CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
CarlsenL, KenessovB N, BatyrbekovaS Y. A QSAR/QSTR study on the environmental health impact by the rocket fuel 1,1‑dimethyl hydrazine and its transformation products[J]. Environmental Health Insights, 2008, 1(1): 11-20.
参考文献 2
MathurM A , SislerH H. Oxidation of 1,1‑dimethylhydrazine by oxygen[J]. Inorganic Chemistry, 1981, 20(2): 426-429.
参考文献 3
TuazonE C, CarterW P L, WinerA M, et al. Reactions of hydrazines with ozone under simulated atmospheric conditions[J]. Environmental Science & Technology, 1981, 15(7): 823-828.
参考文献 4
KrasnerS W, MitchW A, MccurryD L, et al. Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review[J]. Water Research, 2013, 47(13): 4433-4450.
参考文献 5
HongY, KimK H, SangB I, et al. Simple quantification method for N ‑nitrosamines in atmospheric particulates based on facile pretreatment and GC‑MS/MS[J]. Environmental Pollution, 2017, 226: 333-337.
参考文献 6
LiuY D, ZhongR. Comparison of N‑nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study[J]. Journal of Hazardous Materials, 2017, 321: 362-370.
参考文献 7
ZhangS, YuG, ChenJ, et al. Unveiling formation mechanism of carcinogenic N‑nitrosodimethylamine in ozonation of dimethylamine: a density functional theoretical investigation[J]. J Hazard Mater, 2014, 279: 330-335.
参考文献 8
徐亚飞. UDMH与羟基自由基降解反应机理的理论研究[D]. 重庆:重庆大学, 2008.
XUYa‑fei. Thoretical Study on the Degradation Mechanism of 1,1‑Dimethylhydrazine and Hydroxyl Radical[D]. Chongqing: Chongqing University, 2008.
参考文献 9
ChabalowskiM, FrischT G, SchlegelH, et al. Gaussian∼09 Revision D.01[CP], Gaussian, Inc : Wallingford, CT, 2014.
参考文献 10
StephensP J, DevlinF J, ChabalowskiC F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. Chemical Physics Letters, 1994, 225(1‑3): 247-257.
参考文献 11
ZhaoY, TruhlarD G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06‑class functionals and 12 other functiona[J]. Theoretical Chemistry Accounts, 2008, 120(1-3): 215-241.
参考文献 12
mya K Suresh C HE R. Which density functional is close to CCSD accuracy to describe geometry and interaction energy of small non‑covalent dimers A benchmark study using Gaussian09[J]. Journal of Computational Chemistry, 2013, 34(15): 1341-1353.
参考文献 13
CanneauxS, BohrF, HenonE, et al. A program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. Journal of Computational Chemistry, 2014, 35(1): 82-93.
参考文献 14
LitvinovO A, ErmolaevaL V, ZverevV V, et al. Molecular structure of 1,1‑dimethylhydrazine[J]. Journal of Structural Chemistry, 1989, 30(2): 224-228.
参考文献 15
李正莉, 王煊军, 张有智. UDMH分子结构的计算研究[J]. 含能材料, 2007, 15(4): 363-366.
LIZheng‑li, WANGXuan‑jun, ZHANGYou‑zhi. Calculation of the molecular structure of UDMH[J]. Chinese Journal of Energetic Materials(Hannneg Cailiao), 2007, 15(4): 363-366.
参考文献 16
PlesnicarB, TuttleT, CerkovnikJ, et al. Mechanism of formation of hydrogen trioxide (HOOOH) in the ozonation of 1,2‑diphenylhydrazine and 1,2‑dimethylhydrazine: an experimental and theoretical investigation[J]. Journal of the American Chemical Society, 2003, 125(38): 11553-11564.
参考文献 17
WuR, XieS. Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds[J]. Environmental Science & Technology, 2017, 51(5): 2574-2578.
参考文献 18
任信荣, 邵可声, 缪国芳, 等. 大气OH自由基浓度的测定[J]. 中国环境科学, 2001, 21(2): 115-118.
RENXin‑rong, SHAOKe‑sheng, MIAOGuo‑fang, et al. Determination of hydroxyl radical concertration in atmosphere[J]. China Environmental Science, 2001, 21(2): 115-118.
参考文献 19
TuazonE C, AtkinsonR, AschmannS M, et al. Kinetics and products of the gas‑phase reactions of O3 with amines and related compounds[J]. Research on Chemical intermediates, 1994, 20(3‑5): 303-320.
参考文献 20
赵燕, 王慧, 孙孝敏, 等. OH抽提1‑戊醇分子中α‑H和β‑H引发的大气反应机理的理论研究[J]. 化学学报, 2009, 67(2): 122-128.
ZHAOYan, WANGHui, SUNXiao‑min, et al. Theoretical study on the reaction mechanism of the α‑H and β‑H abstractions from 1‑pentanol by OH in atmosphere[J]. Acta Chimica Sinica, 2009, 67(2): 122-128.
目录 contents

