)—N(1)—O(1)105.6(2)N(3)—C(1)—C(2)131.6(2)
C(2)—N(2)—O(1)105.6(2)N(2)—C(2)—N(7)119.7(2)
N(4)—N(3)—C(1)116.96(19)N(2)—C(2)—C(1)108.4(2)
N(4)—N(3)—C(3)117.6(2)N(7)—C(2)—C(1)131.7(2)
C(1)—N(3)—C(3)122.7(2)N(3)—C(3)—C(4)111.3(2)
O(2)—N(4)—O(3)127.5(2)N(3)—C(3)—H(3A)109.4
O(2)—N(4)—N(3)116.8(2)C(4)—C(3)—H(3A)109.4
O(3)—N(4)—N(3)115.6(2)N(3)—C(3)—H(3B)109.4
O(5)—N(5)—O(4)127.0(3)C(4)—C(3)—H(3B)109.4
O(5)—N(5)—C(4)115.8(2)H(3A)—C(3)—H(3B)108.0
O(4)—N(5)—C(4)117.2(2)F(1)—C(4)—N(5)106.7(2)
O(6)—N(6)—O(7)127.1(3)F(1)—C(4)—C(3)114.7(2)
O(6)—N(6)—C(4)116.2(2)N(5)—C(4)—C(3)111.4(2)
O(7)—N(6)—C(4)116.6(2)F(1)—C(4)—N(6)106.9(2)
C(2)—N(7)—N(8)114.71(19)N(5)—C(4)—N(6)103.48(19)
C(2)—N(7)—C(5)120.4(2)C(3)—C(4)—N(6)113.0(2)
N(8)—N(7)—C(5)115.3(2)N(7)—C(5)—C(6)110.8(3)
O(8)—N(8)—O(9)127.8(3)N(7)—C(5)—H(5A)109.5
O(8)—N(8)—N(7)115.7(2)C(6)—C(5)—H(5A)109.5
C(1)—N(1)—O(1)105.6(2)N(7)—C(5)—H(5B)109.5
O(9)—N(8)—N(7)116.5(2)C(6)—C(5)—H(5B)109.5
O(10)—N(9)—O(11)129.3(4)H(5A)—C(5)—H(5B)108.1
O(10)—N(9)—C(6)116.9(5)N(10')—C(6)—C(5)129.6(5)
O(11)—N(9)—C(6)113.5(4)N(10)—C(6)—C(5)124.1(4)
N(1)—O(1)—N(2)111.28(18)N(10)—C(6)—F(2)104.9(6)
O(13)—N(10)—C(6)116.9(8)C(5)—C(6)—F(2)99.2(4)
O(13)—N(10)—O(12)127.4(10)N(10')—C(6)—N(9)114.9(4)
C(6)—N(10)—O(12)115.7(9)N(10)—C(6)—N(9)111.9(4)
O(13')—N(10')—O(12')149.9(11)C(5)—C(6)—N(9)112.2(3)
O(13′)—N(10')—C(6)98.7(8)F(2)—C(6)—N(9)100.3(5)
O(12′)—N(10')—C(6)110.9(10)N(10′)—C(6)—F(2')93.8(6)
N(1)—C(1)—N(3)119.3(2)C(5)—C(6)—F(2')98.2(4)
N(1)—C(1)—C(2)109.1(2)N(9)—C(6)—F(2')96.0(4)
html/hncl/CJEM2018072/media/fc19add7-97a2-46c7-9b84-4873d8ec725f-image004.png
html/hncl/CJEM2018072/media/fc19add7-97a2-46c7-9b84-4873d8ec725f-image005.png
html/hncl/CJEM2018072/media/fc19add7-97a2-46c7-9b84-4873d8ec725f-image006.png
compoundρ / g·cm‑3Tmelt / ℃Tdec / ℃IS / JFS / ND / km·s-1p / GPaΔH / kJ·mol-1
LLM‑2091.9494.27179.96448898140.3-290.7
RDX[26]1.812052107.5120887234.780.0
HMX[26]1.902752797120925439.2104.8
CL‑20[25]2.035-21015-20100950043

