CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
罗运军,葛震.叠氮类含能粘合剂研究进展[J]. 精细化工,2013,30(4):374-377.
LUOYun‑jun,GEZhen. Progress in the research into azide energetic binders[J]. Fine Chemicals, 2013,30(4): 374-377.
参考文献 2
AmamotoY, OtsukaH, TakaharaA, et al. Self‑healing of covalently cross‑linked polymers by reshuffling thiuram disulfide moieties in air under visible light[J]. Advanced Materials, 2012, 24(29): 3975-3980.
参考文献 3
JoY Y, LeeA S, BaekK Y, et al. Thermally reversible self‑healing polysilsesquioxane structure‑property relationships based on Diels‑Alder chemistry[J]. Polymer, 2017, 108(1):58-65.
参考文献 4
HuyangG, DebertinA E, SunJ. Design and development of self‑healing dental composites[J]. Materials & Design, 2016,94: 295-302.
参考文献 5
ZhangY, YingH, HartK R, et al. Malleable and recyclable poly(urea‑urethane) thermosets bearing hindered urea bonds[J]. Advanced Materials, 2016,28(35): 7646-7651.
参考文献 6
XuY, ChenD. A novel self‑healing polyurethane based on disulfide bonds[J]. Macromolecular Chemistry and Physics, 2016, 217(10): 1191-1196.
参考文献 7
AnS Y, NohS M, NamJ H, et al. Dual sulfide‑disulfide crosslinked networks with rapid and room temperature self‑healability[J]. Macromolecular Rapid Communications, 2015, 36(13): 1255-1260.
参考文献 8
RekondoA, MartinR, RuizdeluzuriagaA, et al. Catalyst‑free room‑temperature self‑healing elastomers based on aromatic disulfide metathesis[J]. Materials Horizons, 2014, 1(2):237-240.
参考文献 9
杨一林,卢珣,王巍巍,等.热可逆自修复聚氨酯弹性体的制备及表征[J].材料工程, 2017, 45(8): 1-8.
YANGYi‑lin,LUXun,WANGWei‑wei,et al. Preparation and characterization of thermally reversible self‑healing polyurethane elastomer[J]. Journal of Materials Engineering, 2017, 45(8): 1-8.
参考文献 10
JianX, HuY, ZhouW, et al. Self‑healing polyurethane based on disulfide bond and hydrogen bond[J]. Polymers for Advanced Technologies, DOI:10.1002/pat.4135.
参考文献 11
菅晓霞,郑启龙,胡义文,等. PBT弹性体力学性能及低温脆性研究[J].固体火箭技术, 2017, 40(2): 189-193.
JIANXiao‑xia,ZHENGQi‑long,HUYi‑wen,et al. Mechanical properties and low temperature embrittleness of PBT elastomer[J]. Journal of Solid Rocket Technology, 2017, 40(2):189-193.
参考文献 12
王巍巍.热可逆自修复弹性体的制备、结构与性能研究[D]. 广州: 华南理工大学, 2015.
WANGWei‑wei. Studies on preparation, structure and properties of thermally reversible self‑healing elastomers[D]. Guangzhou: South China University of Technology, 2015.
参考文献 13
LafontU, VanZ H, Vand Z S. Influence of cross‑linkers on the cohesive and adhesive self‑healing ability of polysulfide‑based thermosets[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6280-6288.
参考文献 14
YangJ X, LongY Y, PanL, et al. Spontaneously healable thermoplastic elastomers achieved through one‑pot living ring‑opening metathesis copolymerization of well‑designed bulky monomers[J].ACS Applied Materials & Interfaces, 2016, 8(19): 12445-12455.
参考文献 15
菅晓霞, 肖乐勤, 左海丽,等.GAP基热塑性弹性体的合成及表征[J]. 含能材料, 2008, 16(5): 614-617.
JIANXiao‑xia, XIAOLe‑qin, ZUOHai‑li, et al. Synthesis and characterization of GAP‑based thermoplastic elastomer[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(5):614-617.
参考文献 16
XuY, ChenD. A novel self‑healing polyurethane based on disulfide bonds[J]. Macromolecular Chemistry & Physics, 2016, 217(10): 1191-1196.
目录 contents