    摘要

    为确定大气中偏二甲肼(UDMH)转化为亚硝基二甲胺(NDMA)的反应路径,采用量子化学方法对UDMH在大气中氧化生成NDMA的反应机理进行了研究,在B3LYP/6‑311+G(d,p)和M06‑2X/6‑311+G(d,p)水平上对反应体系的反应物、中间体、过渡态及产物进行了几何构型优化和频率计算,在CCSD(T)/aug‑cc‑pVTZ水平下进行单点能校正,构筑了反应的势能剖面。结果表明,UDMH氧化反应引发的过程是一个脱氢或加氧过程;考虑到大气中氧化剂(HO·/O3/O2)的浓度,不同氧化剂引发UDMH反应速率的比例关系为v(O3)≈104×v(HO·)≈108×v(O2)。因此UDMH在大气氧化的引发过程中最主要是被O3氧化,UDMH摘除氢原子后生成中间体(CH3)2NN(H)·(IM1)。IM1在大气环境中HO·、HO2·及O3作用下都可以转化为NDMA,臭氧参与过程将降低反应活化能,促进NDMA在大气中生成。

    Abstract

    To determine the reaction pathway of unsym‑dimethylhydrazine (UDMH) to nitrosodimethylamine (NDMA) in the atmosphere, the reaction mechanism of UDMH oxidation to NDMA in the atmosphere was studied using quantum chemical method. The geometric configuration optimization and frequency calculation of reactants, intermediates, transition states and products of the reaction system were carried out at B3LYP/6‑311+G(d,p) and M06‑2X/6‑311+G(d,p) levels. The single points energies of the species were corrected at the CCSD(T)/aug‑cc‑pVTZ level and the potential energy surface profile for the reactions was constructed. Results show that the oxidation initiation of UDMH is a dehydrogenation or oxygenation process. Considering the concentration of oxidants in the atmosphere, the ratio of reaction rate of UDMH initiated by different oxidants is: v(O3)≈104×v(HO·)≈108 ×v(O2) .The oxidation of UDMH is mainly trigged by ozone, forming (CH3)2NNH(IM1) after the removal of hydrogen atoms. Then IM1 can be converted into NDMA under the action of HO·, HO2·, O3 in the atmosphere environment. Ozone participation in the process will reduce the activation energy of the reaction and promote the formation of NDMA in the atmosphere.

  • 1 引 言

    1

    偏二甲肼(UDMH)作为火箭发动机的主体燃料,广泛应用于我国战略导弹和航天领域。然而在实际推进剂贮存、转注和报废处理的过程中,大量的UDMH的废气会进入大气环境中。UDMH本身就具有毒性,俄罗斯允许空气中UDMH的浓度不超过0.1 mg·m-3[1]。而且在UDMH的模拟大气氧化实验和臭氧氧化实验中均检测到到亚硝基二甲胺(NDMA)[1,2,3],它是一种强致癌物,美国环保署规定其最大容许浓度为0.7 ng·m-3[4]。Hong[5]等在PM2.5中检测到有机污染物中NDMA的浓度达到(0.55±0.51) ng·m-3,约为规定最大允许浓度的80倍,因此UDMH氧化生成NDMA对大气环境和人体健康构成极大的威胁。

    大气中UDMH主要发生氧化反应,基于反应动力学常数的数据,现有观点是UDMH主要通过臭氧氧化作用转化为NDMA。EC tuzon[3,4,5]认为NDMA的生成路径是先通过UDMH脱除氢原子后生成 (CH3)2NN(H)·自由基,然后自由基进行进一步加氧脱氢的过程。而Liu[6]和Zhang[7]则认为UDMH的引发过程是在—NH2官能团上加入一个氧原子的过程,生成的(CH3)2NN(O)H2进一步发生加氧、氢转移,脱水反应转化为NDMA。此反应路径的速控步骤在G4的理论水平上的反应势垒约为120 kJ·mol-1

    此外,大气环境中还含有HO·和O2,徐亚[8]认为UDMH和HO·反应的引发过程是氢原子脱除反应,在B3LYP/6‑31+G(d)水平上的计算结果表明此过程是一个无势垒的过程。UDMH被HO·和O2氧化生成NDMA的路径均是先生成中间体(CH3)2NN(H)OOH,其脱去一个水分子后生成NDMA。而大气环境是一个存在多种氧化剂的复杂系统,各种氧化剂同时作用下UDMH转化生成NDMA的机理并不清楚,UDMH氧化生成NDMA的过程中加氧反应还是夺氢反应占主导地位有待于进一步讨论。因此要确定大气中UDMH生成NDMA的主要路径,需要探讨不同氧化剂作用下的多种反应路径。