表 1 LLM‑209的晶体结构数据和结构精修参数

Table 1 Crystallography data and structure refinement details for LLM‑209

Scheme 1 Synthesis route of N,N′‑bis(2‑fluoro‑2,2′‑dinitroethyl)‑3,4‑dinitraminefurazan (LLM‑209)

图1 LLM‑209的晶体结构

Fig.1 Crystal structure of LLM‑209

图2 LLM‑209的晶胞堆积图(虚线表示分子间氢键作用)

Fig.2 Molecular packing diagram of LLM‑209 (Dashed lines indicate intermolecular hydrogen‑bond interaction)

表 2 LLM‑209的键长

Table 2 Bond length for LLM‑209

表 3 LLM‑209的键角

Table 3 Bond angles for LLM‑209

图3 5 K·min-1下LLM‑209的TG‑DSC曲线

Fig.3 TG‑DSC curve of LLM‑209 at 5 K·min-1

图4 LLM‑209的热重红外三维分解吸收光谱

Fig.4 Three‑dimensional absorption spectra for the decomposition of LLM‑209 by TG‑IR

图5 LLM‑209的热重红外气体分解产物

Fig.5 Gaseous products of the thermal decomposition of LLM‑209 by TG‑IR

表3 LLM‑209的爆炸与感度性能

Table 3 The detonation and sensitivity properties of LLM‑209

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

ρ is the density of crystals; Tmelt is the initial melting temperature; Tdec is the inital decomposition temperature; IS is the impact sensitivity; FS is the friction sensitivity; D is the detonation velocity; p is the detonation pressure; ΔH is the enthalpy of formation.

  • 参考文献

    • 1

      Pagoria P F, Lee G S, Mitchell A R, et al. A review of energetic materials synthesis[J]. Thermochimica Acta, 2002, 384(1‑2): 187-204.

    • 2

      Fried L E, Manaa M R, Pagoria P F, et al. Design and synthesis of energetic materials[J]. Annual Review of Materials Research, 2001, 31(1): 291-321.

    • 3

      Badgujar D M, Talawar M B, Asthana S N, et al. Advances in science and technology of modern energetic materials: an overview[J]. Journal of Hazardous Materials, 2008, 151(2‑3): 289-305.

    • 4

      Klapötke T M. Chemistry of high‑energy materials[M]. Walter de Gruyter GmbH & Co KG, 2017: 228-257.

    • 5

      Licht H H, Ritter H. New energetic materials from triazoles and tetrazines[J]. Journal of Energetic Materials, 1994, 12(4): 223-235.

    • 6

      Chavez D E, Hiskey M A. 1, 2, 4, 5‑tetrazine based energetic materials[J]. Journal of Energetic Materials, 1999, 17(4): 357-377.

    • 7

      Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications[J]. Journal of Hazardous Materials, 2004, 112(1): 1-15.

    • 8

      施明达, 洪关林.含能材料合成研究进展[J]. 爆炸与冲击, 1992, 12(2): 185-192.

      SHI Ming‑da, HONG Guan‑lin. Research and development on synthesis for energetic materials[J]. Explosion and Shock Waves, 1992, 12(2): 185-192.

    • 9

      Axthammer Q J. Investigation on oxygen‑rich materials based on nitrocarbamates and FOX‑7[D]. Ludwig Maximilians University of Munich, 2016.

    • 10

      Zohari N, Abrishami F, Zeynali V. Using the QSPR approach for estimating the density of azole‐based energetic compounds[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2017, 643(24): 2124-2137.

    • 11

      Axthammer Q J, Kettner M A, Klapötke T M, et al. Progress in the development of high energy dense oxidizers based on CHNO (F) Materials[C]//16th New Trends in Research of Energetic Materials Seminar, Pardubice, Czech Republic. 2013: 29-39.

    • 12

      Klapötke T M, Krumm B, Moll R, et al. Asymmetric fluorodinitromethyl derivatives of 2,2,2‑trinitroethyl‑N‑(2,2,2‑trinitroethyl) carbamate[J].Journal of Fluorine Chemistry, 2013, 156(6): 253-261.

    • 13

      Klapötke T M, Krumm B, Rest S F, et al. (2‑Fluoro‑2,2‑dinitroethyl)‑2,2,2 trinitroethylnitr‑amine: apossible high‑energy dense oxidizer[J]. European Journal of Inorganic Chemistry, 2013, 2013(34): 5871-5878.

