CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
参考文献 1
束学来,郑炳旭,郭子如,等.耐热炸药机理分析与优化浅析[J].工程爆破, 2014, 20(5): 59-63.
SHUXue‑lai, ZHENGBing‑xu, GUOZi‑ru, et al. Mechanism and optimization analysis of heat‑resistantexplosives[J]. Engineering Blasting, 2014, 20(5): 59-63.
参考文献 2
任雅琴,李峰,李瑞博,等.三维电极法处理六硝基芪生产废水[J].化工环保, 2014, 34(1): 28-31.
RENYa‑qin, LIFeng, LIRui‑bo, et al. Treatment of hexanitro‑stilbene production wastewater by three‑dimensional electrode process[J]. Environmental Protection of Chemical Industry, 2014, 34(1): 28-31.
参考文献 3
刘季灯,周新利,王鹏程,等.2,6‑二苦氨基‑3,5‑二硝基吡嗪的合成与表征[J].含能材料, 2017, 25(6): 486-492.
LIUJi‑deng, ZHOUXin‑li, WANGPeng‑cheng, et al. Synthesis and properties of 2,6‑bis(picrylamino)‑3,5‑dinitropyrazine[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(6): 486-492.
参考文献 4
MichalR, SvatoplukZ, AlešR. Crystallography of 2,2′,4,4′,6,6′‑hexanitro‑1,1′‑biphenyl and its relation to initiation reactivity[J]. ChemMater. 2008, 20: 3105-3109.
参考文献 5
曹晓华,陆婷婷,陆明.绿色氧化法制备HNS的催化体系[J].含能材料, 2015, 23(8): 732-736.
CAOXiao‑hua, LUTing‑ting, LUMing. Catalytic system for green synthesis of HNS[J]. Chinese Journal of Explosives & Propellants(Hanneng Cailiao), 2014, 37(3): 29-32.
参考文献 6
王保国,张景林,陈亚芳,等.超细PYX的制备和性能测试[J].含能材料, 2007, 15(3): 198-200,213.
WANGBao‑guo, ZHANGJing‑lin, CHENYa‑fang, et al. Preparation and performance test of ultra‑fine PYX[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(3):198-200.
参考文献 7
SheremetevA B. Chemistryof furazans fused to five‑membered rings[J]. Journal of Heterocyclic Chemistry, 1995, 32: 371-385.
参考文献 8
PivinaT S, SukhachevD V, EvtushenkoA V, et al. Comparative characteristic of energy content calculating methods for the furazan series as an example of energetic materials[J]. Propellants, Explosives, Pymtechnics, 1995, 20(1): 5-10.
参考文献 9
SheremetevA B,AleksandrovaN S,MantsevaE V,et al. Synthesis of chlorofurazans from nitrofurazans[J]. Mendeleev Communications, 2000, 10(2): 67-68.
参考文献 10
SheremetevA B, MantsevaE V. One‑pot synthesis of 4,4′‑diamino‑3,3′‑bifurazan[J]. Mendeleev Communications, 1996, 6: 246-247.
参考文献 11
ChurakovA M, SemenovS E, LoffeS L, et al. The oxidation of heterocyclic amines to nitro compounds using dinitrogen pentoxide[J].Mendeleev Communications,1995, 5: 102-103.
参考文献 12
卑凤利,张兴明,陈海群,等.高能密度材料1,3,4‑噁二唑衍生物的分子设计[J].南京理工大学学报, 2015, 39(2): 246-252.
BEIFeng‑li, ZHANGXing‑ming, CHENHai‑qun,et al. Molecular design of 1,3,4‑oxadiazole‑based high energy density material[J]. Journal of Nanjing University of Science and Technology, 2015, 39(2): 246-252.
参考文献 13
KlapötkeT M, WitkowskiT G. 5,5′‑Bis(2,4,6‑trinitrophenyl)‑2,2′‑bi(1,3,4‑oxadiazole)(TKX‑55): thermally stable explosive with outstanding properties[J]. Chem Plus Chem, 2016, 81(4): 357-360.
参考文献 14
chengtehLee, YangWei‑tao, ParrR G. Development of the Colle‑Salvetti correlation‑energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37: 785-789.
参考文献 15
KamIetM J, JacobsS T. Chemistry of detonation Ⅰ.a simple method for calculating detonation properties of C,H,N,O explosives[J]. Journal of Chemical Physics,1968, 48(1): 23-25.