    本研究采用量子化学方法,利用B3LYP/6‑311+G(d,p)上M06‑2X/6‑311+G(d,p)和CCSD(T)/aug‑cc‑pVTZ对UDMH氧化生成NDMA可能的路径进行反应速率和能量分析比较,以确定活性氧化剂在UDMH生成NDMA的作用及NDMA形成机理。

  • 2 计算方法

    2
  • 2.1 电子结构计算

    2.1

    本研究涉及的所有量子化学计算都由Gaussian 09 Rev.D.01程[9]和署光服务器完成,在密度泛函理论的B3LYP/6‑311+G(d,p)[10]和M06‑2X/6‑311+(d,p)[11]水平下对反应体系的反应物、过渡态、中间体和产物的几何构型进行优化,并进行振动分析,以确认平衡点无虚频,过渡态只有一个虚频。对每一个过渡态加以内禀反应坐标(IRC)计算验证,确定其连接对应的反应物和产物。为进一步提高热力学数据的精度,在CCSD(T)/aug‑cc‑pVTZ[12]水平上进一步对单点能进行校正。反应势垒、反应热和自由能变化数据均为CCSD(T)/aug‑cc‑pVTZ水平能量加B3LYP/6‑311+G(d,p)零点能、焓和Gibbs自由能。

  • 2.2 速率常数计算

    2.2

    在B3LYP/6‑311+G(d,p)水平下优化构型,以及CCSD(T)/aug‑cc‑pVTZ单点能计算的基础上,运用KiSThelP程[13]计算单分子和双分子的反应速率常数,以Eckart方式考虑隧道效应校正。

    图2
                            引发反应过程中过渡态和中间体结构及参数

    图2 引发反应过程中过渡态和中间体结构及参数

    Fig.2 Structure and parameter for the transition states and intermediates involved in the initial reaction

    k i = σ k k B T h ( R T p 0 ) n e x p ( - Δ r G k B T )
    (1)

    式中,k为传统过渡态理论的速率常数; Δ rG为吉布斯自由能垒,kJ·mol-1 σ 为对称数,kB为玻尔兹曼常数,1.38×10-23K-1;h为普朗克常数,6.26×10-23 J·s;n为1或者0,分别表示双分子和单分子反应,k为隧道校正系数;p0为大气压,Pa;R为常数,8.314 J·mol-1

  • 3 结果与讨论

    3
  • 3.1 UDMH分子的几何结构的优化

    3.1

    利用B3LYP/6‑311G+(d,P)对UDMH的分子结构进行优化,其UDMH存在两种分子结构,非对位交叉式构象(Sa)和对位交叉式构象(Sb)。Sa类UDMH,—NH2基团和—N(CH3)2基团出现内旋转,C(4)—N(1)—N(2)—C(3)二面角为84.3°,实验值为97°[14],此构象为非对位交叉构象;Sb类UDMH,—NH2基团和—N(CH3)2基团完全对称,C(4)—N(1)—N(2)—C(3)二面角为175.5°,实验值为约180°[14]。通过CCSD(T)/aug‑cc‑pVTZ对这两种结构的单点能计算,Sa类能量低于Sb类,相差7.5 kJ·mol-1,且Sa类可以通过内旋转越过19.6 kJ·mol-1的能垒转化成Sb类。因此UDMH分子中大多以更稳定的非对位交叉式构象Sa存在。所得的结构(见图1)与文献值[14,15]基本吻合。

    图1
                            UDMH的分子结构

    图1 UDMH的分子结构

    Fig.1 Molecular structure of UDMH

    NOTE: a. non‑staggered conformation   b. staggered conformation

  • 3.2 UDMH生成NDMA的引发过程

    3.2

    大气中主要的氧化剂有O3、HO·和O2,UDMH氧化生成NDMA的引发过程主要是氨基被氧化剂氧化。不同氧化剂引发的UDMH氨基氧化过程的过渡态结构见2,反应势垒,反应焓变,自由能变及反应速率常数见表1

    表1 引发过程中的反应势垒,反应焓变,自由能变及反应速率常数

    Table 1 Initial reaction potential barrier, reaction enthalpy change, free energy change and reaction rate constants

    productsCCSD(T)/aug‑cc‑pVTZB3LYP/6‑311+(d,,P)
    ΔG298 K / kJ·mol-1ΔE0 K / kJ·mol-1

    ΔG298 K

    / kJ·mol-1

    ΔH298 K

    / kJ·mol-1

    ki

    / cm3·mol-1·s-1

    ΔG298 K / kJ·mol-1
    UDMH+HO·Me2NN(H)·+H2O46.918.5-192.1-124.84.57×10-157.9
    UDMH+O3Me2NN(H)·+HOOO·48.810.3-10.5-4.37.47×10-1615.3
    Me2NN(H2)O+1O2123.385.0-45.9-48.76.20×10-29103.3
    UDMH+O2Me2NNH+HO2·131.998.7107.051.35.61×10-30102.2
    Me2NN(H)OOH205.1162.944.1-0.41.55×10-43233.2

