CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
HallC A, AsayJ R, KnudsonM D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J]. Review of Scientific Instruments, 2001, 72(9):3587-3595.
参考文献 2
AsayJ R, HallC A, HollandK G, et al. Isentropic compression of iron with the Z Accelerator[R]. Office of Scientific & Technical Information Technical Reports, SAND99‑0929C,2000.
参考文献 3
HareD E, ReismanD B, GarciaF, et al. The isentrope of unreacted LX‑04 to 170 KBar[R]. UCRL‑JC‑154239: 2003.
参考文献 4
BaerM R, RootS, DattelbaumD, et al. Shockless compression studies of HMX‑based explosives[C]// Shock compression of condensed matter. American institute of physics,2009: 699-702.
参考文献 5
KimK, SohnC H. Modeling of reaction bulidup processes in shocked porous explosives[C]// Proceedings of the 8th symposium (international) on detonation, Albuquerque,1985:926-933.
参考文献 6
Nichols A L and TarverC M. A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives[R]. UCRL‑JC‑145031, 2002.
参考文献 7
DuanZ P, WenL J, LiuY R, et al. A pore collapse model for hot‑spot ignition in shocked multi‑component explosives [J].International Journal of Nonlinear Sciences & Numerical Simulation, 2010, 11(Supplement):19-24.
参考文献 8
KimK. Development of a model of reaction rates in shocked multicomponent explosives[C]//Proceedings of the 9th symposium (international) on detonation, Portland,1989: 593-603.
参考文献 9
张震宇, 卢芳云, 王志兵, 等. PBX‑9404 炸药高压反应速率方程的研究[J]. 爆炸与冲击, 1999, 19(4): 360-364.
ZHANGZhen‑yu, LUFang‑yun, WANGZhi‑bing, et al. Studies on high pressure reaction rate of PBX 9404[J]. Explosion & Shock Waves, 1999,19(4): 360-364.
参考文献 10
宋萍, 蔡灵仓.Grüneisen系数与铝的高温高压状态方程[J]. 物理学报, 2009, 58(3):1879-1884.
SONGPing,CAILing‑cang. Grüneisen parameter and high temperature and high pressure equation of state for aluminum[J]. Acta Physica Sinica,2009,58(3):1879-1884.
参考文献 11
UrtiewP A, VandersallK S, TarverC M, et al. Initiation of heated PBX‑9501 explosive when exposed to dynamic loading [R]. UCRL‑CONF‑214667: 2005.
参考文献 12
HareD E. How to Plan and Analyze an Isentropic Compression Experiment (ICE)[R]. UCRL‑TR‑206486: 2004.
参考文献 13
蔡进涛, 赵锋, 王桂吉,等. 5GPa内JO‑9159炸药的磁驱动准等熵压缩响应特性[J]. 含能材料, 2011, 19(5):536-539.
CAIJin‑tao, ZHAOFeng, WANGGui‑ji, et al. Response of JO‑9159 under magnetically driven quasi‑isentropic compression to 5 GPa[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(5):536-539.
参考文献 14
温丽晶. PBX炸药冲击起爆细观反应速率模型研究[D].北京:北京理工大学,2011.
WENLi‑jing. Research on Mesoscopic Reaction Rate Model of Shock Initiation of PBX[D]. Beijing: Beijing Institute of Technology, 2011.
目录 contents

    摘要

    为了研究准等熵加载特性对高聚物粘结炸药(PBX)起爆响应特性的影响规律,对具有不同加载压力(8,10,12 GPa)与加载斜率的准等熵加载下PBXC03炸药起爆响应过程进行数值模拟计算。采用准等熵加载下PBXC03炸药起爆响应实验得到1,1.5,2,3,4 mm处炸药背面粒子速度时间曲线,确定了PBXC03炸药的弹粘塑性双球壳塌缩反应速率模型(DZK)参数。利用DZK模型与参数得到了准等熵加载下峰值压力与加载斜率对PBXC03炸药起爆响应特性的影响规律。结果表明,两种加载方式(不同压力与不同斜率)对PBXC03炸药起爆过程均有较大影响,其他条件相同的情况下,加载斜率或峰值压力越大,炸药内的冲击波阵面峰值压力曲线和冲击波迹线增长越快且到爆轰时间越短。