    摘要

    为了延长粘结剂的储存寿命,采用一步法将具有可自修复性能的双硫官能团引入叠氮粘结剂中,首次合成了具有自修复性能的聚叠氮缩水甘油醚(GAP)基自修复粘结剂。通过傅里叶红外光谱(FTIR)、X射线衍射(XRD)和光学显微镜对其结构和表面形貌进行表征,在此基础上,通过自修复前后拉伸强度的变化,考察了不同自修复温度和不同自修复时间下的自修复效率。结果显示:合成的GAP基自修复粘结剂具有聚氨酯结构,60 ℃下24 h后表面裂纹基本愈合完全。提高自修复温度和延长自修复时间,均有助于提高体系的自修复效率。同时随着交联剂质量分数的增加,自修复效率先提高后降低,其中交联剂质量分数为8%的配方,自修复效率可达98.2%,相对于自修复效率为61.7%的对比样,表明双硫官能团的引入能够提高体系的自修复效率。

    Abstract

    To prolong the storage life of binder, the poly(glycidyl azide) ether(GAP)‑based binders with self‑healing performance were firstly synthesized by introducing disulfide functional group into an azide binder through an one‑step method. Fourier transform infrared spectroscopy(FTIR), X‑ray diffractometry(XRD) and optical microscopy were used to characterize its structure and surface topography characterization. On this basis, the self‑healing efficiency under different self‑healing temperature and different self‑healing time was examined through the change of tensile strength before and after self‑healing. Results show that the synthesized GAP‑based self‑healing binder has a polyurethane structure, the surface cracks of self‑healing binder are completely healed after 24 h at 60 ℃. Increasing the temperature and prolonging the self‑healing time are helpful to improve the self‑healing efficiency. At the same time, the self‑healing efficiency is firstly improved and then decreased with increasing mass fraction of the cross‑linking agent, in which, the self‑healing efficiency for the formula with a cross‑linker mass fraction of 8% can reach 98%. Compared with control sample with the self‑healing efficiency as 61.7%, which proves that the introduction of disulfide functional groups can improve the self‑healing efficiency of the system.

  • 1 引 言

    1

    粘结剂在火炸药配方中,起着基体和骨架的作用,其自身性质的优劣,将在很大程度上决定火药性[1]。引入自修复官能团,利用其结构自身在一定条件下的自修复,不但可以延长粘结剂的储存寿命,而且可以通过自修复来减少火药内微裂纹导致的力学性能下降,具有一定的实际意义。

    具有自修复性的官能团种类众[2,3,4,5],但是目前报道的大多数官能团实现自修复的温度普遍偏高。双硫键可在低于60 ℃下发生可逆置换反应,实现对材料的自修复,属于一种弱共价键,可满足火药的加工要求,具有其他材料无法比拟的优[6,7]。目前关于含双硫键自修复的体系报道较多,Rekondo[8]利用含有苯环的4,4′‑二氨基二苯二硫醚作为扩链剂,以聚醚多元醇为主链合成了具有一定自修复性的热固性聚氨酯,在常温下可实现自修复。王巍[9]利用含双硫键的4,4'‑二氨基二苯二硫醚作为扩链剂制备了聚酯型聚氨酯自修复弹性体,其首次自修复效率高达95%,二次自修复效率为62.3%。本课题[10]曾制备了以聚四氢呋喃作软段,羟乙基二硫化物为扩链剂的自修复聚氨酯,拉伸强度达5 MPa,断裂伸长率为700%,该体系利用氢键和双硫的协同作用,在60 ℃下,6 h可实现完全自修复。目前还没有关于双硫自修复在含能粘结剂中应用的报道。