    摘要

    以三硝基甲苯(TNT)为主要原料,通过氧化、氯代、取代、成环反应合成耐热炸药5,5′‑双(2,4,6‑三硝基苯基)‑2,2′‑双(1,3,4‑噁二唑)(TKX‑55),综合收率60.3%。采用红外光谱(FTIR)、核磁共振(NMR)对产物进行了表征。并对氯代反应、取代反应进行了优化,结果显示以SOCl2为氯代试剂,产率最高(88.8%);以THF为溶剂、反应时间为24 h时,加入无机碱NaHCO3,取代效果好于加入其它缚酸剂(NaOH、Et3N、Na2CO3)。TKX‑55分解温度为335 ℃。用Gaussian软件在b3lyp/6‑31++g(d,p)水平下对TKX‑55进行分子优化,并通过Kamlet‑Jacob公式计算得到爆速(D=8052 m·s-1)和爆压(p=28.6 GPa),均优于PYX(D=7590 m·s-1, p=26.2 GPa)和HNS(D=7545 m·s-1, p=23.6 GPa)。

    Abstract

    5,5′‑Bis(2,4,6‑trinitrophenyl)‑2,2′‑bi(1,3,4‑oxadiazole) (TKX‑55), a thermally stable explosive, was synthesized with a total yield of 60.3% from trinitrotoluene via oxidation, chlorination, substitution and cyclization reactions. The chemical structure of TKX‑55 was characterized by infrared (IR) spectroscopy, nuclear magnetic resonance (NMR,1H and 13C). Next, we optimizedthechlorine and substitution reactionconditions.When SOCl2 acted as chlorine reagent, the highest yield was up to 88.8%. When THF was used as solventand thereaction time was 24 h, NaHCO3 was a better acid‑binding agentcomparedwith others (such as NaOH、Et3N and Na2CO3). The decomposition temperature of TKX‑55 is 335℃. After optimizing the molecularstructure of TKX‑55, its detonation velocity (D=8052 m·s-1) and detonation pressure (p=28.6 GPa) are calculated by Kamlet‑Jacob formula, which are better than those of PYX (D=7590 m·s-1, p=26.2 GPa) and HNS (D=7545 m·s-1, p=23.6 GPa).

    Graphic Abstract

    图文摘要

    html/hncl/CJEM2018140/alternativeImage/e04a4ccb-18c9-4dcc-808a-e80fd2f3f280-F006.jpg

    5,5′‑Bis(2,4,6‑trinitrophenyl)‑2,2′‑bi(1,3,4‑oxadiazole) (TKX‑55) was synthesized from trinitrotoluene. The optimal chlorination and substitution reaction conditions were obtained. The chemical structure of TKX‑55 was characterized by infrared (IR) spectroscopy, nuclear magnetic resonance (NMR). The detonation velocityand detonation pressure are calculated by Kamlet‑Jacob formula.

  • 1 引言

    1

    耐热炸药具有良好的热安定性、较高的能量、适当的撞击感度等优点。近年来,耐热炸药的合成与研究一直是含能材料领域的研究热[1]。耐热炸药不仅在军事方面有重要用途,而且在航空领域,特别是在深海油气开发领域有特殊应[2,3]

    含硝基的共轭体系共价化合物在发展新型耐热炸药方面有良好的前景。2,2′,4,4′,6,6′‑六硝基二苯基(HNBP[4]包含两个直接相连的三硝基苯基,分解温度适中而且拥有良好的爆轰性能。在两个三硝基苯基中引入不同的基团是合成新型耐热炸药的一个方法。例如2,2′,4,4′,6,6′‑六硝基二苯基乙烯(HNS[5]、2,6‑二苦胺基‑3,5‑硝基吡啶(PYX[6]的合成。1,2,5‑噁二唑(呋咱)密度高、热稳定性好,是含能材料的研究热[7,8,9,10,11]。作为呋咱的同分异构体,1,3,4‑噁二唑含有大量的C—O、C N和N—N键,因其氮含量高、能量密度高和生成焓大,成为构建含能材料的重要结构单[12]。Thomas M[13]在2016年报道了5,5′‑双(2,4,6‑三硝基苯基)‑2,2′‑双(1,3,4‑噁二唑)(TKX‑55)的合成。TKX‑55在两个三硝基苯基中引入了二(1,3,4‑噁二唑)基,有利于提高其耐热性和爆轰性能,其熔点高达335 [13]