    Abstract

    To investigate the influence rule of quasi‑isentropic loading characteristics on the initiation response characteristics of polymer bonded explosive (PBX), the initiation response process of PBXC03 explosive under quasi-isentropic loadings with different loading pressures(8, 10, 12 GPa) and loading slopes was numerically simulated. The parameters of an elastic/viscoplastic double hollow spherical‑shell collapse reaction rate model (DZK) of PBXC03 explosive were determined by backside particle‑velocity history curves at 1, 1.5, 2, 3 mm and 4 mm obtained from the initiation response experiment of PBXC03 explosive under the quasi‑isentropic loading. The influence rule of peak pressures and loading slope on the initiation response characteristics of PBXC03 explosive under quasi‑isentropic loadings was obtained by the DZK model and the parameters. The results show that the two loading methods(different pressures and loading slopes) have a great influence on the initiation process of PBXC03 explosive. Under other conditions being equal, the higher the loading slope or peak pressure is, the faster the growth of peak pressure curve and the shock wave trace of shock wave front in the explosive, and the shorter the time‑detonation is.

    LIU Hai‑qing,DUAN Zhuo‑ping,LI Shu‑rui,et al. Influence Rule of Quasi‑isentropic Loading Characteristics on the Initiation of PBXC03 Explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2019,27(1):68-73.

  • 1 引 言

    1

    准等熵加载是一种新的加载方法,最初由美国圣地亚实验室工作人员在Z机器上发展起来。这种新的加载方式发展的初衷是测定材料的高压状态方程参[1,2]。不同于冲击加载,准等熵加载是压力平滑上升的加载方式,加载作用时间在微秒量级,加载压力可达到吉帕到太帕量级。相对于冲击加载,准等熵加载具有样品温升和熵增较低的特点,可以进行压力与温度解耦的较高应变率动力学实验,也经常被用于测定未反应炸药的状态方程参[3,4]。准等熵加载下炸药的起爆响应特性研究有助于进一步认识炸药在不同载荷条件下的可靠性和安全性,也可以为高压状态方程参数测定实验设计更高加载峰值压力、避免炸药反应提供依据。

    炸药冲击反应速率模型是模拟计算炸药起爆响应特性的核心。在过去几十年里面,除一些经验性的唯象的反应速率方程被相继发展起来外,还发展了一些细观反应速率模型,比如Kim[5]基于单球壳孔隙塌缩热点模型建立的反应速率模型和Nichols[6]提出的统计热点反应模型。Duan[7]提出了一个弹粘塑性孔隙塌缩热点模型,此模型是在Kim[5]的单球壳孔隙塌缩热点模型基础上,考虑粘结剂对孔隙塌缩影响效应而建立的双球壳孔隙塌缩热点模型,进一步结合Kim反应速率模型慢反应[8]和张震[9]提出的反应速率高压项,构造了新的高聚物粘结炸药(PBX)炸药细观反应速率模型-DZK反应速率模[7]。它不仅可以预测基质颗粒尺寸、PBX炸药孔隙度、炸药的初始温度对炸药起爆过程的影响,还可以预测粘结剂强度与含量对炸药起爆的影响。作为一种研究炸药性能的新型加载方法,炸药在准等熵加载下的起爆研究未见文献报道。

    本研究利用准等熵加载PBXC03起爆响应实验数据确定DZK反应速率模型参数。利用DZK模型及参数,计算准等熵加载下PBXC03的起爆响应特性,研究PBX炸药在不同峰值压力和加载斜率准等熵加载下的起爆响应规律。

