CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
GiuseppeS T, VictorS, RobertT, et al. Fracture mechanics of composite solid rocket propellant grains: material testing[J].Journal of Propulsion and Power,2009,25(1):60-73.
参考文献 2
屈文忠.国产HTPB复合推进剂裂纹扩展特性的实验研究[J].推进技术,1994(6):88-92.
QUWen‑zhong. Experimental study on crack propagation characteristics of domestic HTPB composite propellant[J]. Journal of Propulsion Technology, 1994 (6):88-92.
参考文献 3
张亚,强洪夫,杨月诚.国产HTPB复合固体推进剂Ⅰ-Ⅱ型裂纹断裂性能实验研究[J].含能材料,2007,15(4):359-362.
ZHANGYa, QIANGHong‑fu, YANGYue‑cheng. Fracture behavior of HTPB composite propellant in Ⅰ-Ⅱ mixed mode crack[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007,15(4):359-362.
参考文献 4
龙兵,常新龙,张有宏,等.高应变率下HTPB推进剂动态断裂性能研究[J],推进技术,2015,36(3):472-475.
LONGBing, CHANGXin‑long,ZHANGYou‑hong, et al.Study on dynamic fracture properties of HTPB propellant under high strain rate[J]. Journal of Propulsion Technology,2015,36(3): 472-475.
参考文献 5
汪文强,郑健,许进升,等. AP/Al/CMDB 推进剂的断裂特性实验研究[J],推进技术,2015,36(11):1728-1733.
WANGWen‑qiang, ZHENGJian,XUJin‑sheng,et al. Research on fracture mechanism of AP/Al/CMDB propellant[J].Journal of Propulsion Technology,2015,36(11):1728-1733.
参考文献 6
DehnaviM Y, KhaleghianS, EmamiA,et al. Utilizing digital image correlation to determine stress intensity factors[J]. Polymer Testing, 2014, 37:28-35.
参考文献 7
KashfuddojaM, RamjiM,PrasathR. Study on experimental characterization of carbon fiber reinforced polymer panel using digital image correlation:A sensitivity analysis[J]. Optics and Lasers in Engineering, 2014,62:17-30.
参考文献 8
EshraghiI,Yadegari DehnaviM R,SoltaniN. Effect of subset parameters selection on the estimation of mode‑I stress intensity factor in a cracked PMMA specimen using digital image correlation[J].Polymer Testing, 2014, 37:193-200.
参考文献 9
RjafiallahS, GuessasmaS. Three‑phase model and digital image correlation to assess the interphase effect on the elasticity of carbohdyrate polymer‑based composites reinforced with glass‑silica beads[J]. Carbohydrate Polymers, 2011,83(1):246-256.
参考文献 10
FedeleR, RakaB,HildF,et al. Identification of adhesive properties in GLARE assemblies using digital image correlation[J].Journal of the Mechanics and Physics of Solids,2009,57(7): 1003-1016.
参考文献 11
高红俐,刘欢,齐子诚,等. 基于高速数字图像相关方法的疲劳裂纹尖端位移应变场变化规律研究[J].兵工学报,2015,36(9):1773-1781.
GAOHong‑li, LIUHuan, QIZi‑cheng,et al. Research on variation law of fatigue crack‑tip displacement and strain fields based on high‑speed digital image correlation method[J].Acta Armamentarii, 2015,36 (9):1773-1781.
参考文献 12
刘晨,蓝林钢,唐明峰,等.数字图像相关方法分析PBX带孔板拉伸应变场[J].含能材料,2016,24(9):368-374.
LIUChen, LANLin‑gang,TANGMing‑feng,et al. Strain analysis for PBX plate with hole under tension based on digital image correlation method[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016,24(9):368-374.
参考文献 13
杨明,李高春,邱欣,等. 基于SEM原位拉伸的HTPB推进剂/衬层粘结界面破坏过程分析[J].含能材料,2015,23(6):553-557.
YANGMing, LIGao‑chun,QIUXin,et al. HTPB propellant/liner adhesive interface failure behavior based on SEM in situ tension[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015,23(6):553-557.
参考文献 14
邵新星,陈振宁,戴云彤,等. 数字图像相关方法若干关键问题研究进展[J].实验力学,2017,32(3):305-325.
SHAOXin‑xing,CHENZhen‑ning,DAIYun‑tong,et al. Research progress of several key problems in digital image correlation method[J]. Experimental Mechanics, 2017,32(3):305-325.
参考文献 15
陈骏达.数字散斑相关方法理论与应用研究[D].北京:清华大学,2007.
CHENJun‑da. Studies on theory and application of digital speckle correlation method[D].Beijing:Tsinghua University,2007.
参考文献 16
BlaberJ,AdairB,AntoniouA.Ncorr: open‑source 2D digital image correlation matlab software[J]. Experimental Mechanics, 2015,55(6):1105-1122.
参考文献 17
潘兵,谢惠民,夏勇,等 .数字图像相关中基于可靠变形估计的大变形测量[J].光学学报,2009,29(2): 400-406.
PANBing, XIEHui‑min,XIAYong,et al. Large‑deformation measurement based on reliable initial guess in digital image correlation method[J].Acta Optica Sinica, 2009,29(2):400-406.
参考文献 18
PanB, LiK, TongW. Fast,robust and accurate digital image correlation calculation without redundant computations[J]. Experimental Mechanics,2013,53(7):1277-1289.
参考文献 19
PanB, XieH, GuoZ, et al. Full‑field strain measurement using a two‑dimensional Savitzky‑Golay digital differentiator in digital image correlation[J]. Optical Engineering, 2007, 46(3):033601.
目录 contents