    [13]以TNT为原料,经四步反应合成TKX‑55。但合成周期长,所用氯代试剂有一定毒性(POCl3中等毒性)。本研究改进了其合成方法,以TNT为原料,经重铬酸钾(K2Cr2O7)氧化、SOCl2氯代、乙二酸二酰肼取代、发烟硫酸脱水成环制得TKX‑55。采用红外光谱、核磁共振等进行了表征。通过Gaussian软件优化其分子结构,利用Kamlet‑Jacob公式估算其性能。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    二甲基亚砜(DMSO)、丙酮、N,N‑二甲基甲酰胺(DMF)、碳酸钠(Na2CO3)、1,2‑二氯乙烷(1,2‑DCE)、三乙胺(Et3N)、四氢呋喃(THF)均为分析纯,科龙化工试剂厂;三硝基甲苯(TNT)为自制;重铬酸钾(K2Cr2O7)、硫酸、氯化亚砜(SOCl2)、碳酸氢钠(NaHCO3)、三氯氧磷(POCl3)、乙二酸二酰肼均为分析纯,南京化学试剂股份有限公司。发烟硫酸,氢氧化钠(NaOH)为分析纯,扬州沪宝化学试剂有限公司。

    Avance III 500 MH 核磁共振仪(德国Bruker公司);Nicolet IS‑10型傅里叶变换红外光谱仪(德国赛默飞世尔公司);VarioEL Ⅲ元素分析仪(德国Elemantar公司)。

  • 2.2 实验过程

    2.2

    以TNT为主要原料,经重铬酸钾(K2Cr2O7)氧化、SOCl2氯代、乙二酸二酰肼取代制备二(2,4,6‑三硝基苯基草氨酰肼(4),最终由发烟硫酸脱水得到目标产物TKX‑55。合成路线见Scheme 1

    Scheme 1 Synthetic route of TKX‑55

    合成过程参考文[13],并在其基础上进行了优化与改进。具体过程如下:

    三硝基苯甲酸(2)(TNBA):在室温下分批向36 mL浓硫酸中加入TNT(4.0 g,17.6 mmol),缓慢升温至50 ℃,待TNT溶解后,保持温度在45~55 ℃下分批缓慢加入重铬酸钾(K2Cr2O7)(6.0 g,20 mmol),搅拌2 h。反应结束后将反应液缓慢倒入冰中,过滤,用20%盐酸洗涤滤饼,在50 ℃下烘干,得到三硝基苯甲酸(2)3.98 g,产率88.1%。

    三硝基苯甲酰氯(3)(TNBC):在室温下向1.6 mL 1,2‑DCE中滴加SOCl2/POCl3(7.8 mmol),再加入80 mL DMF,搅拌均匀后,分批缓慢加入三硝基苯甲酸(2.0 g,7.8 mmol)。以5 ℃·10 min-1的速率升温到70 ℃反应2 h,反应结束后放入冰箱冷却2 h。过滤,洗涤,干燥得到三硝基苯甲酰氯(3)。

    二(2,4,6‑三硝基苯基)草氨酰肼(4):在室温下向5 ml溶剂(DMSO/DMF/丙酮、1,2‑DCE/THF)中加入(3)(500 mg,1.8 mmol),缓慢加入乙二酸二酰肼(107 mg,0.907 mmol),加入1.8 mmol缚酸剂(NaOH/Et3N/Na2CO3/NaHCO3),升温至50 ℃反应24 h,冷却,旋蒸,干燥得到(4)1H NMR(500 MHz,DMSO‑d6,25 ℃)δ:11.46(s,2H,NH), 11.42(s,2H,NH); 9.14(s,4H,CH);13C NMR(126 MHz, DMSO‑d6,25 ℃)δ:157.9, 157.4, 147.8, 147.3, 129.5, 124.6; IR(ATR,ν/cm-1):3338.7, 3295.5, 3107.7, 1714.9, 1670.6, 1606.5, 1552.3, 1536.8, 1484.1, 1453.5, 1341.8, 1292.0, 1229.8, 1181.5, 1076.3, 921.5, 825.5, 819.4, 782.6, 735.1, 724.7, 686.4。