    Scheme 1 The initial reaction between UDMH with HO·

    UDMH与HO·主要发生如Scheme 1所示的氢原子脱去反应。由图2及表1可见,HO·抽取N(2)—H(6)键上H(6)原子的过程中的过渡态TS1中的O(13)—H(6)键为1.806 Å,反应势垒是46.9 kJ·mol-1。此反应生成IM1自由基,同时放热124.8 kJ·mol-1,其反应速率常数为4.57×10-15 cm3·mol-1·s-1

    Scheme 2 The initial reaction between UDMH with O3

    Liu[6]和Zhang[7]等认为UDMH和臭氧的引发反应是O3在UDMH(Sb)的—NH2基团上的N(2)原子加入一个氧原子的过程,在G4水平上计算此反应的吉布斯自由能垒约为120 kJ·mol-1,如Scheme 2所示。本研究在CCSD(T)/aug‑cc‑pVTZ水平上计算此反应的吉布斯自由能垒为123.0 kJ·mol-1。此过程中O3分子中的O(13)原子首先进攻N(2)原子,过渡态TS3中O(13)—N(2)键长1.677 Å,臭氧分子中的O(13)—O(14)伸长至1.549 Å;最终O(13)—N(2)成键,O(13)—O(14)断裂。此过程的反应速率常数为6.20×10-29 cm3·molecule-1·s‑1。此外,由于臭氧具有双自由基的性[16],臭氧也可以夺去氨基上的氢原子生成IM1自由基和HOOO·,此过程的反应势垒为48.8 kJ·mol-1,反应速率常数为7.47×10-16 cm3·mol-1·s-1。相比于臭氧在氨基上的加氧能力,臭氧的夺氢能力更强。

    Scheme 3 The initial reaction between UDMH with O2

    基态氧气为三重态的氧气(3O2),激发态氧分子为单线态氧(1O2)。三线态的氧气和激发态的氧气电子能量差相差137.8 kJ·mol-1。一般氧气在大气环境中以三线态的氧气存在,如Scheme 3所示。O2与UDMH引发反应有夺氢反3R3TS43P和加氧反3R1TS51P。不考虑自旋极化时3O2抽取N(2)—H(6)键H(6)原子,三重态过渡态TS4结构中N(2)—H(6)键为1.295 Å,H(6)—O(14)为1.189 Å,反应势垒是131.9 kJ·mol-1,反应速率常数分别为5.61×10-30 cm3·molecule-1·s-1。考虑自旋极化时1O2分子直接插入N(2)—H(7)键生成—NOOH,TS5中的O(13)—H(7)键长为2.003 Å,O(14)—N(2)键长为1.513,O(13)—O(14)拉长至1.419 Å。反应势垒为205.1 kJ·mol-1,反应速率常数分别为1.55×10-3 cm3·molecule-1·s‑1

    在UDMH氧化反应的引发过程中,特别注意的是,对于臭氧体系,脱氢比加氧更易发生。大气中氧气含量为21%,浓度约为3.1×105 mg·m-3O3浓度约7.5~10.5×10-2 mg·m-3[17],HO·自由基的浓度约1.55×10‑6 mg·m-3[18],大气中各种氧化剂的浓度关系为C(O2)≈106×C(O3)≈1011×C(OH)。UDMH与O2O3及HO·的反应相对于氧化剂均为拟一级反[2,19],即:

    - ( d U D M H d t ) = - ( d o d t ) = k U D M H O
    (2)

    综合考虑氧化能力和氧化剂的浓度,不同氧化剂摘氢的反应速率关系为v(O3)≈104×v(HO·)≈108×v(O2),因此大气中UDMH氧化生成NDMA的引发过程主要是与O3的摘除氢原子的反应,并且生成重要的中间体(CH3)2NN(H)·(IM1)。

  • 3.3 IM1氧化生成NDMA的路径

    3.3

    UDMH氧化生成NDMA的引发过程主要是摘氢过程,UDMH被O3夺氢后生成IM1自由基。IM1进一步氧化生成NDMA需要进行加入氧原子和进一步脱除氢原子。因此对于大气环境中进一步可能对IM1进行加氧的氧化性物质(O2/O3/HO·/HO2·)进行了探讨,已有文献[20]表明烷烃脱氢后很容易将氧气加入,然而在IM1上的氨基上加氧反应是难以进行的。此外,IM1可以进一步与O3、HO2·及HO·进行偶合加氧反应,与HO·在氨基上的氢原子进行摘除反应。四条反应路径详见Scheme 4,反应通道的自由能剖面见3,中间体和过渡态结构见图4