    为此,本研究通过采用含双硫官能团的扩链剂,制备得到了具有聚氨酯结构的聚叠氮缩水甘油醚(GAP)基自修复粘结剂,并表征了其结构,采用光学显微镜对自修复前后的形貌进行考察,结合自修复前后试样拉伸强度的变化,考察了自修复温度,自修复时间以及不同交联剂质量分数下体系的自修复效率,并与不含自修复官能团的对比样进行了对比。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    试剂:聚叠氮缩水甘油醚(GAP),羟值0.316 mmol·g-1,黎明化工研究设计院有限责任公司;异佛尔酮二异氰酸酯(IPDI)、三羟甲基丙烷(TMP)和二月桂酸二丁基锡(DBTDL),均为分析纯,阿拉丁试剂;双(2‑羟乙基)二硫醚(HEDS),分析纯,梯希爱(上海)化成工业发展有限公司;1,4‑丁二醇(BDO),分析纯,上海凌峰化学试剂有限公司;乙酸乙酯,分析纯,国药集团化学试剂有限公司。

    主要仪器:DF‑101S集热式恒温加热磁力搅拌器,河南省予华仪器有限公司;DZF‑6020型真空干燥箱,DHG‑9140A型电热恒温鼓风干燥箱,上海一恒科技有限公司;MZ‑4102冲片机,江苏明珠试验机械有限公司;2XZ‑2型旋片式真空泵,临海市谭氏真空设备有限公司;聚四氟乙烯模具,实验室加工;Tensor 27傅里叶红外光谱仪,德国Bruker光谱仪器公司;三维视频显微镜,美国科士达中国有限公司;AXS GmbH的X射线衍射仪,德国布鲁克(北京)科技有限公司;Instron 3367型精密万能材料试验机,英斯特朗中国有限公司。

  • 2.2 实验过程

    2.2

    采用一步法制备GAP基自修复粘结剂,将软段GAP,固化剂IPDI,扩链剂HEDS和交联剂TMP,以及适量的DBTDL催化剂,分别加入烧瓶中搅匀后,倒入模具中,置于60 ℃的烘箱中固化成型。制备了交联剂质量分数(TMP的羟基占总羟基(GAP+HEDS+TMP) 的百分含量)5%,8%,10%,15%的粘结剂,合成反应方程式如Scheme1所示。

    对比样的制备:为了进行自修复性能的对比,将扩链剂HEDS替换为BDO,合成了交联剂质量分数为5%的BDO基聚氨酯粘结剂。

    Scheme 1 Synthesis of self‑healing binder based on GAP

  • 3 结果与讨论

    3
  • 3.1 红外光谱分析

    3.1

    分辨率4 cm-1下测试得到GAP基自修复粘结剂及对比样的傅里叶红外光谱,结果如图1所示,由图1a可知,2250 cm-1处—NCO基团的特征峰已完全消失,表明IPDI已反应完全;3440~3200 cm-1和1520~1500 cm-1分别为N—H伸缩振动和弯曲振动峰,1740~1680 cm-1为氨基甲酸酯中C O伸缩振动吸收峰,2090 cm-1为—N3特征峰,2940和2874 cm-1为C—H的对称和不对称伸缩振动峰,表明合成了氨基甲酸酯结构的粘结[11]。从局部放大图(图1b)中可以看出随着交联剂质量分数的增加,1740~1660 cm-1处羰基特征峰的强度也略有增加。

    html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image002.png

    a. FTIR spectra

    html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image003.png

    b. partial enlarged figures

    图1 GAP基自修复粘结剂及对比样的红外光谱图及羰基的局部放大图

    Fig.1 FTIR spectra of self‑healing binders based on GAP and the control sample and the partial enlarged figures of carbonyl group

  • 3.2 显微镜观察

    3.2

    选取交联剂质量分数居中(10%)的试样,用刀片将其切断后,拼接在一起后放入60 ℃烘箱,24 h后取出,采用放大100倍的显微镜,观察其表面形貌变化,从中可见表面还看得到接痕,但切断的两部分已经基本愈合为一体。用手拉拽修复试样,仅是表面的接口处略有撕裂,试样整体未被拉断,进一步表明试样已经基本愈合,结果见2,表明制备得到的GAP基自修复粘结剂有自修复性。

    采用三维显微镜观察了自修复样与对比样自修复前后的表面状况,如图3所示,由图3可以看到,GAP基自修复粘结剂在60 ℃修复24 h后,表面基本无裂纹,而对比样在24 h后表面裂纹明显。

    html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image011.png
    html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image012.png

    a. pristine             b. after cutted             c. after 24 h self‑healing             d. stretched by hands