    摘要

    为了实现端羟基聚丁二烯(HTPB)推进剂复合型裂纹尖端变形场测量及破坏模式分析,制作了含中心贯穿复合型裂纹的HTPB推进剂试件,进行了动态拉伸观察试验,获得了复合型裂纹的扩展特性,并通过数字图像相关方法(DIC)得到试件表面及裂纹尖端的应变场,对复合型裂纹尖端应变场特点及应变场与裂纹扩展规律的关系进行了研究。结果表明, 复合型裂纹试件的拉伸过程可以分为线性段、非线性段和失效段三个阶段,裂纹沿与载荷垂直的方向扩展;数字图像相关方法采用大变形分析方法能有效解决试件大变形的问题,可以定量给出试件表面的应变场,且应变集中区域与理论结果吻合;复合型裂纹的扩展与应变场的变化密切相关,应变场在裂纹尖端产生应变集中,导致裂纹扩展。

    Abstract

    To realize the deformation field measurement of mixed mode crack tip and failure mode analysis of hydroxyl-terminated polybutadiene (HTPB) propellant, HTPB propellant specimens with central through-mixed mode cracks were made. Tensile observation test was carried out. The propagation characteristics of the mixed mode crack were obtained. Digital image correlation(DIC) method was used to obtain the strain field on the surface of the specimen and the crack tip. The characteristics of the strain field near the mixed mode crack tip and the relationship between the strain field and the crack propagation law were studied. The results show that the tensile process of mixed mode crack specimens can be divided into three stages: linear segment, nonlinear segment and failure segment, and the crack propagates in the direction perpendicular to the load. The digital image correlation method using large deformation analysis method can effectively solve the problem of large deformation of the specimen, and can quantitatively give the strain field on the surface of the specimen and the strain concentration area is consistent with the theoretical results. The expansion of mixed mode cracks is closely related to the change of the strain field. The strain field generates strain concentration at the crack tip, leading in crack propagation.

    WANG Yang,LI Gao-chun,WANG Yu-feng,et al. Deformation Field Measurement and Failure Mode Analysis of Mixed Mode Crack Tip of HTPB Propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2019,27(1):14-20.

  • 1 引 言

    1

    端羟基聚丁二烯(HTPB)推进剂在生产、贮存、运输和使用过程中要承受各种载荷(包括重力载荷、冲击载荷、振动载荷等)的作用,导致推进剂内裂纹的萌生,裂纹的存在破坏了推进剂结构的完整性,影响了固体火箭发动机的安全、可靠使用。由于裂纹形态各异以及所受载荷的复杂性,裂纹多为复合型裂[1,2], 因此针对复合型裂纹破坏方式的研究对推进剂的寿命预估以及裂纹的失效机理分析具有重要意义。张[3]等对Ⅰ-Ⅱ复合型裂纹的固体推进剂进行了拉伸试验,得到了不同裂纹倾斜角下扩展开裂角和断裂载荷;龙兵 [4]等对含中心直裂纹圆盘试件开展了动态断裂实验,研究HTPB推进剂在冲击载荷作用下的动态断裂特性与破坏机理;汪文[5]等开展了关于AP/Al/CMDB推进剂的断裂实验研究,并阐述了裂尖材料的损伤演化机理。但由于测量手段的限制,研究人员对复合型裂纹尖端变形场的分析较少。

    数字图像相关方法(DIC)[6,7,8,9,10]为定量分析裂纹尖端变形场提供了一种有效的手段。高红[11]等应用数字图像相关方法研究了谐振式疲劳裂纹扩展试验中裂纹尖端区域位移和应变场的变化规律;刘[12]等借助DIC对带孔槽结构的PBX材料的应变场分布及演化进行了分析和讨论。但针对HTPB推进剂复合型裂纹尖端变形场的测量及特点未见报道。