    Scheme 4 The NDMA formation pathways though the IM1 further oxidation and Gibbs energy barriers (kJ·mol-1)

    图3
                            IM1氧化生成NDMA的路径势能剖面图

    图3 IM1氧化生成NDMA的路径势能剖面图

    Fig.3 The potential energy surface profile of the NDMA formation pathway from IM1 oxidation

    反应路径(Ⅰ):IM1与臭氧反应,臭氧的O(12)原子可以与IM1上最外层有孤电子的N(2)原子生成N(2)—O(12)键,最终生成IM21O2,此过程是无势垒的过程。IM2可继续1O2发生氢原子摘除反应1O2中的O(13)逐渐接近IM2中的H(5),TS3的O(13)—H(5)键长为1.518 Å,N(2)—H(5)键长为1.099 Å,此反应势垒为37.5 kJ·mol-1

    图4
                            IM1氧化生成NDMA的过渡态(TS)和重要反应中间体(IM)结构及参数

    图4 IM1氧化生成NDMA的过渡态(TS)和重要反应中间体(IM)结构及参数

    Fig.4 Structure and parameter for the transition states and intermediates involved in the NDMA formation though IM1 oxidation

    反应路径(Ⅱ):IM1和HO2·复合形成IM3,IM3不稳定经过TS11异构化反应生成IM4,此过程反应势垒为46.1 kJ·mol-1。IM4再经过过渡态TS12,N(2)—O(14)键长由1.643 Å拉长至2.071 Å,O(14)—H(5)键长为1.785 Å,最终脱去一个水分子生成NDMA,此反应势垒为31.7 kJ·mol-1

    反应路径(Ⅲ):IM1与·OH首先发生无势垒的复合反应,形成中间体IM5。IM5进一步与HO·发生氢原子摘除反应,这个过程越过一个较低的势垒10.9 kJ·mol-1,生成中间体IM6自由基,IM6自由基可以继续与HO·复合反应生成IM7。IM7具有两个羟基的结构,可以脱去一个水分子生成NDMA。其中中间体IM7的N(12)—O(13)键长1.437 Å逐渐增大到2.071 Å,O(13)—H(12)键长逐渐接近至1.578 Å;与O(11)相连的H(12)迁移到O(13)上;TS8中的O(13)—H(12)键生成,O(11)—H(12)键断裂,键的断裂和生成同时发生,最终脱去一个水分子生成NDMA,此脱水步骤的反应势垒为50.5 kJ·mol-1

    反应路径(Ⅳ):HO·摘取IM1上的另一个H原子,HO·中的O(13)逐渐接近H(5),TS11中的O(13)—H(5)键长为2.162 Å,摘氢过程的势垒为4.2 kJ·mol-1,生成中间体IM6(1,1二甲基二氮稀);臭氧进一步在1,1二甲基二氮稀的N N双键上加氧原子;其中TS10的O(12)—O(13)键长为1.338 Å,N(2)—O(13)键长为1.809 Å,然后O(12)—O(13)键断裂,N(2)—O(13)生成,最终生成NDMA和氧气。此路径的速控步骤为加氧过程,势垒为25.9 kJ·mol-1

    UDMH在摘除氨基上的第一个氢之后的加氧过程是一个无势垒的过程,然而在IM1加氧后进一步进行的脱氢、脱水的过程(应路径Ⅱ和反应路径Ⅲ)反应势垒较高,均大于40 kJ·mol-1。羟基自由基脱氢、臭氧进一步加氧的过程(反应路径Ⅳ)的反应势垒最低(25.9 kJ·mol-1)。因此,仅含有羟基自由基和过氧自由基的大气中,NDMA的生成较慢;当含有臭氧污染物时NDMA的生成会明显加快。

  • 4 结 论

    4

    采用密度泛函理论B3LYP/6‑311+(d,p)、M06‑2X/6‑311+G(d,p)和CCSD(T)/aug‑cc‑pVTZ高水平上对活性氧化剂(HO·/O3/O2)在大气中UDMH氧化生成NDMA中的作用及NDMA形成的可能路径进行了的理论计算。主要结论如下:

    (1) UDMH氧化生成NDMA的引发反应中最主要的是与氢原子摘除反应,考虑氧化剂浓度,各种氧化剂摘氢的反应速率关系为v(O3)≈v(HO·)×104v(O2)×108,因此UDMH与臭氧的摘氢反应为最主要的路径,并生成重要的中间体IM1自由基。

    (2) IM1与大气环境中HO·、HO2·和O3作用都可以转化为NDMA,在O3和HO·共同作用下,NDMA生成的速控步骤的吉布斯自由能垒为25.9 kJ·mol-1。臭氧参与过程将降低反应活化能,促进NDMA的生成。

  • 参考文献

    • 1

      Carlsen L, Kenessov B N, Batyrbekova S Y. A QSAR/QSTR study on the environmental health impact by the rocket fuel 1,1‑dimethyl hydrazine and its transformation products[J]. Environmental Health Insights, 2008, 1(1): 11-20.