    图2 60 ℃下GAP基自修复粘结剂的修复过程

    Fig.2 The healing process of GAP based self‑healing binders at 60 ℃

    图3
                            对比样和GAP基自修复粘结剂放大100倍的三维显微镜照片

    a. control sample             b. self‑healing binder based on GAP

    图3 对比样和GAP基自修复粘结剂放大100倍的三维显微镜照片

    Fig.3 3D microscope photographs(x100) of control sample and self‑healing binder based on GAP

  • 3.3 XRD分析

    3.3

    4为GAP基自修复粘结剂和对比样的XRD图谱(扫描范围为0°~45°),由图4可知,所有样品在2θ为20°左右处均有一个大包峰,归属于聚氨酯中软段形成的峰,表明制得得到的自修复粘结剂具有聚氨酯结构,但是链段大部分为无定形态,分子链的有序性较低。随着交联剂质量分数增加,峰强度增加,表明体系中部分硬段溶于软段中,软硬段不能很好分离,进而导致软段的峰强增加,这与一般聚氨酯粘结剂的结晶性能一致。所采用的对比样交联剂含量为5%,较同样配方自修复粘结剂的软段含量高,因此其衍射峰强度略高。

    图4
                            GAP基自修复粘结剂与对比样的XRD谱图

    图4 GAP基自修复粘结剂与对比样的XRD谱图

    Fig.4 XRD patterns of self‑healing binders based on GAP and the control sample

  • 3.4 力学性能表征

    3.4
  • 3.4.1 交联剂质量分数对自修复性能的影响

    3.4.1

    对自修复前后的试样进行拉伸测试,测试温度(20±2) ℃,拉伸速率100 mm·min-1。得到自修复前后各样品的拉伸强度,结果如图5所示。

    图5
                            GAP基自修复粘结剂样品与对比样的应力‑应变曲线

    图5 GAP基自修复粘结剂样品与对比样的应力‑应变曲线

    Fig.5 Stress‑strain curves of self‑healing binders based on GAP and the control sample

    从图5可以看出随着交联剂质量分数的增加,GAP基自修复粘结剂的拉伸强度都接近1 MPa,变化不是很大,这主要由于制备的粘结剂中高的软段含量(大约90%)有关,断裂伸长率先升后降是由于随着交联剂的增加,较多的硬段聚集规整排列,提高了体系的微相分离程度,但是进一步增加交联剂含量,则体系中相应的双硫扩链剂含量也增多,双硫键是一种弱共价[12],因此拉伸易发生断裂。结合图6可以看出,交联剂质量分数为8%时聚氨酯的拉伸强度和断裂伸长率均最高,分别为1.03 MPa和726%。自修复效率则基本呈现下降的趋势,5%的自修复效率最高,达到了98.7%,8%的自修复效率为98.2%,之后下降开始变得明显,这是因为随着交联剂的增加,降低了软段的含量,同时降低了分子的流动性,一定程度下抑制了双硫键(S—S)的动态可逆交[13],但是交联剂含量为15%的体系,自修复效率又略有上升,可能是双硫键含量较高所致。

    图6
                            交联剂质量分数对GAP基自修复粘结剂自修复效率的影响

    图6 交联剂质量分数对GAP基自修复粘结剂自修复效率的影响

    Fig.6 Influence of mass fraction of cross‑linker on the self‑healing efficiency of self‑healing binders based on GAP

    对比样的力学性能与自修复试样相差不大,也与其较高的软段含量(90%)有关,对比样的自修复效率为61.7%,这是由聚氨酯结构中大量的氢键所致,这与课题组之前报道过的聚四氢呋喃醚二醇基自修复聚氨酯,其中氢键的贡献率达到46%较一[10,14]。结合报道的GAP基粘结剂力学性能结果可见,本研究中自修复体系的拉伸强度较[15],这是由于所采用的固化剂IPDI属于脂肪族结构,同时制备的粘结剂中较高的软段含量,两者共同作用所致。