    本研究通过数字图像相关方法对HTPB推进剂复合型裂纹尖端的变形场进行了测量,分析了在裂纹扩[13]过程中应变场的变化规律,研究了复合型裂纹扩展过程中应变场与裂纹扩展关系。

  • 2 复合型裂纹动态拉伸观察试验

    2
  • 2.1 试件制备

    2.1

    拉伸观察试验采用含中心贯穿复合型裂纹HTPB试件,试件形状及尺寸如图1所示,长度a=100 mm,宽度b=100 mm,厚度h=25 mm,在试件中央预制夹角α(裂纹与水平方向夹角)分别为0°、22.5°、45°、67.5°的贯穿裂纹,裂纹初始长度c为45 mm。为了与万能试验机连接,推进剂试件与夹具配套的固定件粘接在一起。

    由于试件表面颜色差异不明显,拉伸过程中裂纹的扩展不容易被观察及测量,本研究通过绘制栅格的方法在试件表面制作散斑,图2a和图2b分别为未画栅格和已画栅格的0°裂纹试件表面图片。散斑随试件变形,来记录试件表面的变形信息。

    图1
                            复合型裂纹试件

    图1 复合型裂纹试件

    Fig.1 Specimen with mixed mode cracks

    图2
                            0°裂纹试件表面图片

    图2 0°裂纹试件表面图片

    Fig.2 Pictures of specimen surface with 0° crack

    NOTE: a. no grid b. with grid

  • 2.2 试验过程

    2.2

    将制作好的推进剂试件安装在电子万能试验机上,设定拉伸速度为2 mm·min-1,试验在室温的条件下进行。记录过程选取帧数为2帧,试件被拉断后结束试验,导出试验过程中试件所受载荷随位移变化数据,存储拉伸过程中获得的图像。

  • 2.3 试验结果及分析

    2.3

    处理试验数据,得到拉伸应力-应变曲线。图3为45°裂纹下拉伸应力-应变曲线,选取5个特征点ABCDE,图4为特征点对应的试件变形图。

    图3
                            45°裂纹试件的应力-应变曲线

    图3 45°裂纹试件的应力-应变曲线

    Fig.3 Stress-strain curve of specimen with 45° crack

    html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image004.png

    a. point A b. point B

    html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image005.png

    c. point C d. point D

    html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image006.png

    e. point E

    图4 45°裂纹试件的典型失效过程

    Fig.4 Typical failure process of specimen with 45° crack

    分析图3及图4特征点对应的图像可以把45°裂纹试件的拉伸过程分为3个阶段:(1)线性段(拉伸应力-应变曲线OB段)。应力-应变曲线近似为一条直线,应力与应变呈正比,这个阶段裂纹没有扩展,由拉伸引起的变形在载荷去除后仍能够恢复,属于弹性拉伸阶段。(2)非线性段(拉伸应力-应变曲线BD段)。应力-应变曲线呈现非线性,裂纹尖端前部出现损伤区,C点应力达到最大抗拉强度,裂纹张开到极限,之后裂纹开始向两侧缓慢扩展,这个阶段由拉伸引起的变形为不可恢复的变形。(3)失效段(拉伸应力-应变曲线DE段)。裂纹开始失稳加速扩展,这一阶段时间持续很短,试件很快被拉断。

    不同角度裂纹下试件的扩展情况如图5所示。从图5可以看出,不同角度裂纹都是在水平方向即与载荷垂直的方向上扩展,而与裂纹的初始角度无关。虽然初始裂纹与水平方向有一定角度,裂纹在扩展初始阶段具有Ⅰ-Ⅱ复合型裂纹的扩展特性,即沿着原裂纹方向扩展,但裂纹有逐渐向Ⅰ型裂纹转变的趋势,即裂纹线逐渐趋向于水平方向。这与张亚[3]提出的单轴拉伸试验中复合型裂纹开始扩展后有向横向裂纹转变的现象相一致。

    html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image007.png

    a. 0° b. 22.5°

    html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image008.png

    c. 45° d. 67.5°

    图5 不同角度裂纹试件的扩展

    Fig.5 Crack propagation of specimens with different angles

    试验完成后,测量了复合型裂纹的扩展开裂角(中间厚度平面处的裂纹迹线与初始裂纹的夹角)。试件断裂后测量0°、22.5°、45°、67.5°裂纹下的扩展开裂角分别为0°、25.9°、51.9°、70.2°,可见随裂纹角度的增大,裂纹扩展角也随之增大。

  • 3 应变场测量和破坏模式分析

    3
  • 3.1 数字图像相关方法

    3.1

    为了分析裂纹尖端变形场的特点,开展了数字图像(DIC)分析。DIC测量的基本原理是在参考图像中选择参考图像子区,根据相关函数进行相关计算,搜索相关系数的极值点,确定目标图像子区在变形后图像中的位置,进而得到图像表面的变形[14,15]