    html/hncl/CJEM2018140/alternativeImage/e04a4ccb-18c9-4dcc-808a-e80fd2f3f280-F002.jpg

    a. 1H NMR

    html/hncl/CJEM2018140/alternativeImage/e04a4ccb-18c9-4dcc-808a-e80fd2f3f280-F003.jpg

    b. 13C NMR

    图1 TKX‑551H NMR13C NMR图谱

    Fig.11 H NMR and 13C NMR spectrum of TKX‑55

    TKX‑55:将(4)(0.1 g,0.168 mmol)加入到5 ml发烟硫酸中,在室温下反应24 h,将反应液倒入冰中,过滤,水洗,得到TKX‑55 0.0865 g,产率91.9%1H NMR(500 MHz,DMSO‑d6,25 ℃)δ:9.42(s,4H,CH); 13C NMR(126 MHz, DMSO‑d6,25 ℃)δ:157.9, 153.8,150.1,149.2,125.1,116.6;IR(ATR,ν/cm-1):3087.3, 1607.7, 1538.9, 1469.6, 1403.9, 1341.2, 1185.7, 1151.5, 1063.8, 993.4, 966.4, 954.9,921.6,825.8, 780.1,759.3 733.9, 721.9, 693.8, 673.3; Anal.calcd for C16H4O14N10:C 34.30,H 0.72,N 25.00; found: C 34.41, H 0.77, N 25.08。

    图2
                            TKX‑55的红外谱图

    图2 TKX‑55的红外谱图

    Fig.2 IRcurvesof TKX‑55

  • 3 结果与讨论

    3
  • 3.1 合成工艺的优化

    3.1
  • 3.1.1 氯代反应

    3.1.1

    POCl3为中等毒性,在潮湿空气中易与水反应水解为磷酸和氯化氢,剧烈时还可能发生爆炸,使用时必须佩戴自吸式过滤防毒面具或隔离式呼吸器。因此还采用了较为安全且廉价易得的氯代试剂SOCl2。因SOCl2易遇水分解,所以实验时应防止吸水分解,并在同样反应条件下进行三组平行实验考察了POCl3、SOCl2对收率的影响,具体结果见表1

    表1 不同氯代试剂对氯代反应收率的影响

    Table 1 Effectofreagenton yield

    reagentyield / %
    POCl387.9
    SOCl288.8
    表1
                    不同氯代试剂对氯代反应收率的影响

    由表1可见,氯代试剂的种类对收率的影响并不显著,两者仅相差0.9%(文[13]收率为89%)。因此,较适宜的氯代试剂为SOCl2

  • 3.1.2 取代反应

    3.1.2

    文献中取代反应时间为72 h,反应周期长,生产效率低下,因此本研究对此步反应进行了优化和改进。

    溶剂对收率的影响:在50 ℃,反应时间为72 h的条件下,进行三组平行实验考察了DMSO、DMF、丙酮、1,2‑DCE、THF对收率的影响,结果见表2

    表2 不同溶剂对取代反应收率的影响

    Table 2 Effectofsolventon yield

    solventDMSODMFAcetone1,2‑DCETHF
    yield / %--10.75.465.4
    表2
                    不同溶剂对取代反应收率的影响

    由表2可知,当以DMSO作溶剂时,TNBC在DMSO和DMF中颜色迅速变深,发生了分解反应,因此DMSO和DMF不宜作溶剂;当以1,2‑DCE作溶剂时,原料在1,2‑DCE中的溶解度不大,不能与乙二酸二酰肼充分接触反应,反应难以进行,收率仅为5.4%;而以丙酮作为溶剂时,收率仅为10.7%;当以THF作溶剂时,TNBC能较好地溶于THF中,收率提高到65.4%。因此,最适宜的溶剂为THF。

    缚酸剂的种类对收率的影响:酰肼化反应中会产生HCl,根据热力学平衡移动原理,去除HCl可以提高收率。因此,本研究试图通过加入缚酸剂以除去HCl。在50 ℃,反应时间为72 h,溶剂为THF的条件下,进行三组平行实验考察了缚酸剂种类对收率的影响,具体结果见表3