  • 3.4.2 修复温度对自修复性能的影响

    3.4.2

    双硫键自修复是热可逆的,所以其自修复过程需要借助一定的热刺激。为了探究温度对体系自修复性能的影响,选取交联剂质量分数居中(10%)的GAP基自修复粘结剂,分别对试样在20,40,50 ℃和60 ℃下自修复24 h后进行拉伸测试,结果如图7所示。

    图7
                            自修复温度对GAP基自修复粘结剂应力‑应变曲线的影响

    图7 自修复温度对GAP基自修复粘结剂应力‑应变曲线的影响

    Fig.7 Effect of self‑healing temperatures on the stress‑strain curves of self‑healing binders based on GAP

    从图7中可以看到,自修复温度从20 ℃提高到60 ℃,试样拉伸强度随之增大,粘结剂的自修复效率从34.8%提高到72.4%,60 ℃时自修复效率最高。同时拉伸强度于20~60 ℃基本呈线性递增,这表明升温有利于材料的自修复,这是因为升高温度有利于与双硫键相连的聚合物链段运动,从而促进双硫键的可逆交换反[16]

  • 3.4.3 修复时间对自修复性能的影响

    3.4.3

    将交联剂质量分数为10%的GAP基自修复粘结剂试样,置于60 ℃烘箱中分别放置1,2,5,10,15 h和24 h,进行拉伸性能测试,结果见图8所示。

    图8
                            自修复时间对GAP基自修复粘结剂应力‑应变曲线的影响

    图8 自修复时间对GAP基自修复粘结剂应力‑应变曲线的影响

    Fig.8 Effect of self‑healing time on the stress‑strain curves of self‑healing binders based on GAP

    从图8中可以看出,自修复1,2,5 h的样品,其应力‑应变曲线变化明显,而自修复5,10,15,24 h后,样品应力‑应变曲线趋势则趋于稳定。从图9可知,随着自修复时间的增加,粘结剂的拉伸强度也随之增加,这可能是因为自修复时间越长,双硫键的动态交换作用越充分,进而导致了自修复效率提高,因而拉伸强度也能恢复并接近原样。

    图9
                            不同时间自修复后的粘结剂拉伸强度

    图9 不同时间自修复后的粘结剂拉伸强度

    Fig.9 The tensile strength of binders at different self‑healing time

  • 4 结 论

    4

    (1)采用一步法制备得到GAP基自修复粘结剂,红外光谱和XRD结果表明其结构为氨基甲酸酯结构,且为无定形态,软硬段相分离不明显。三维显微镜观察结果显示在60 ℃自修复24 h后GAP基自修复粘结剂的表面基本无裂纹;

    (2)测试了GAP基自修复粘结剂样品的拉伸强度,结果表明,GAP基自修复粘结剂在自修复5 h后,自修复效率增加趋于平缓,24 h能基本达到平衡。自修复温度从20 ℃提高到60 ℃,粘结剂的自修复效率从34.8%提高到72.4%。交联剂质量分数为8%的试样,在60 ℃处理24 h后自修复效率可达98.2%,与对比样的自修复效率(61.7%)相比,双硫键的引入提高了该粘结剂的自修复效率。

  • 参考文献

    • 1

      罗运军,葛震.叠氮类含能粘合剂研究进展[J]. 精细化工,2013,30(4):374-377.

      LUO Yun‑jun,GE Zhen. Progress in the research into azide energetic binders[J]. Fine Chemicals, 2013,30(4): 374-377.

    • 2

      Amamoto Y, Otsuka H, Takahara A, et al. Self‑healing of covalently cross‑linked polymers by reshuffling thiuram disulfide moieties in air under visible light[J]. Advanced Materials, 2012, 24(29): 3975-3980.

    • 3

      Jo Y Y, Lee A S, Baek K Y, et al. Thermally reversible self‑healing polysilsesquioxane structure‑property relationships based on Diels‑Alder chemistry[J]. Polymer, 2017, 108(1):58-65.

    • 4

      Huyang G, Debertin A E, Sun J. Design and development of self‑healing dental composites[J]. Materials & Design, 2016,94: 295-302.