    由于裂纹的存在,裂纹所在区域无法进行相关计算,因此需要设置待测区域(ROI) [16],剔除裂纹所在区域,避免因裂纹附近产生较大位移而对应变计算造成不必要的误差。以0°裂纹为例,裂纹成椭圆形向外扩展,故将裂纹区域以椭圆的形式剔除。设置的待测区域如图6所示。

    图6
                            0°裂纹试件的ROI图

    图6 0°裂纹试件的ROI图

    Fig.6 The region of interest (ROI) of specimen with 0° crack

    由于推进剂延伸率较大,试件裂纹及裂纹尖端在拉伸过程中经历了大变形,导致DIC分析中因变形后图像变化太大而无法与参考图像准确匹配,为解决这一问题,采用了DIC的大变形分析方[17]。相关计算中,选用了基于高斯-牛顿(GN)迭代的前向加性高斯-牛顿(FA-GN)搜索算[18]。该算法的基本思想是在获得足够多图片序列的基础上,将大变形过程通过几个小变形过程叠加得到。FA-GN算法思想如图7所示。

    图7
                            FA-GN算法流程图

    图7 FA-GN算法流程图

    Fig.7 Flow chart of the forward additive Gauss‑Newton (FA-GN) algorithm

    7中,参考图像子区的位置是不发生变化的,而目标图像子区的位置在每次迭代后都有所调整。计算过程中,将每次迭代后变形矢量的变化值 Δ P与变形矢量P之和作为新的变形矢量用于下一次的迭代中,直到获得满足要求的结果。该算法在单次迭代中更加方便快捷,迭代过程被重新配置从而变得更有效率,所获得的结果具有更好的收敛特性,能有效解决大变形问题。

    相关计算获得了计算区域的位移场,利用格林‑拉格朗日[19],通过计算位移梯度来获得了应变场,公式如下:

    ε x = 1 2 2 u x + u x 2 + v x 2
    (1)
    ε y = 1 2 2 v y + u y 2 + v y 2
    (2)
    γ x y = 1 2 u y + v x + u x u y + v x v y
    (3)

    式中,εx表示x方向应变场,εy表示y方向应变场,γxy表示切方向的应变场,uv分别为参考图像子区中心点在xy方向的位移。

  • 3.2 结果分析

    3.2

    经DIC运算后得到相应加载阶段复合型裂纹试件表面的应变场云图。图8,9,10分别为45°裂纹试件不同方向的应变场在拉伸应变ε下的变化。

    图8
                            45°裂纹试件不同拉伸应变下的应变场εx

    图8 45°裂纹试件不同拉伸应变下的应变场εx

    Fig.8 Strain field εx of specimen with 45° crack under different strain

    NOTE: a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

    图9
                            45°裂纹试件不同拉伸应变下的应变场γxy

    图9 45°裂纹试件不同拉伸应变下的应变场γxy

    Fig.9 Strain field γxy of specimen with 45° crack under different strain

    NOTE: a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

    图10
                            45°裂纹试件不同拉伸应变下的应变场εy

    图10 45°裂纹试件不同拉伸应变下的应变场εy

    Fig.10 Strain field εy of specimen with 45° crack under different strain

    NOTE: a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

    8显示,由于x方向应变场εx与拉伸方向垂直,试件发生收缩变形,εx为压缩应变,拉伸过程中,随拉伸应变ε的增大,在裂纹尖端出现应变极小值,应变极大值分别位于原裂纹尖端的左上方和右下方,不随裂纹的扩展发生位置变化。图9中应变场γxy随拉伸应变的增大,在裂纹尖端同样出现了应变极值。由于拉伸方向沿y轴,εxγxy应变场中的应变极值取值较小,不是裂纹扩展破坏的主导因素。

    结合图3拉伸应力‑应变曲线和图10分析得到:

    (1) 拉伸应变由0变化到5.5%,试件应力-应变曲线处于线性段,y方向应变场εy在裂纹尖端出现一定程度的应变集中,试件整体力学性能表现为弹性。

    (2) 拉伸应变由5.5%变化到8%,应力‑应变曲线为斜率逐渐减小的非线性段,在裂纹尖端前部出现损伤区,应变场εy在裂纹尖端的应变集中愈加明显。拉伸应变达到8%时,应变场εy在裂纹尖端达到破坏应变值,裂纹张开到极限,开始向两侧扩展。

    (3) 拉伸应变由8%变化到11%,应力‑应变曲线处于应力随应变增大而减小的非线性段,应变场εy中的应变极值不再发生明显变化,裂纹持续平稳扩展。

    对比不同拉伸应变下的应变场εy可见,应变集中主要发生在裂纹尖端,随着拉伸应变的增加,裂纹尖端的应变集中效应愈加明显,可见裂纹尖端的应变集中是裂纹扩展的主导因素,试件最先在此达到破坏应变值并伴随裂纹的扩展。