  • 2 磁压缩准等熵加载炸药起爆实验

    2

    利用中国工程物理研究院的磁压缩加载装置CQ‑4对高聚物粘结炸药(PBX)炸药进行一维平面准等熵加载响应研究。实验中采用光子多普勒测速技术(PDV)获得不同厚度炸药背面粒子速度的宏观流场信息。实验原理如图1所示,负载结构区域由上下电极、炸药样品、LiF窗口、有机玻璃(PMMA)探针架和PDV组成。一次实验中,五片不同厚度的炸药样品粘结在铝极板上。PBXC03炸药由中国工程物理研究院化工材料所按照国军标压制而成。为保证一维加载条件,对加载样品进行精细研磨加工以保证较好的平面度。PBXC03理论密度1.874 g·cm-3,实验中样品密度为1.840 g·cm-3,孔隙度为0.01087。实验中考虑到稀疏波对一维加载条件影响,炸药样品不宜过厚,但过薄的炸药不易形成爆轰。所以根据经验采用为1,1.5,2,3,4 mm的炸药样品。铝电极板厚度为1 mm,4 mm的窗口。如图1所示,当脉冲功率装置开始短路放电,产生的强电流流过平行导电平面构成的回路,相向流动的电流与产生的磁场开始相互作用而产生洛仑兹力,即磁压力。产生的磁压力作用于两平行电极的内表面上,由内向外传播。

    设流经电极的电流线密度为J(t),产生的磁压力p(t)的关系见式(1):

    P ( t ) = μ 0 2 J ( t ) 2 = k μ 0 2 I ( t ) D 2
    (1)

    式中,p为磁压力,GPa; I(t)为流经电极板的电流,MA; J(t)为驱动电极板宽度方向的电流线密度,MA·cm-1D为电极板宽度,cm; μ0是真空磁导率,H·m-1

    图1
                            磁压缩准等熵加载PBX炸药起爆实验原理图

    图1 磁压缩准等熵加载PBX炸药起爆实验原理图

    Fig.1 Principle diagram of the initiation experiment of PBX explosive under magnetic compression and quasi‑isentropic loadings

  • 3 DZK反应速率模型参数确定

    3

    DZK反应速率模[9]的三项式方程如式(2)所示:

    d λ d t = d λ d t i g n i t i o n + 3 λ 2 / 3 r 0 a p n + G p z 1 - λ x
    (2)

    式中,t为时间,s;p为压力,GPa;λ为反应度。a、n、G、z、x均为反应速率常数,通过炸药起爆响应实验来标定,也是本研究中利用准等熵加载炸药起爆实验来标定的5个参数。第一项为点火项,表示炸药受载后,首先在孔隙处由于力学塌缩而产生局部高温,形成热点。温升导致孔隙周围炸药产生自热反应,进而发生热点点火。第二项为热点形成后的慢反应增长项,表示反应以燃烧的形式从内表面向外表面传播,进入低压下的慢反应过程。第三项描述高压下反应的快速反应项,表示当燃烧反应发展到一定程度,高温高压产物气体渗透到炸药颗粒缝隙当中,又出现了从炸药外表面向内传播的层流燃烧,此过程为高压下的快速反应过程。表1和表2为用于计算的PBX基体HMX和粘结剂点火项参[8,10]

    表1 DZK反应速率模型中HMX的点火项参数

    Table 1 Parameters of the HMX ignition term in the DZK reaction rate model

    Q

    / cm·μs-2

    γe

    / μs-1

    ke

    / MPa

    Cp

    / cm2·μs-2·K-1

    Z / μs-1T* / KT0 / K
    5.439e-20.0268e1.4e-55.0e+1326500298
    表1
                    DZK反应速率模型中HMX的点火项参数

    NOTE: Q is the the reaction heat. γe is the constant related to the viscosity. ke is the shear yield strength shear yield strength. Cp is the heat capacity. Z is the pre‑exponential factor in the Arrhenius kinetics. T* is the activation temperature. T0 is the initial temperature.

    表2 DZK反应速率模型中粘结剂的点火项参数

    Table 2 Parameters of the binder ignition term in the DZK reaction rate model

    γb / μs-1kb / MPa
    0.0255e
    表2
                    DZK反应速率模型中粘结剂的点火项参数

    NOTE: γb is the constants related to viscosity of the binder. kb is the shear yield strength.