    • 2

      Mathur M A , Sisler H H. Oxidation of 1,1‑dimethylhydrazine by oxygen[J]. Inorganic Chemistry, 1981, 20(2): 426-429.

    • 3

      Tuazon E C, Carter W P L, Winer A M, et al. Reactions of hydrazines with ozone under simulated atmospheric conditions[J]. Environmental Science & Technology, 1981, 15(7): 823-828.

    • 4

      Krasner S W, Mitch W A, Mccurry D L, et al. Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review[J]. Water Research, 2013, 47(13): 4433-4450.

    • 5

      Hong Y, Kim K H, Sang B I, et al. Simple quantification method for N ‑nitrosamines in atmospheric particulates based on facile pretreatment and GC‑MS/MS[J]. Environmental Pollution, 2017, 226: 333-337.

    • 6

      Liu Y D, Zhong R. Comparison of N‑nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study[J]. Journal of Hazardous Materials, 2017, 321: 362-370.

    • 7

      Zhang S, Yu G, Chen J, et al. Unveiling formation mechanism of carcinogenic N‑nitrosodimethylamine in ozonation of dimethylamine: a density functional theoretical investigation[J]. J Hazard Mater, 2014, 279: 330-335.

    • 8

      徐亚飞. UDMH与羟基自由基降解反应机理的理论研究[D]. 重庆:重庆大学, 2008.

      XU Ya‑fei. Thoretical Study on the Degradation Mechanism of 1,1‑Dimethylhydrazine and Hydroxyl Radical[D]. Chongqing: Chongqing University, 2008.

    • 9

      Chabalowski M, Frisch T G, Schlegel H, et al. Gaussian∼09 Revision D.01[CP], Gaussian, Inc : Wallingford, CT, 2014.

    • 10

      Stephens P J, Devlin F J, Chabalowski C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. Chemical Physics Letters, 1994, 225(1‑3): 247-257.

    • 11

      Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06‑class functionals and 12 other functiona[J]. Theoretical Chemistry Accounts, 2008, 120(1-3): 215-241.

    • 12

      E R mya K Suresh C H. Which density functional is close to CCSD accuracy to describe geometry and interaction energy of small non‑covalent dimers A benchmark study using Gaussian09[J]. Journal of Computational Chemistry, 2013, 34(15): 1341-1353.

    • 13

      Canneaux S, Bohr F, Henon E, et al. A program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. Journal of Computational Chemistry, 2014, 35(1): 82-93.

    • 14

      Litvinov O A, Ermolaeva L V, Zverev V V, et al. Molecular structure of 1,1‑dimethylhydrazine[J]. Journal of Structural Chemistry, 1989, 30(2): 224-228.

    • 15

      李正莉, 王煊军, 张有智. UDMH分子结构的计算研究[J]. 含能材料, 2007, 15(4): 363-366.

      LI Zheng‑li, WANG Xuan‑jun, ZHANG You‑zhi. Calculation of the molecular structure of UDMH[J]. Chinese Journal of Energetic Materials(Hannneg Cailiao), 2007, 15(4): 363-366.

    • 16

      Plesnicar B, Tuttle T, Cerkovnik J, et al. Mechanism of formation of hydrogen trioxide (HOOOH) in the ozonation of 1,2‑diphenylhydrazine and 1,2‑dimethylhydrazine: an experimental and theoretical investigation[J]. Journal of the American Chemical Society, 2003, 125(38): 11553-11564.

    • 17

      Wu R, Xie S. Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds[J]. Environmental Science & Technology, 2017, 51(5): 2574-2578.

    • 18

      任信荣, 邵可声, 缪国芳, 等. 大气OH自由基浓度的测定[J]. 中国环境科学, 2001, 21(2): 115-118.

      REN Xin‑rong, SHAO Ke‑sheng, MIAO Guo‑fang, et al. Determination of hydroxyl radical concertration in atmosphere[J]. China Environmental Science, 2001, 21(2): 115-118.

    • 19

      Tuazon E C, Atkinson R, Aschmann S M, et al. Kinetics and products of the gas‑phase reactions of O3 with amines and related compounds[J]. Research on Chemical intermediates, 1994, 20(3‑5): 303-320.

    • 20

      赵燕, 王慧, 孙孝敏, 等. OH抽提1‑戊醇分子中α‑H和β‑H引发的大气反应机理的理论研究[J]. 化学学报, 2009, 67(2): 122-128.

      ZHAO Yan, WANG Hui, SUN Xiao‑min, et al. Theoretical study on the reaction mechanism of the α‑H and β‑H abstractions from 1‑pentanol by OH in atmosphere[J]. Acta Chimica Sinica, 2009, 67(2): 122-128.