    为了更好揭示裂纹尖端的应变集中现象,验证试验结果的正确性,取拉伸应变ε=8%时y方向的应变云图,以应变0.08为边界画出裂纹尖端的应变集中区域如图11红线所示。

    图11
                            ε=8%时45°裂纹εy应变云图

    图11 ε=8%时45°裂纹εy应变云图

    Fig.11 The strain contour of εy at 45° crack when ε=8%

    利用线弹性断裂力学原理,对复合型裂纹尖端应变集中区域进行理论计算。Ⅰ、Ⅱ复合型裂纹尖端x、y方向的应力场为

    σ x = σ c 4 r c o s θ 2 1 - s i n θ 2 s i n 3 θ 2 - τ c 4 r s i n θ 2 2 + c o s θ 2 c o s 3 θ 2
    (4)
    σ y = σ c 4 r c o s θ 2 1 + s i n θ 2 s i n 3 θ 2 + τ c 4 r s i n θ 2 c o s θ 2 c o s 3 θ 2
    (5)

    平面应变条件下,由物理方程得到y方向的应变为

    ε y = 1 - μ 2 E σ y - μ 1 - μ σ x
    (6)

    式中,c为裂纹长度,mm;(r,θ)为极坐标,E为弹性模量,Pa;μ为泊松比。将公式(4)、公式(5)带入公式(6),令εy=0.08,得到以应变0.08为边界的应变集中区域,并将其与图11中裂纹尖端的应变集中区域作比较,如图12所示。从图12可以看出,由线弹性断裂力学得到的以εy =0.08为边界的应变集中区域与DIC测得的结果形状相近,从而验证了DIC可以有效地测量复合型裂纹尖端的应变场。

    图12
                            εy=0.08的应变集中区域

    图12 εy=0.08的应变集中区域

    Fig.12 Strain concentration area when εy=0.08

    NOTE: a. theoretical results b. test results

    13,14,15给出了其他角度裂纹y方向应变场εy云图的变化。图13,14,15显示,不同角度裂纹试件的应变场εy在不同拉伸应变下的变化特点基本一致。在远场区,裂纹的上下两侧区域应变分布较为均匀,应变值较小;在裂纹自由表面区,因裂纹产生应力释放,应变值无明显的变化;在裂纹尖端,应力出现奇异性,导致了应变集中,形成大应变区并向左右两侧延伸,这与宏观试验中裂纹于裂纹尖端起裂并沿水平方向扩展相一致。

    图13
                            0°裂纹εy方向应变云图

    图13 0°裂纹εy方向应变云图

    Fig.13 The strain contours of εy direction at 0° crack

    NOTE: a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

    图14
                            22.5°裂纹εy方向应变云图

    图14 22.5°裂纹εy方向应变云图

    Fig.14 Strain contours of εy direction at 22.5° crack

    NOTE: a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

    图15
                            67.5°裂纹εy方向应变云图

    图15 67.5°裂纹εy方向应变云图

    Fig.15 Strain contours of εy direction at 67.5° crack

    NOTE: a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

  • 4 结 论

    4

    (1) 复合型裂纹试件的扩展过程主要分为三个阶段,线性段、非线性段和失效段。应力先随应变的增加而线性增加,随后应力达到极限应力,裂纹开始向两侧缓慢扩展,扩展方向沿水平方向即与载荷施加方向相垂直的方向。

    (2) 采用DIC大变形分析方法能定量给出试件表面的应变场,直观表现应变场的变化规律,有效解决了推进剂试件的大变形问题。

    (3) 复合型裂纹的扩展与应变场的变化密切相关。拉伸过程中,应变场εy在裂纹尖端产生应变集中,导致裂纹的扩展,且应变集中区域与理论结果吻合。

  • 参考文献

    • 1

      Giuseppe S T, Victor S, Robert T, et al. Fracture mechanics of composite solid rocket propellant grains: material testing[J].Journal of Propulsion and Power,2009,25(1):60-73.

    • 2

      屈文忠.国产HTPB复合推进剂裂纹扩展特性的实验研究[J].推进技术,1994(6):88-92.

      QU Wen‑zhong. Experimental study on crack propagation characteristics of domestic HTPB composite propellant[J]. Journal of Propulsion Technology, 1994 (6):88-92.

    • 3

      张亚,强洪夫,杨月诚.国产HTPB复合固体推进剂Ⅰ-Ⅱ型裂纹断裂性能实验研究[J].含能材料,2007,15(4):359-362.

      ZHANG Ya, QIANG Hong‑fu, YANG Yue‑cheng. Fracture behavior of HTPB composite propellant in Ⅰ-Ⅱ mixed mode crack[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007,15(4):359-362.