    为了模拟实验状态,在DYNA2D中建立一维z‑r坐标下的平面对称几何模型(图2),模型材料分别为铝片、PBXC03炸药和窗口材料LiF。实验中产生的电流由于驱肤效应而沿着铝片自由面流动,导致电流与磁场产生的洛伦兹力直接作用于铝片自由面上。所以,设置模型中准等熵加载由铝片自由面进入模型,传入炸药和LiF窗口。其中铝片、窗口和PBXC03炸药的厚度与实验状态一致。沿z方向(即应力波的传播方向)建立一组单元,单元质心间距为0.0025 mm,每个单元四个节点,并设置节点在r方向的速度为0,即约束节点的横向运动,使单元在加载压力作用下仅做一维纵向运动。计算得到PBXC03炸药与LiF窗口界面处的粒子速度历史。

    图2
                            DYNA2D中建立的实验工况图

    图2 DYNA2D中建立的实验工况图

    Fig.2 The experimental working condition diagram established in DYNA2D

    铝板、LiF窗口的状态方程和PBXC03的未反应炸药状态方程均采用Grüneisen[10]状态方程描述,PBXC03炸药的爆轰产物状态方程采用含温度形式的JWL状态方程。铝片和LiF窗口的状态方程参数如表3[11,12]所示,PBXC03未反应状态方程参数和爆轰产物的状态方程参数如表4[13,14]所示。

    表3 Al和LiF窗口的状态方程参[11,12]

    Table 3 EOS parameters of the Al and LiF windows[11,12]

    parameter

    ρ0

    / g·cm-3

    C

    / cm·μs-1

    S1S2S3γ0a
    Al[11]2.7030.5241.4001.970.48
    LiF[12]2.6380.5151.35001.690
    表3
                    Al和LiF窗口的状态方程参数[11,12]

    NOTE: ρ0 is the initial density. C is the intercept of the particle‑velocity and shock wave velocity curves. S1, S2, and S3 are the three slope coefficients of the particle‑velocity curve. γ0 is the Grüneisen coefficient. a is the first order volume correction coefficient of γ0.

    表4 PBXC03未反应状态方程参数与爆轰产物状态方程参[13,14]

    Table 4 EOS parameters of the unreacted PBXC03 and detonation product[13,14]

    parameterPBXC03 Grüneisen[13]parameterreacted PBXC03 JWL[14]
    ρ0 / g·cm-31.840A / GPa1008.72
    C / cm·μs-10.2546B / GPa23.05
    S12.06R14.91
    S20R21.37
    S30ω0.29
    γ01.15Cv / GPa·K-11.0e-3
    a0E0 / GPa10
    表4
                    PBXC03未反应状态方程参数与爆轰产物状态方程参数[13,14]

    NOTE: A, B, R1, R2 are constants. ω is the Grüneisen coefficient. CV is the constant‑pressure specific heat.

    在利用DZK反应速率模型对准等熵加载下炸药响应问题进行计算时,设定一个点火阈值开关量。由准等熵加载实验结果可知,炸药在5.5 GPa峰值压力的准等熵加载下,只在冲击波完全形成的最后两个位置处形成微弱反应。由此推断,实验情况下的PBXC03的临界点火阈值pcr约5.5 GPa。利用公式(2)表示的DZK模型对准等熵加载实验进行计算,输入与实验状态相同的边界条件,调节a、n、G、z、x五个反应速率常数,使模型中对应实验的五个炸药厚度处的粒子速度结果与实验结果尽量相同,得到五个反应速率常数,结果见表5

    表5 准等熵加载实验标定的DZK模型的五个反应速率方程参数

    Table 5 Parameters of the five DZK reaction rate equations calibrated by quasi‑isentropic loading test

    anGzx
    0.00730781.866462588.063.3011.58
    表5
                    准等熵加载实验标定的DZK模型的五个反应速率方程参数

    NOTE: a, n, G, z, x are the parameters of the DZK reaction rate model.

    3为用实验确定的参数对实验进行模拟计算与实验的对比结果,结果可以看出,标定出来的参数可以较好地对准等熵加载实验进行模拟计算。验证了准等熵加载下炸药起爆实验确定炸药反应速率方程参数的可行性。

    html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image003.png

    a. 10.5 GPa

    html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image004.png

    b. 12 GPa

    图3 10.5 GPa和12 GPa峰值压力下准等熵加载实验标定参数计算结果与实验结果对比

    Fig.3 Comparison of the calculated and experimental results ones for calibration parameters by quasi‑isentropic loading experiment under the peak pressure of 10.5 GPa and 12 GPa

  • 4 准等熵加载下PBX炸药响应规律研究分析

    4
    图6
                            三种具有不同加载峰值压力的准等熵加载下的冲击波迹线对比

    图6 三种具有不同加载峰值压力的准等熵加载下的冲击波迹线对比

    Fig.6 Comparison of the shock wave traces under three quasi‑isentropic loadings with three different peak pressures.