    表3 缚酸剂的种类对收率的影响

    Table 3 Effect of the kind of acid‑bindingagenton yield

    baseNaOHEt3NNa2CO3NaHCO3
    yield / %011.618.285.6
    表3
                    缚酸剂的种类对收率的影响

    由表3可见,当向反应液中加入NaHCO3时,收率最高。NaOH为强碱,对酰肼化反应不利,而Na2CO3的碱性强于NaHCO3,所以后者的收率要大于前者。因此,加入NaHCO3可以提高收率。

    反应时间对收率的影响:在50 ℃,溶剂为THF,加入NaHCO3的条件下,考察了反应时间对收率的影响,结果见表4

    表4 反应时间对收率的影响

    Table 4 Effect of reaction time on yield

    time / h122436486072
    yield / %60.884.985.185.585.885.9
    表4
                    反应时间对收率的影响

    由表4可见,随着反应时间的增加,收率也会随之提高,当反应时间为24 h时已经达到较高的收率84.9%,再增加反应时间收率也没有明显的提高。因此,最适宜的反应时间为24 h。

    文献中此反应收率为83%,反应时间为72 h,经过优化,不仅缩短了反应时间,还提高了收率。

  • 3.2 理论计算与性能预估

    3.2

    通过Gaussian软件在b3lyp/6‑31++g(d,p)[14]水平下对TKX‑55进行分子优化,得到最优的空间结构(图3)。优化后的分子空间结构与文献中单晶结构相近,两个1,3,4‑噁二唑环位于同一平面内,两个三硝基苯基互相平行。而优化后分子中硝基与苯环形成的二面角更大。由于优化过程中未考虑到分子间作用力,因此文[13]中的单晶结构更能代表分子的真实结构。

    图3
                            TKX‑55最优空间结构

    图3 TKX‑55最优空间结构

    Fig.3 Optimal configuration of TKX‑55

    利用原子化法和Kamlet‑Jacob公[15]对TKX‑55(C16H4O14N10)爆速、爆压进行估算结果见表5。(假设炸药组分为CaHbOcNd,经计算,TKX‑55符合2a+b/2>c>=b/2)。

    表5 TKX‑55与PYX、HNS性能对比

    Table 5 Energetic properties and detonation parameters of TKX‑55

    compoundTd / ℃ρ / g·cm-3

    D

    / m·s‑1

    p

    / GPa

    IS / JFS / N
    TKX‑55335[13]1.837[13]805228.65[13]>360[13]
    PYX[13]3601.757775725.110360
    HNS[13]3181.74761224.35240
    表5
                    TKX‑55与PYX、HNS性能对比

    NOTE: Td is temperature of decomposition. D is detonation velocity. p is detonation pressure. IS is impact sensitivity. FS is friction sensitivity.

    D = 1.01 ( N M ̅ 1 / 2 Q 1 / 2 ) 1 / 2 ( 1 + 1.30 ρ )
    (1)
    P = 1.558 ρ 2 N M ̅ 1 / 2 Q 1 / 2
    (2)
    N = ( b + 2 c + 2 d ) / 4 M
    (3)
    M ̅ = ( 56 d + 88 c - 8 b ) / b + 2 c + 2 d
    (4)
    Q × 10 - 3 = 28.9 b + 94.05 c 2 - b 4 + 0.239 Δ H f 0 / M
    (5)

    式中,D为爆速,km·s-1;p为爆压,GPa;ρ为炸药的装药密度,m·s-1;N为每克炸药爆轰生产气体的摩尔数,mol·g-1; M ̅ 为气体产物的平均分子量,g·mol-1;Q为每克炸药的爆轰化学能,kJ·g-1

    TKX‑55表现出耐热炸药所需的性能:良好的爆轰性能、低感度值和高分解温度。TKX‑55密度高达1.837 g·cm-3,高于PYX和HNS,其具有良好的爆轰性能:爆速(D=8052 m·s-1)和爆压(p=28.6 GPa),均优于PYX和HNS。TKX‑55撞击感度与HNS相当,均为5 J,而摩擦感度优于PYX和HNS。分解温度是耐热炸药的重要参数,TKX‑55的分解温度为335 ℃,高于HNS,这些性能使得TKX‑55在耐热炸药中具有良好的应用前景。