    • 4

      龙兵,常新龙,张有宏,等.高应变率下HTPB推进剂动态断裂性能研究[J],推进技术,2015,36(3):472-475.

      LONG Bing, CHANG Xin‑long,ZHANG You‑hong, et al.Study on dynamic fracture properties of HTPB propellant under high strain rate[J]. Journal of Propulsion Technology,2015,36(3): 472-475.

    • 5

      汪文强,郑健,许进升,等. AP/Al/CMDB 推进剂的断裂特性实验研究[J],推进技术,2015,36(11):1728-1733.

      WANG Wen‑qiang, ZHENG Jian,XU Jin‑sheng,et al. Research on fracture mechanism of AP/Al/CMDB propellant[J].Journal of Propulsion Technology,2015,36(11):1728-1733.

    • 6

      Dehnavi M Y, Khaleghian S, Emami A,et al. Utilizing digital image correlation to determine stress intensity factors[J]. Polymer Testing, 2014, 37:28-35.

    • 7

      Kashfuddoja M, Ramji M,Prasath R. Study on experimental characterization of carbon fiber reinforced polymer panel using digital image correlation:A sensitivity analysis[J]. Optics and Lasers in Engineering, 2014,62:17-30.

    • 8

      Eshraghi I,Yadegari Dehnavi M R,Soltani N. Effect of subset parameters selection on the estimation of mode‑I stress intensity factor in a cracked PMMA specimen using digital image correlation[J].Polymer Testing, 2014, 37:193-200.

    • 9

      Rjafiallah S, Guessasma S. Three‑phase model and digital image correlation to assess the interphase effect on the elasticity of carbohdyrate polymer‑based composites reinforced with glass‑silica beads[J]. Carbohydrate Polymers, 2011,83(1):246-256.

    • 10

      Fedele R, Raka B,Hild F,et al. Identification of adhesive properties in GLARE assemblies using digital image correlation[J].Journal of the Mechanics and Physics of Solids,2009,57(7): 1003-1016.

    • 11

      高红俐,刘欢,齐子诚,等. 基于高速数字图像相关方法的疲劳裂纹尖端位移应变场变化规律研究[J].兵工学报,2015,36(9):1773-1781.

      GAO Hong‑li, LIU Huan, QI Zi‑cheng,et al. Research on variation law of fatigue crack‑tip displacement and strain fields based on high‑speed digital image correlation method[J].Acta Armamentarii, 2015,36 (9):1773-1781.

    • 12

      刘晨,蓝林钢,唐明峰,等.数字图像相关方法分析PBX带孔板拉伸应变场[J].含能材料,2016,24(9):368-374.

      LIU Chen, LAN Lin‑gang,TANG Ming‑feng,et al. Strain analysis for PBX plate with hole under tension based on digital image correlation method[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016,24(9):368-374.

    • 13

      杨明,李高春,邱欣,等. 基于SEM原位拉伸的HTPB推进剂/衬层粘结界面破坏过程分析[J].含能材料,2015,23(6):553-557.

      YANG Ming, LI Gao‑chun,QIU Xin,et al. HTPB propellant/liner adhesive interface failure behavior based on SEM in situ tension[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015,23(6):553-557.

    • 14

      邵新星,陈振宁,戴云彤,等. 数字图像相关方法若干关键问题研究进展[J].实验力学,2017,32(3):305-325.

      SHAO Xin‑xing,CHEN Zhen‑ning,DAI Yun‑tong,et al. Research progress of several key problems in digital image correlation method[J]. Experimental Mechanics, 2017,32(3):305-325.

    • 15

      陈骏达.数字散斑相关方法理论与应用研究[D].北京:清华大学,2007.

      CHEN Jun‑da. Studies on theory and application of digital speckle correlation method[D].Beijing:Tsinghua University,2007.

    • 16

      Blaber J,Adair B,Antoniou A.Ncorr: open‑source 2D digital image correlation matlab software[J]. Experimental Mechanics, 2015,55(6):1105-1122.

    • 17

      潘兵,谢惠民,夏勇,等 .数字图像相关中基于可靠变形估计的大变形测量[J].光学学报,2009,29(2): 400-406.

      PAN Bing, XIE Hui‑min,XIA Yong,et al. Large‑deformation measurement based on reliable initial guess in digital image correlation method[J].Acta Optica Sinica, 2009,29(2):400-406.

    • 18

      Pan B, Li K, Tong W. Fast,robust and accurate digital image correlation calculation without redundant computations[J]. Experimental Mechanics,2013,53(7):1277-1289.

    • 19

      Pan B, Xie H, Guo Z, et al. Full‑field strain measurement using a two‑dimensional Savitzky‑Golay digital differentiator in digital image correlation[J]. Optical Engineering, 2007, 46(3):033601.