    4所示三种具有不同加载峰值压力、相同加载斜率与能量的准等熵加载,峰值压力分别是8,10,12 GPa。图5为三种加载下的冲击波阵面峰值压力变化曲线对比图。本研究规定当冲击波压力值到达稳定爆轰压力峰值的95%时对应的时间为到爆轰时间,如图6的星号对应的t1t2t3为三种加载条件下的到爆轰时间。由图5可见,在加载前期(1.5 s之前),三种加载条件下冲击波阵面压力曲线基本重合,这是由于较低强度的前导冲击波强度并未引起明显化学反应,冲击波主要形成机制是准等熵波的追赶与汇聚,相同的斜率导致冲击波压力形成曲线基本相同。随后冲击波阵面峰值压力变化曲线产生差别,加载峰值压力越大,冲击波阵面峰值压力增长越快。这是由于不同的加载峰值压力开始产生作用,加载峰值压力越高,汇聚而成的冲击波强度越大。且在相同加载斜率与能量下,加载峰值压力越大,到爆轰时间越短。三种加载对应的冲击波迹线(见图6)对比可知:冲击波波速在加载前期基本相同,到了2.0 s位置后,冲击波迹线开始产生差别,压力峰值越大,冲击波速度增长越快。

    图4
                            三种加载峰值压力的准等熵加载

    图4 三种加载峰值压力的准等熵加载

    Fig.4 Three quasi‑isentropic loadings with three peak pressures

    图5
                            不同加载峰值压力的准等熵加载下冲击波阵面峰值压力曲线对比

    图5 不同加载峰值压力的准等熵加载下冲击波阵面峰值压力曲线对比

    Fig.5 Comparison of the peak pressure curves of shock wave front under quasi‑isentropic loadings with different peak pressures

    7为相同峰值压力(10 GPa)和加载时间,三种加载斜率的准等熵加载,加载斜率分别为25,12.5,8.33 GPa·s-1。图8为三种加载下的冲击波阵面峰值压力曲线对比图,在相同加载峰值压力与时间下,加载斜率越大,冲击波阵面峰值压力增长越快,到爆轰时间越短。这是由于加载斜率越大,由于准等熵波追赶产生的冲击波强度增长越快,炸药化学反应增长越快。图9为三种加载下冲击波波迹线对比,由图可见,加载斜率越大,冲击波速度增长越快。

    图7
                            三种加载斜率的准等熵加载曲线

    图7 三种加载斜率的准等熵加载曲线

    Fig.7 Three quasi‑isentropic loadings curves with different loading slopes

    图8
                            不同加载斜率的准等熵加载下冲击波阵面峰值压力曲线对比

    图8 不同加载斜率的准等熵加载下冲击波阵面峰值压力曲线对比

    Fig.8 Comparison of the peak pressure curves of shock wave front under quasi‑isentropic loadings with different loading slopes

    图9
                            不同加载峰值压力的准等熵加载下的冲击波迹线对比

    图9 不同加载峰值压力的准等熵加载下的冲击波迹线对比

    Fig. 9 Comparison of the shock wave traces under quasi‑isentropic loadings with different loading peak pressures

  • 5 结 论

    5

    (1) 建立了PBXC03准等熵加载下起爆响应一维模型,利用准等熵加载炸药起爆实验得到的不同厚度炸药背面粒子速度时间曲线确定了PBXC03炸药的DZK反应速率模型参数,通过对实验数据的数值模拟计算,证实了准等熵加载下炸药起爆实验确定PBX炸药反应速率方程参数的可行性。

    (2) 在相同加载斜率、不同峰值压力的准等熵加载下,加载初期成长轨迹相似,在加载中后期不同峰值压力产生作用,峰值压力越大,波阵面压力曲线和波迹线上升越快,到爆轰时间越短;在相同加载压力和时间、不同加载斜率的准等熵加载下,加载斜率越大,波阵面压力曲线和波迹线上升越快,到爆轰时间越短。