  • 4 结 论

    4

    (1) 以TNT为原料,经过氧化、氯代、取代、脱水成环等反应合成了TKX‑55,综合收率可达60.3%,并用红外光谱、核磁共振对其结构进行表征。

    (2) 研究了氯代试剂对氯代反应的影响,确定了氯代试剂为SOCl2,收率为88.8%;研究了不同溶剂、缚酸剂以及反应时间对酰肼化反应的影响,确定了溶剂为THF、缚酸剂为NaHCO3、反应时间为24 h,反应时间缩短了48 h,收率为84.9%。

    (3) 通过Gaussian软件对TKX‑55的结构进行模拟,利用Kamlet‑Jacob公式估算其爆速可达8052 m·s-1,爆压可达到28.6 GPa,同时还具有良好的感度,作为耐热炸药具有潜在应用前景。

  • 参考文献

    • 1

      束学来,郑炳旭,郭子如,等.耐热炸药机理分析与优化浅析[J].工程爆破, 2014, 20(5): 59-63.

      SHU Xue‑lai, ZHENG Bing‑xu, GUO Zi‑ru, et al. Mechanism and optimization analysis of heat‑resistantexplosives[J]. Engineering Blasting, 2014, 20(5): 59-63.

    • 2

      任雅琴,李峰,李瑞博,等.三维电极法处理六硝基芪生产废水[J].化工环保, 2014, 34(1): 28-31.

      REN Ya‑qin, LI Feng, LI Rui‑bo, et al. Treatment of hexanitro‑stilbene production wastewater by three‑dimensional electrode process[J]. Environmental Protection of Chemical Industry, 2014, 34(1): 28-31.

    • 3

      刘季灯,周新利,王鹏程,等.2,6‑二苦氨基‑3,5‑二硝基吡嗪的合成与表征[J].含能材料, 2017, 25(6): 486-492.

      LIU Ji‑deng, ZHOU Xin‑li, WANG Peng‑cheng, et al. Synthesis and properties of 2,6‑bis(picrylamino)‑3,5‑dinitropyrazine[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(6): 486-492.

    • 4

      Michal R, Svatopluk Z, Aleš R. Crystallography of 2,2′,4,4′,6,6′‑hexanitro‑1,1′‑biphenyl and its relation to initiation reactivity[J]. ChemMater. 2008, 20: 3105-3109.

    • 5

      曹晓华,陆婷婷,陆明.绿色氧化法制备HNS的催化体系[J].含能材料, 2015, 23(8): 732-736.

      CAO Xiao‑hua, LU Ting‑ting, LUMing. Catalytic system for green synthesis of HNS[J]. Chinese Journal of Explosives & Propellants(Hanneng Cailiao), 2014, 37(3): 29-32.

    • 6

      王保国,张景林,陈亚芳,等.超细PYX的制备和性能测试[J].含能材料, 2007, 15(3): 198-200,213.

      WANG Bao‑guo, ZHANG Jing‑lin, CHEN Ya‑fang, et al. Preparation and performance test of ultra‑fine PYX[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(3):198-200.

    • 7

      Sheremetev A B. Chemistryof furazans fused to five‑membered rings[J]. Journal of Heterocyclic Chemistry, 1995, 32: 371-385.

    • 8

      Pivina T S, Sukhachev D V, Evtushenko A V, et al. Comparative characteristic of energy content calculating methods for the furazan series as an example of energetic materials[J]. Propellants, Explosives, Pymtechnics, 1995, 20(1): 5-10.

    • 9

      Sheremetev A B,Aleksandrova N S,Mantseva E V,et al. Synthesis of chlorofurazans from nitrofurazans[J]. Mendeleev Communications, 2000, 10(2): 67-68.

    • 10

      Sheremetev A B, Mantseva E V. One‑pot synthesis of 4,4′‑diamino‑3,3′‑bifurazan[J]. Mendeleev Communications, 1996, 6: 246-247.

    • 11

      Churakov A M, Semenov S E, Loffe S L, et al. The oxidation of heterocyclic amines to nitro compounds using dinitrogen pentoxide[J].Mendeleev Communications,1995, 5: 102-103.

    • 12

      卑凤利,张兴明,陈海群,等.高能密度材料1,3,4‑噁二唑衍生物的分子设计[J].南京理工大学学报, 2015, 39(2): 246-252.