王阳

机 构:海军航空大学岸防兵学院,山东 烟台 264001

Affiliation:Naval Aviation University, Yantai 264001,China

邮 箱:1012790115@qq.com

作者简介:王阳(1993-),男,硕士研究生,主要从事海军导弹总体与新型推进技术研究。e‑mail:1012790115@qq.com

李高春

机 构:海军航空大学岸防兵学院,山东 烟台 264001

Affiliation:Naval Aviation University, Yantai 264001,China

王玉峰

机 构:海军航空大学岸防兵学院,山东 烟台 264001

Affiliation:Naval Aviation University, Yantai 264001,China

史小强

机 构:91115部队, 浙江 舟山 316000

Affiliation:The 91115th Unit of PLA, Zhoushan 316000, China

韩永恒

机 构:海军航空大学岸防兵学院,山东 烟台 264001

Affiliation:Naval Aviation University, Yantai 264001,China

html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image001.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image002.png
html/hncl/CJEM2018086/alternativeImage/9cc2abba-b739-4405-843c-328ee22cee7b-F003.jpg
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image004.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image005.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image006.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image007.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image008.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image009.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image010.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image011.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image012.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image013.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image014.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image015.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image016.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image017.png
html/hncl/CJEM2018086/media/9cc2abba-b739-4405-843c-328ee22cee7b-image018.png

图1 复合型裂纹试件

Fig.1 Specimen with mixed mode cracks

图2 0°裂纹试件表面图片

Fig.2 Pictures of specimen surface with 0° crack

图3 45°裂纹试件的应力-应变曲线

Fig.3 Stress-strain curve of specimen with 45° crack

图4 45°裂纹试件的典型失效过程 -- a. point A b. point B

Fig.4 Typical failure process of specimen with 45° crack -- a. point A b. point B

图4 45°裂纹试件的典型失效过程 -- c. point C d. point D

Fig.4 Typical failure process of specimen with 45° crack -- c. point C d. point D

图4 45°裂纹试件的典型失效过程 -- e. point E

Fig.4 Typical failure process of specimen with 45° crack -- e. point E

图5 不同角度裂纹试件的扩展 -- a. 0° b. 22.5°

Fig.5 Crack propagation of specimens with different angles -- a. 0° b. 22.5°

图5 不同角度裂纹试件的扩展 -- c. 45° d. 67.5°

Fig.5 Crack propagation of specimens with different angles -- c. 45° d. 67.5°

图6 0°裂纹试件的ROI图

Fig.6 The region of interest (ROI) of specimen with 0° crack

图7 FA-GN算法流程图

Fig.7 Flow chart of the forward additive Gauss‑Newton (FA-GN) algorithm

图8 45°裂纹试件不同拉伸应变下的应变场εx

Fig.8 Strain field εx of specimen with 45° crack under different strain

图9 45°裂纹试件不同拉伸应变下的应变场γxy

Fig.9 Strain field γxy of specimen with 45° crack under different strain

图10 45°裂纹试件不同拉伸应变下的应变场εy

Fig.10 Strain field εy of specimen with 45° crack under different strain

图11 ε=8%时45°裂纹εy应变云图

Fig.11 The strain contour of εy at 45° crack when ε=8%

图12 εy=0.08的应变集中区域

Fig.12 Strain concentration area when εy=0.08

图13 0°裂纹εy方向应变云图

Fig.13 The strain contours of εy direction at 0° crack

图14 22.5°裂纹εy方向应变云图

Fig.14 Strain contours of εy direction at 22.5° crack

图15 67.5°裂纹εy方向应变云图

Fig.15 Strain contours of εy direction at 67.5° crack

image /

无注解

a. no grid b. with grid

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

无注解

a. theoretical results b. test results

a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

a. ε=2.5% b. ε=5.5% c. ε=8% d. ε=11%

  • 参考文献

    • 1

      Giuseppe S T, Victor S, Robert T, et al. Fracture mechanics of composite solid rocket propellant grains: material testing[J].Journal of Propulsion and Power,2009,25(1):60-73.

    • 2

      屈文忠.国产HTPB复合推进剂裂纹扩展特性的实验研究[J].推进技术,1994(6):88-92.

      QU Wen‑zhong. Experimental study on crack propagation characteristics of domestic HTPB composite propellant[J]. Journal of Propulsion Technology, 1994 (6):88-92.

    • 3

      张亚,强洪夫,杨月诚.国产HTPB复合固体推进剂Ⅰ-Ⅱ型裂纹断裂性能实验研究[J].含能材料,2007,15(4):359-362.

      ZHANG Ya, QIANG Hong‑fu, YANG Yue‑cheng. Fracture behavior of HTPB composite propellant in Ⅰ-Ⅱ mixed mode crack[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007,15(4):359-362.