    《含能材料》“损伤与点火”专栏征稿

    含能材料的损伤特征与点火过程有密切的联系,炸药、推进剂的内部损伤及其对力学特性、安全特性和点火行为的影响规律受到了含能材料学界的高度重视,为推动这一重要研究方向的学术交流,本刊特设立“损伤与点火”专栏。专栏主要征集炸药、推进剂等含能材料的损伤观测与多尺度表征技术、含损伤的本构方程、准静态与动态损伤演化规律、损伤与破坏的宏(细)观模式、损伤对起爆、爆炸、爆轰成长以及非冲击起爆行为的影响等方向的原创性研究论文。来稿请注明“损伤与点火”专栏。

    《含能材料》编辑部

  • 参考文献

    • 1

      Hall C A, Asay J R, Knudson M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J]. Review of Scientific Instruments, 2001, 72(9):3587-3595.

    • 2

      Asay J R, Hall C A, Holland K G, et al. Isentropic compression of iron with the Z Accelerator[R]. Office of Scientific & Technical Information Technical Reports, SAND99‑0929C,2000.

    • 3

      Hare D E, Reisman D B, Garcia F, et al. The isentrope of unreacted LX‑04 to 170 KBar[R]. UCRL‑JC‑154239: 2003.

    • 4

      Baer M R, Root S, Dattelbaum D, et al. Shockless compression studies of HMX‑based explosives[C]// Shock compression of condensed matter. American institute of physics,2009: 699-702.

    • 5

      Kim K, Sohn C H. Modeling of reaction bulidup processes in shocked porous explosives[C]// Proceedings of the 8th symposium (international) on detonation, Albuquerque,1985:926-933.

    • 6

      Nichols A L and Tarver C M. A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives[R]. UCRL‑JC‑145031, 2002.

    • 7

      Duan Z P, Wen L J, Liu Y R, et al. A pore collapse model for hot‑spot ignition in shocked multi‑component explosives [J].International Journal of Nonlinear Sciences & Numerical Simulation, 2010, 11(Supplement):19-24.

    • 8

      Kim K. Development of a model of reaction rates in shocked multicomponent explosives[C]//Proceedings of the 9th symposium (international) on detonation, Portland,1989: 593-603.

    • 9

      张震宇, 卢芳云, 王志兵, 等. PBX‑9404 炸药高压反应速率方程的研究[J]. 爆炸与冲击, 1999, 19(4): 360-364.

      ZHANG Zhen‑yu, LU Fang‑yun, WANG Zhi‑bing, et al. Studies on high pressure reaction rate of PBX 9404[J]. Explosion & Shock Waves, 1999,19(4): 360-364.

    • 10

      宋萍, 蔡灵仓.Grüneisen系数与铝的高温高压状态方程[J]. 物理学报, 2009, 58(3):1879-1884.

      SONG Ping,CAI Ling‑cang. Grüneisen parameter and high temperature and high pressure equation of state for aluminum[J]. Acta Physica Sinica,2009,58(3):1879-1884.

    • 11

      Urtiew P A, Vandersall K S, Tarver C M, et al. Initiation of heated PBX‑9501 explosive when exposed to dynamic loading [R]. UCRL‑CONF‑214667: 2005.

    • 12

      Hare D E. How to Plan and Analyze an Isentropic Compression Experiment (ICE)[R]. UCRL‑TR‑206486: 2004.

    • 13

      蔡进涛, 赵锋, 王桂吉,等. 5GPa内JO‑9159炸药的磁驱动准等熵压缩响应特性[J]. 含能材料, 2011, 19(5):536-539.

      CAI Jin‑tao, ZHAO Feng, WANG Gui‑ji, et al. Response of JO‑9159 under magnetically driven quasi‑isentropic compression to 5 GPa[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(5):536-539.

    • 14

      温丽晶. PBX炸药冲击起爆细观反应速率模型研究[D].北京:北京理工大学,2011.

      WEN Li‑jing. Research on Mesoscopic Reaction Rate Model of Shock Initiation of PBX[D]. Beijing: Beijing Institute of Technology, 2011.