    • 14

      Klapötke T M, Krumm B, Rest S F, et al. Polynitro containing energetic materials based on carbonyldiiso‑cyanate and 2,2‑dinitropropane‑1,3‑diol[J]. Zeitschrift Fur Anorganische UndAllgemeine Chemie, 2014, 640(1): 84-92.

    • 15

      Oyumi Y, Brill T B. Thermal decomposition of energetic materials. XV. evidence that decomposition initiates deflagration: high‑rate thermolysis of FEFO, TEFO, and DITEFO[J]. Propellants, Explosives, Pyrotechnics, 1986, 11(2): 35-39.

    • 16

      Gidaspov A A, Bakharev V V, Suponitsky K Y, et al. High‑density insensitive energetic materials: 2,4,6‑tris(2‑fluoro‑2,2‑dinitroethoxy)‑1,3,5‑triazine[J]. RSC Advances, 2016, 6(106): 104325-104329.

    • 17

      Chavez D E, Parrish D A, Mitchell L, et al. Energetic trinitro‑ and dinitro‑fluoroethyl ethers of 1,2,4,5‑tetrazines [J]. Angewandte Chemie, International Edition, 2016, 55(30): 8666-8669.

    • 18

      Ma Q, Lu Z, Liao L, et al. 5, 6‑Di(2‑fluoro‑2, 2‑dinitroethoxy) furazano [3,4‑b] pyrazine: a high performance melt‑cast energetic material and its polycrystalline properties[J]. RSC Advances, 2017, 7(62): 38844-38852.

    • 19

      Ma Q, Gu H, Lu H, et al. Synthesis of 5, 6‑di(2‑fluoro‑2, 2‑dinitro ethoxy)‑2,3‑dicyanopyrazine by one‑step nucleophilic substitution and its energetic properties[J]. Chemistry Select, 2017, 2(16): 4567-4571.

    • 20

      Ma J, Yang H, Cheng G. Study on the synthesis of 2‑fluoro‑2, 2‑dinitroethyl esters as a potential melt cast matrix in explosive charges[J]. New Journal of Chemistry, 2017, 41(21): 12700-12706.

    • 21

      Wang W, Cheng G, Xiong H, et al. Fluorodinitroethylamino functionalization derivatives based on azole: anew family of insensitive energetic materials[J]. New Journal of Chemistry, 2018, 42(4): 2994-3000

    • 22

      DeHope A, Pagoria P F, Parrish D. New polynitro alkylamino furazans[R]. Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2013.

    • 23

      马卿, 卢欢唱, 廖龙渝, 等.N, N′‑二(氟偕二硝基乙基)‑3,4‑二氨基呋咱(LLM‑208)的晶体结构及热性质[J]. 含能材料, 2017, 25(7): 579-584.

      MA Qing, LU Huan‑chang, LIAO Long‑yu, et al. N,N′‑bis(2‑fluoro‑2,2′‑dinitroethyl)‑3,4‑diaminofurazan[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2017,25(7):579-584.

    • 24

      Oyumi Y, Brill T B, Rheingold A L. Thermal decomposition of energetic materials. 7. High‑rate FTIR studies and the structure of 1,1,1,3,6,8,8,8‑octanitro‑3,6‑diazaoctane[J]. The Journal of Physical Chemistry, 1985, 89(22): 4824-4828.

    • 25

      United Nations. Committee of Experts on the Transport of Dangerous Goods. Recommendations on the transport of dangerous goods: model regulations[M]. United Nations Publications, 2009.13.4.2 Test 3(ii): BAM Fall hammer, pp. 75-82; 13.5.1 Test 3 (i): BAM frictionapparatus, pp. 104-107.

    • 26

      欧育湘.炸药学[M]. 北京: 北京理工大学出版社, 2014: 290-291.

      OU Yu‑xiang. Explosives[M].Beijig: Beijing Institute of Technology Press, 2014: 290-291.

    • 27

      Ma Q, Liao L, Lu H, et al. Energetic π‑conjugated vinyl bridged triazoles: a thermally stable and insensitive heterocyclic cation[J]. Dalton Transactions, 2017, 46(23): 7467-7479.