    • 4

      龙兵,常新龙,张有宏,等.高应变率下HTPB推进剂动态断裂性能研究[J],推进技术,2015,36(3):472-475.

      LONG Bing, CHANG Xin‑long,ZHANG You‑hong, et al.Study on dynamic fracture properties of HTPB propellant under high strain rate[J]. Journal of Propulsion Technology,2015,36(3): 472-475.

    • 5

      汪文强,郑健,许进升,等. AP/Al/CMDB 推进剂的断裂特性实验研究[J],推进技术,2015,36(11):1728-1733.

      WANG Wen‑qiang, ZHENG Jian,XU Jin‑sheng,et al. Research on fracture mechanism of AP/Al/CMDB propellant[J].Journal of Propulsion Technology,2015,36(11):1728-1733.

    • 6

      Dehnavi M Y, Khaleghian S, Emami A,et al. Utilizing digital image correlation to determine stress intensity factors[J]. Polymer Testing, 2014, 37:28-35.

    • 7

      Kashfuddoja M, Ramji M,Prasath R. Study on experimental characterization of carbon fiber reinforced polymer panel using digital image correlation:A sensitivity analysis[J]. Optics and Lasers in Engineering, 2014,62:17-30.

    • 8

      Eshraghi I,Yadegari Dehnavi M R,Soltani N. Effect of subset parameters selection on the estimation of mode‑I stress intensity factor in a cracked PMMA specimen using digital image correlation[J].Polymer Testing, 2014, 37:193-200.

    • 9

      Rjafiallah S, Guessasma S. Three‑phase model and digital image correlation to assess the interphase effect on the elasticity of carbohdyrate polymer‑based composites reinforced with glass‑silica beads[J]. Carbohydrate Polymers, 2011,83(1):246-256.

    • 10

      Fedele R, Raka B,Hild F,et al. Identification of adhesive properties in GLARE assemblies using digital image correlation[J].Journal of the Mechanics and Physics of Solids,2009,57(7): 1003-1016.

    • 11

      高红俐,刘欢,齐子诚,等. 基于高速数字图像相关方法的疲劳裂纹尖端位移应变场变化规律研究[J].兵工学报,2015,36(9):1773-1781.

      GAO Hong‑li, LIU Huan, QI Zi‑cheng,et al. Research on variation law of fatigue crack‑tip displacement and strain fields based on high‑speed digital image correlation method[J].Acta Armamentarii, 2015,36 (9):1773-1781.

    • 12

      刘晨,蓝林钢,唐明峰,等.数字图像相关方法分析PBX带孔板拉伸应变场[J].含能材料,2016,24(9):368-374.

      LIU Chen, LAN Lin‑gang,TANG Ming‑feng,et al. Strain analysis for PBX plate with hole under tension based on digital image correlation method[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016,24(9):368-374.

    • 13

      杨明,李高春,邱欣,等. 基于SEM原位拉伸的HTPB推进剂/衬层粘结界面破坏过程分析[J].含能材料,2015,23(6):553-557.

      YANG Ming, LI Gao‑chun,QIU Xin,et al. HTPB propellant/liner adhesive interface failure behavior based on SEM in situ tension[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015,23(6):553-557.

    • 14

      邵新星,陈振宁,戴云彤,等. 数字图像相关方法若干关键问题研究进展[J].实验力学,2017,32(3):305-325.

      SHAO Xin‑xing,CHEN Zhen‑ning,DAI Yun‑tong,et al. Research progress of several key problems in digital image correlation method[J]. Experimental Mechanics, 2017,32(3):305-325.

    • 15

      陈骏达.数字散斑相关方法理论与应用研究[D].北京:清华大学,2007.

      CHEN Jun‑da. Studies on theory and application of digital speckle correlation method[D].Beijing:Tsinghua University,2007.

    • 16

      Blaber J,Adair B,Antoniou A.Ncorr: open‑source 2D digital image correlation matlab software[J]. Experimental Mechanics, 2015,55(6):1105-1122.

    • 17

      潘兵,谢惠民,夏勇,等 .数字图像相关中基于可靠变形估计的大变形测量[J].光学学报,2009,29(2): 400-406.

      PAN Bing, XIE Hui‑min,XIA Yong,et al. Large‑deformation measurement based on reliable initial guess in digital image correlation method[J].Acta Optica Sinica, 2009,29(2):400-406.

    • 18

      Pan B, Li K, Tong W. Fast,robust and accurate digital image correlation calculation without redundant computations[J]. Experimental Mechanics,2013,53(7):1277-1289.

    • 19

      Pan B, Xie H, Guo Z, et al. Full‑field strain measurement using a two‑dimensional Savitzky‑Golay digital differentiator in digital image correlation[J]. Optical Engineering, 2007, 46(3):033601.