刘海庆

机 构:北京理工大学爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

邮 箱:liuhaiqing0705@163.com

作者简介:刘海庆(1987-),男,博士研究生,主要从事准等熵加载下炸药起爆相关研究。e‑mail: liuhaiqing0705@163.com

段卓平

机 构:北京理工大学爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

角 色:通讯作者

Role:Corresponding author

邮 箱:duanzp@bit.edu.cn

作者简介:段卓平(1965-),男,教授,主要从事炸药起爆特性相关研究。e‑mail:duanzp@bit.edu.cn

李淑睿

机 构:北京理工大学爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

欧卓成

机 构:北京理工大学爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

白志玲

机 构:北京理工大学爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

黄风雷

机 构:北京理工大学爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image001.png

Q

/ cm·μs-2

γe

/ μs-1

ke

/ MPa

Cp

/ cm2·μs-2·K-1

Z / μs-1T* / KT0 / K
5.439e-20.0268e1.4e-55.0e+1326500298
γb / μs-1kb / MPa
0.0255e
html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image002.png
parameter

ρ0

/ g·cm-3

C

/ cm·μs-1

S1S2S3γ0a
Al[11]2.7030.5241.4001.970.48
LiF[12]2.6380.5151.35001.690
parameterPBXC03 Grüneisen[13]parameterreacted PBXC03 JWL[14]
ρ0 / g·cm-31.840A / GPa1008.72
C / cm·μs-10.2546B / GPa23.05
S12.06R14.91
S20R21.37
S30ω0.29
γ01.15Cv / GPa·K-11.0e-3
a0E0 / GPa10
anGzx
0.00730781.866462588.063.3011.58
html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image003.png
html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image004.png
html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image007.png
html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image005.png
html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image006.png
html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image008.png
html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image009.png
html/hncl/CJEM2018105/media/cf0c65f1-6d5d-4615-9f14-e9da154be132-image010.png

图1 磁压缩准等熵加载PBX炸药起爆实验原理图

Fig.1 Principle diagram of the initiation experiment of PBX explosive under magnetic compression and quasi‑isentropic loadings

表1 DZK反应速率模型中HMX的点火项参数

Table 1 Parameters of the HMX ignition term in the DZK reaction rate model

表2 DZK反应速率模型中粘结剂的点火项参数

Table 2 Parameters of the binder ignition term in the DZK reaction rate model

图2 DYNA2D中建立的实验工况图

Fig.2 The experimental working condition diagram established in DYNA2D

表3 Al和LiF窗口的状态方程参[11,12]

Table 3 EOS parameters of the Al and LiF windows[11,12]

表4 PBXC03未反应状态方程参数与爆轰产物状态方程参[13,14]

Table 4 EOS parameters of the unreacted PBXC03 and detonation product[13,14]

表5 准等熵加载实验标定的DZK模型的五个反应速率方程参数

Table 5 Parameters of the five DZK reaction rate equations calibrated by quasi‑isentropic loading test

图3 10.5 GPa和12 GPa峰值压力下准等熵加载实验标定参数计算结果与实验结果对比 -- a. 10.5 GPa

Fig.3 Comparison of the calculated and experimental results ones for calibration parameters by quasi‑isentropic loading experiment under the peak pressure of 10.5 GPa and 12 GPa -- a. 10.5 GPa

图3 10.5 GPa和12 GPa峰值压力下准等熵加载实验标定参数计算结果与实验结果对比 -- b. 12 GPa

Fig.3 Comparison of the calculated and experimental results ones for calibration parameters by quasi‑isentropic loading experiment under the peak pressure of 10.5 GPa and 12 GPa -- b. 12 GPa

图6 三种具有不同加载峰值压力的准等熵加载下的冲击波迹线对比

Fig.6 Comparison of the shock wave traces under three quasi‑isentropic loadings with three different peak pressures.

图4 三种加载峰值压力的准等熵加载

Fig.4 Three quasi‑isentropic loadings with three peak pressures

图5 不同加载峰值压力的准等熵加载下冲击波阵面峰值压力曲线对比

Fig.5 Comparison of the peak pressure curves of shock wave front under quasi‑isentropic loadings with different peak pressures

图7 三种加载斜率的准等熵加载曲线

Fig.7 Three quasi‑isentropic loadings curves with different loading slopes

图8 不同加载斜率的准等熵加载下冲击波阵面峰值压力曲线对比

Fig.8 Comparison of the peak pressure curves of shock wave front under quasi‑isentropic loadings with different loading slopes

图9 不同加载峰值压力的准等熵加载下的冲击波迹线对比

Fig. 9 Comparison of the shock wave traces under quasi‑isentropic loadings with different loading peak pressures

image /

无注解

Q is the the reaction heat. γe is the constant related to the viscosity. ke is the shear yield strength shear yield strength. Cp is the heat capacity. Z is the pre‑exponential factor in the Arrhenius kinetics. T* is the activation temperature. T0 is the initial temperature.