      BEIFeng‑li, ZHANG Xing‑ming, CHENHai‑qun,et al. Molecular design of 1,3,4‑oxadiazole‑based high energy density material[J]. Journal of Nanjing University of Science and Technology, 2015, 39(2): 246-252.

    • 13

      Klapötke T M, Witkowski T G. 5,5′‑Bis(2,4,6‑trinitrophenyl)‑2,2′‑bi(1,3,4‑oxadiazole)(TKX‑55): thermally stable explosive with outstanding properties[J]. Chem Plus Chem, 2016, 81(4): 357-360.

    • 14

      Lee chengteh, Yang Wei‑tao, Parr R G. Development of the Colle‑Salvetti correlation‑energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37: 785-789.

    • 15

      KamIet M J, Jacobs S T. Chemistry of detonation Ⅰ.a simple method for calculating detonation properties of C,H,N,O explosives[J]. Journal of Chemical Physics,1968, 48(1): 23-25.

刘洋

机 构:南京理工大学化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineer, Nanjing University of Science&Technology, Nanjing 210094, China

邮 箱:491134233@qq.com

作者简介:刘洋(1994-),男,在读博士,主要从事含能材料合成的研究。e‑mail:491134233@qq.com

申程

机 构:南京理工大学化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineer, Nanjing University of Science&Technology, Nanjing 210094, China

陆明

机 构:南京理工大学化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineer, Nanjing University of Science&Technology, Nanjing 210094, China

角 色:通讯作者

Role: Corresponding author

邮 箱:luming@njust.edu.cn

作者简介:陆明(1963-),男,教授,主要从事含能材料的设计与合成研究。e‑mail:luming@njust.edu.cn

html/hncl/CJEM2018140/alternativeImage/e04a4ccb-18c9-4dcc-808a-e80fd2f3f280-F002.jpg
html/hncl/CJEM2018140/alternativeImage/e04a4ccb-18c9-4dcc-808a-e80fd2f3f280-F003.jpg
html/hncl/CJEM2018140/alternativeImage/e04a4ccb-18c9-4dcc-808a-e80fd2f3f280-F004.jpg
reagentyield / %
POCl387.9
SOCl288.8
solventDMSODMFAcetone1,2‑DCETHF
yield / %--10.75.465.4
baseNaOHEt3NNa2CO3NaHCO3
yield / %011.618.285.6
time / h122436486072
yield / %60.884.985.185.585.885.9
html/hncl/CJEM2018140/alternativeImage/e04a4ccb-18c9-4dcc-808a-e80fd2f3f280-F005.jpg
compoundTd / ℃ρ / g·cm-3

D

/ m·s‑1

p

/ GPa

IS / JFS / N
TKX‑55335[13]1.837[13]805228.65[13]>360[13]
PYX[13]3601.757775725.110360
HNS[13]3181.74761224.35240

图1 TKX‑551H NMR13C NMR图谱 -- a. 1H NMR

Fig.11 H NMR and 13C NMR spectrum of TKX‑55 -- a. 1H NMR

图1 TKX‑551H NMR13C NMR图谱 -- b. 13C NMR

Fig.11 H NMR and 13C NMR spectrum of TKX‑55 -- b. 13C NMR

图2 TKX‑55的红外谱图

Fig.2 IRcurvesof TKX‑55

表1 不同氯代试剂对氯代反应收率的影响

Table 1 Effectofreagenton yield

表2 不同溶剂对取代反应收率的影响

Table 2 Effectofsolventon yield

表3 缚酸剂的种类对收率的影响

Table 3 Effect of the kind of acid‑bindingagenton yield

表4 反应时间对收率的影响

Table 4 Effect of reaction time on yield

图3 TKX‑55最优空间结构

Fig.3 Optimal configuration of TKX‑55

表5 TKX‑55与PYX、HNS性能对比

Table 5 Energetic properties and detonation parameters of TKX‑55

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

Td is temperature of decomposition. D is detonation velocity. p is detonation pressure. IS is impact sensitivity. FS is friction sensitivity.

  • 参考文献

    • 1

      束学来,郑炳旭,郭子如,等.耐热炸药机理分析与优化浅析[J].工程爆破, 2014, 20(5): 59-63.