黄丹

机 构:火箭军工程大学导弹装备安全技术实验室, 陕西 西安 710025

Affiliation:The Rocket Army Engineering University, Laboratory of Safety Technology of Missile Equipment, Xi′an 710025, China

邮 箱:huangdanyyn08@sina.com

作者简介:黄丹(1990-),女,博士研究生,主要从事特种能源污染与控制研究。e‑mail:huangdanyyn08@sina.com

刘祥萱

机 构:火箭军工程大学导弹装备安全技术实验室, 陕西 西安 710025

Affiliation:The Rocket Army Engineering University, Laboratory of Safety Technology of Missile Equipment, Xi′an 710025, China

角 色:通讯作者

Role:Corresponding author

邮 箱:wdwwdw1993@163.com

作者简介:刘祥萱(1962-),女,教授,主要从事特种能源污染与控制,肼类燃料分析及检测的研究。e‑mail:wdwwdw1993@163.com

王煊军

机 构:火箭军工程大学导弹装备安全技术实验室, 陕西 西安 710025

Affiliation:The Rocket Army Engineering University, Laboratory of Safety Technology of Missile Equipment, Xi′an 710025, China

杨玉雪

机 构:火箭军工程大学导弹装备安全技术实验室, 陕西 西安 710025

Affiliation:The Rocket Army Engineering University, Laboratory of Safety Technology of Missile Equipment, Xi′an 710025, China

慕晓刚

机 构:火箭军工程大学导弹装备安全技术实验室, 陕西 西安 710025

Affiliation:The Rocket Army Engineering University, Laboratory of Safety Technology of Missile Equipment, Xi′an 710025, China

html/hncl/CJEM2018073/media/61aca9c1-5a09-4fee-979e-d4a8c4235b33-image004.png
html/hncl/CJEM2018073/media/61aca9c1-5a09-4fee-979e-d4a8c4235b33-image001.png
productsCCSD(T)/aug‑cc‑pVTZB3LYP/6‑311+(d,,P)
ΔG298 K / kJ·mol-1ΔE0 K / kJ·mol-1

ΔG298 K

/ kJ·mol-1

ΔH298 K

/ kJ·mol-1

ki

/ cm3·mol-1·s-1

ΔG298 K / kJ·mol-1
UDMH+HO·Me2NN(H)·+H2O46.918.5-192.1-124.84.57×10-157.9
UDMH+O3Me2NN(H)·+HOOO·48.810.3-10.5-4.37.47×10-1615.3
Me2NN(H2)O+1O2123.385.0-45.9-48.76.20×10-29103.3
UDMH+O2Me2NNH+HO2·131.998.7107.051.35.61×10-30102.2
Me2NN(H)OOH205.1162.944.1-0.41.55×10-43233.2
html/hncl/CJEM2018073/media/61aca9c1-5a09-4fee-979e-d4a8c4235b33-image005.png
html/hncl/CJEM2018073/media/61aca9c1-5a09-4fee-979e-d4a8c4235b33-image002.png
html/hncl/CJEM2018073/media/61aca9c1-5a09-4fee-979e-d4a8c4235b33-image003.png
html/hncl/CJEM2018073/media/61aca9c1-5a09-4fee-979e-d4a8c4235b33-image006.png
html/hncl/CJEM2018073/media/61aca9c1-5a09-4fee-979e-d4a8c4235b33-image007.png
html/hncl/CJEM2018073/media/61aca9c1-5a09-4fee-979e-d4a8c4235b33-image008.png

图2 引发反应过程中过渡态和中间体结构及参数

Fig.2 Structure and parameter for the transition states and intermediates involved in the initial reaction

图1 UDMH的分子结构

Fig.1 Molecular structure of UDMH

表1 引发过程中的反应势垒,反应焓变,自由能变及反应速率常数

Table 1 Initial reaction potential barrier, reaction enthalpy change, free energy change and reaction rate constants

Scheme 1 The initial reaction between UDMH with HO·

Scheme 2 The initial reaction between UDMH with O3

Scheme 3 The initial reaction between UDMH with O2

Scheme 4 The NDMA formation pathways though the IM1 further oxidation and Gibbs energy barriers (kJ·mol-1)

图3 IM1氧化生成NDMA的路径势能剖面图

Fig.3 The potential energy surface profile of the NDMA formation pathway from IM1 oxidation

图4 IM1氧化生成NDMA的过渡态(TS)和重要反应中间体(IM)结构及参数

Fig.4 Structure and parameter for the transition states and intermediates involved in the NDMA formation though IM1 oxidation

image /

无注解

a. non‑staggered conformation   b. staggered conformation

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Carlsen L, Kenessov B N, Batyrbekova S Y. A QSAR/QSTR study on the environmental health impact by the rocket fuel 1,1‑dimethyl hydrazine and its transformation products[J]. Environmental Health Insights, 2008, 1(1): 11-20.