γb is the constants related to viscosity of the binder. kb is the shear yield strength.

无注解

ρ0 is the initial density. C is the intercept of the particle‑velocity and shock wave velocity curves. S1, S2, and S3 are the three slope coefficients of the particle‑velocity curve. γ0 is the Grüneisen coefficient. a is the first order volume correction coefficient of γ0.

A, B, R1, R2 are constants. ω is the Grüneisen coefficient. CV is the constant‑pressure specific heat.

a, n, G, z, x are the parameters of the DZK reaction rate model.

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Hall C A, Asay J R, Knudson M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J]. Review of Scientific Instruments, 2001, 72(9):3587-3595.

    • 2

      Asay J R, Hall C A, Holland K G, et al. Isentropic compression of iron with the Z Accelerator[R]. Office of Scientific & Technical Information Technical Reports, SAND99‑0929C,2000.

    • 3

      Hare D E, Reisman D B, Garcia F, et al. The isentrope of unreacted LX‑04 to 170 KBar[R]. UCRL‑JC‑154239: 2003.

    • 4

      Baer M R, Root S, Dattelbaum D, et al. Shockless compression studies of HMX‑based explosives[C]// Shock compression of condensed matter. American institute of physics,2009: 699-702.

    • 5

      Kim K, Sohn C H. Modeling of reaction bulidup processes in shocked porous explosives[C]// Proceedings of the 8th symposium (international) on detonation, Albuquerque,1985:926-933.

    • 6

      Nichols A L and Tarver C M. A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives[R]. UCRL‑JC‑145031, 2002.

    • 7

      Duan Z P, Wen L J, Liu Y R, et al. A pore collapse model for hot‑spot ignition in shocked multi‑component explosives [J].International Journal of Nonlinear Sciences & Numerical Simulation, 2010, 11(Supplement):19-24.

    • 8

      Kim K. Development of a model of reaction rates in shocked multicomponent explosives[C]//Proceedings of the 9th symposium (international) on detonation, Portland,1989: 593-603.

    • 9

      张震宇, 卢芳云, 王志兵, 等. PBX‑9404 炸药高压反应速率方程的研究[J]. 爆炸与冲击, 1999, 19(4): 360-364.

      ZHANG Zhen‑yu, LU Fang‑yun, WANG Zhi‑bing, et al. Studies on high pressure reaction rate of PBX 9404[J]. Explosion & Shock Waves, 1999,19(4): 360-364.

    • 10

      宋萍, 蔡灵仓.Grüneisen系数与铝的高温高压状态方程[J]. 物理学报, 2009, 58(3):1879-1884.

      SONG Ping,CAI Ling‑cang. Grüneisen parameter and high temperature and high pressure equation of state for aluminum[J]. Acta Physica Sinica,2009,58(3):1879-1884.

    • 11

      Urtiew P A, Vandersall K S, Tarver C M, et al. Initiation of heated PBX‑9501 explosive when exposed to dynamic loading [R]. UCRL‑CONF‑214667: 2005.

    • 12

      Hare D E. How to Plan and Analyze an Isentropic Compression Experiment (ICE)[R]. UCRL‑TR‑206486: 2004.

    • 13

      蔡进涛, 赵锋, 王桂吉,等. 5GPa内JO‑9159炸药的磁驱动准等熵压缩响应特性[J]. 含能材料, 2011, 19(5):536-539.

      CAI Jin‑tao, ZHAO Feng, WANG Gui‑ji, et al. Response of JO‑9159 under magnetically driven quasi‑isentropic compression to 5 GPa[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(5):536-539.

    • 14

      温丽晶. PBX炸药冲击起爆细观反应速率模型研究[D].北京:北京理工大学,2011.

      WEN Li‑jing. Research on Mesoscopic Reaction Rate Model of Shock Initiation of PBX[D]. Beijing: Beijing Institute of Technology, 2011.