      SHU Xue‑lai, ZHENG Bing‑xu, GUO Zi‑ru, et al. Mechanism and optimization analysis of heat‑resistantexplosives[J]. Engineering Blasting, 2014, 20(5): 59-63.

    • 2

      任雅琴,李峰,李瑞博,等.三维电极法处理六硝基芪生产废水[J].化工环保, 2014, 34(1): 28-31.

      REN Ya‑qin, LI Feng, LI Rui‑bo, et al. Treatment of hexanitro‑stilbene production wastewater by three‑dimensional electrode process[J]. Environmental Protection of Chemical Industry, 2014, 34(1): 28-31.

    • 3

      刘季灯,周新利,王鹏程,等.2,6‑二苦氨基‑3,5‑二硝基吡嗪的合成与表征[J].含能材料, 2017, 25(6): 486-492.

      LIU Ji‑deng, ZHOU Xin‑li, WANG Peng‑cheng, et al. Synthesis and properties of 2,6‑bis(picrylamino)‑3,5‑dinitropyrazine[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(6): 486-492.

    • 4

      Michal R, Svatopluk Z, Aleš R. Crystallography of 2,2′,4,4′,6,6′‑hexanitro‑1,1′‑biphenyl and its relation to initiation reactivity[J]. ChemMater. 2008, 20: 3105-3109.

    • 5

      曹晓华,陆婷婷,陆明.绿色氧化法制备HNS的催化体系[J].含能材料, 2015, 23(8): 732-736.

      CAO Xiao‑hua, LU Ting‑ting, LUMing. Catalytic system for green synthesis of HNS[J]. Chinese Journal of Explosives & Propellants(Hanneng Cailiao), 2014, 37(3): 29-32.

    • 6

      王保国,张景林,陈亚芳,等.超细PYX的制备和性能测试[J].含能材料, 2007, 15(3): 198-200,213.

      WANG Bao‑guo, ZHANG Jing‑lin, CHEN Ya‑fang, et al. Preparation and performance test of ultra‑fine PYX[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2007, 15(3):198-200.

    • 7

      Sheremetev A B. Chemistryof furazans fused to five‑membered rings[J]. Journal of Heterocyclic Chemistry, 1995, 32: 371-385.

    • 8

      Pivina T S, Sukhachev D V, Evtushenko A V, et al. Comparative characteristic of energy content calculating methods for the furazan series as an example of energetic materials[J]. Propellants, Explosives, Pymtechnics, 1995, 20(1): 5-10.

    • 9

      Sheremetev A B,Aleksandrova N S,Mantseva E V,et al. Synthesis of chlorofurazans from nitrofurazans[J]. Mendeleev Communications, 2000, 10(2): 67-68.

    • 10

      Sheremetev A B, Mantseva E V. One‑pot synthesis of 4,4′‑diamino‑3,3′‑bifurazan[J]. Mendeleev Communications, 1996, 6: 246-247.

    • 11

      Churakov A M, Semenov S E, Loffe S L, et al. The oxidation of heterocyclic amines to nitro compounds using dinitrogen pentoxide[J].Mendeleev Communications,1995, 5: 102-103.

    • 12

      卑凤利,张兴明,陈海群,等.高能密度材料1,3,4‑噁二唑衍生物的分子设计[J].南京理工大学学报, 2015, 39(2): 246-252.

      BEIFeng‑li, ZHANG Xing‑ming, CHENHai‑qun,et al. Molecular design of 1,3,4‑oxadiazole‑based high energy density material[J]. Journal of Nanjing University of Science and Technology, 2015, 39(2): 246-252.

    • 13

      Klapötke T M, Witkowski T G. 5,5′‑Bis(2,4,6‑trinitrophenyl)‑2,2′‑bi(1,3,4‑oxadiazole)(TKX‑55): thermally stable explosive with outstanding properties[J]. Chem Plus Chem, 2016, 81(4): 357-360.

    • 14

      Lee chengteh, Yang Wei‑tao, Parr R G. Development of the Colle‑Salvetti correlation‑energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37: 785-789.

    • 15

      KamIet M J, Jacobs S T. Chemistry of detonation Ⅰ.a simple method for calculating detonation properties of C,H,N,O explosives[J]. Journal of Chemical Physics,1968, 48(1): 23-25.