    • 2

      Mathur M A , Sisler H H. Oxidation of 1,1‑dimethylhydrazine by oxygen[J]. Inorganic Chemistry, 1981, 20(2): 426-429.

    • 3

      Tuazon E C, Carter W P L, Winer A M, et al. Reactions of hydrazines with ozone under simulated atmospheric conditions[J]. Environmental Science & Technology, 1981, 15(7): 823-828.

    • 4

      Krasner S W, Mitch W A, Mccurry D L, et al. Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review[J]. Water Research, 2013, 47(13): 4433-4450.

    • 5

      Hong Y, Kim K H, Sang B I, et al. Simple quantification method for N ‑nitrosamines in atmospheric particulates based on facile pretreatment and GC‑MS/MS[J]. Environmental Pollution, 2017, 226: 333-337.

    • 6

      Liu Y D, Zhong R. Comparison of N‑nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study[J]. Journal of Hazardous Materials, 2017, 321: 362-370.

    • 7

      Zhang S, Yu G, Chen J, et al. Unveiling formation mechanism of carcinogenic N‑nitrosodimethylamine in ozonation of dimethylamine: a density functional theoretical investigation[J]. J Hazard Mater, 2014, 279: 330-335.

    • 8

      徐亚飞. UDMH与羟基自由基降解反应机理的理论研究[D]. 重庆:重庆大学, 2008.

      XU Ya‑fei. Thoretical Study on the Degradation Mechanism of 1,1‑Dimethylhydrazine and Hydroxyl Radical[D]. Chongqing: Chongqing University, 2008.

    • 9

      Chabalowski M, Frisch T G, Schlegel H, et al. Gaussian∼09 Revision D.01[CP], Gaussian, Inc : Wallingford, CT, 2014.

    • 10

      Stephens P J, Devlin F J, Chabalowski C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. Chemical Physics Letters, 1994, 225(1‑3): 247-257.

    • 11

      Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06‑class functionals and 12 other functiona[J]. Theoretical Chemistry Accounts, 2008, 120(1-3): 215-241.

    • 12

      E R mya K Suresh C H. Which density functional is close to CCSD accuracy to describe geometry and interaction energy of small non‑covalent dimers A benchmark study using Gaussian09[J]. Journal of Computational Chemistry, 2013, 34(15): 1341-1353.

    • 13

      Canneaux S, Bohr F, Henon E, et al. A program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. Journal of Computational Chemistry, 2014, 35(1): 82-93.

    • 14

      Litvinov O A, Ermolaeva L V, Zverev V V, et al. Molecular structure of 1,1‑dimethylhydrazine[J]. Journal of Structural Chemistry, 1989, 30(2): 224-228.

    • 15

      李正莉, 王煊军, 张有智. UDMH分子结构的计算研究[J]. 含能材料, 2007, 15(4): 363-366.

      LI Zheng‑li, WANG Xuan‑jun, ZHANG You‑zhi. Calculation of the molecular structure of UDMH[J]. Chinese Journal of Energetic Materials(Hannneg Cailiao), 2007, 15(4): 363-366.

    • 16

      Plesnicar B, Tuttle T, Cerkovnik J, et al. Mechanism of formation of hydrogen trioxide (HOOOH) in the ozonation of 1,2‑diphenylhydrazine and 1,2‑dimethylhydrazine: an experimental and theoretical investigation[J]. Journal of the American Chemical Society, 2003, 125(38): 11553-11564.

    • 17

      Wu R, Xie S. Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds[J]. Environmental Science & Technology, 2017, 51(5): 2574-2578.

    • 18

      任信荣, 邵可声, 缪国芳, 等. 大气OH自由基浓度的测定[J]. 中国环境科学, 2001, 21(2): 115-118.

      REN Xin‑rong, SHAO Ke‑sheng, MIAO Guo‑fang, et al. Determination of hydroxyl radical concertration in atmosphere[J]. China Environmental Science, 2001, 21(2): 115-118.

    • 19

      Tuazon E C, Atkinson R, Aschmann S M, et al. Kinetics and products of the gas‑phase reactions of O3 with amines and related compounds[J]. Research on Chemical intermediates, 1994, 20(3‑5): 303-320.

    • 20

      赵燕, 王慧, 孙孝敏, 等. OH抽提1‑戊醇分子中α‑H和β‑H引发的大气反应机理的理论研究[J]. 化学学报, 2009, 67(2): 122-128.

      ZHAO Yan, WANG Hui, SUN Xiao‑min, et al. Theoretical study on the reaction mechanism of the α‑H and β‑H abstractions from 1‑pentanol by OH in atmosphere[J]. Acta Chimica Sinica, 2009, 67(2): 122-128.