    • 5

      Zhang Y, Ying H, Hart K R, et al. Malleable and recyclable poly(urea‑urethane) thermosets bearing hindered urea bonds[J]. Advanced Materials, 2016,28(35): 7646-7651.

    • 6

      Xu Y, Chen D. A novel self‑healing polyurethane based on disulfide bonds[J]. Macromolecular Chemistry and Physics, 2016, 217(10): 1191-1196.

    • 7

      An S Y, Noh S M, Nam J H, et al. Dual sulfide‑disulfide crosslinked networks with rapid and room temperature self‑healability[J]. Macromolecular Rapid Communications, 2015, 36(13): 1255-1260.

    • 8

      Rekondo A, Martin R, Ruizdeluzuriaga A, et al. Catalyst‑free room‑temperature self‑healing elastomers based on aromatic disulfide metathesis[J]. Materials Horizons, 2014, 1(2):237-240.

    • 9

      杨一林,卢珣,王巍巍,等.热可逆自修复聚氨酯弹性体的制备及表征[J].材料工程, 2017, 45(8): 1-8.

      YANG Yi‑lin,LU Xun,WANG Wei‑wei,et al. Preparation and characterization of thermally reversible self‑healing polyurethane elastomer[J]. Journal of Materials Engineering, 2017, 45(8): 1-8.

    • 10

      Jian X, Hu Y, Zhou W, et al. Self‑healing polyurethane based on disulfide bond and hydrogen bond[J]. Polymers for Advanced Technologies, DOI:10.1002/pat.4135.

    • 11

      菅晓霞,郑启龙,胡义文,等. PBT弹性体力学性能及低温脆性研究[J].固体火箭技术, 2017, 40(2): 189-193.

      JIAN Xiao‑xia,ZHENG Qi‑long,HU Yi‑wen,et al. Mechanical properties and low temperature embrittleness of PBT elastomer[J]. Journal of Solid Rocket Technology, 2017, 40(2):189-193.

    • 12

      王巍巍.热可逆自修复弹性体的制备、结构与性能研究[D]. 广州: 华南理工大学, 2015.

      WANG Wei‑wei. Studies on preparation, structure and properties of thermally reversible self‑healing elastomers[D]. Guangzhou: South China University of Technology, 2015.

    • 13

      Lafont U, Van Z H, Van d Z S. Influence of cross‑linkers on the cohesive and adhesive self‑healing ability of polysulfide‑based thermosets[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6280-6288.

    • 14

      Yang J X, Long Y Y, Pan L, et al. Spontaneously healable thermoplastic elastomers achieved through one‑pot living ring‑opening metathesis copolymerization of well‑designed bulky monomers[J].ACS Applied Materials & Interfaces, 2016, 8(19): 12445-12455.

    • 15

      菅晓霞, 肖乐勤, 左海丽,等.GAP基热塑性弹性体的合成及表征[J]. 含能材料, 2008, 16(5): 614-617.

      JIAN Xiao‑xia, XIAO Le‑qin, ZUO Hai‑li, et al. Synthesis and characterization of GAP‑based thermoplastic elastomer[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(5):614-617.

    • 16

      Xu Y, Chen D. A novel self‑healing polyurethane based on disulfide bonds[J]. Macromolecular Chemistry & Physics, 2016, 217(10): 1191-1196.

菅晓霞

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemistry Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

邮 箱:jxx259@163.com

作者简介:菅晓霞(1980-),讲师,博士,从事高分子材料和含能材料研究,e‑mail:jxx259@163.com

宋育芳

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemistry Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

赵盟辉

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemistry Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

梁益

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemistry Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

周伟良

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemistry Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

肖乐勤

机 构:南京理工大学 化工学院,江苏 南京 210094

Affiliation:School of Chemistry Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image001.png
html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image002.png
html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image003.png
html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image011.png
html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image012.png
html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image004.png
html/hncl/CJEM2018169/alternativeImage/17e82449-e981-4ab3-8e06-e86bf7a63f2a-F010.jpg
html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image005.png
html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image006.png
html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image007.png
html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image008.png
html/hncl/CJEM2018169/media/17e82449-e981-4ab3-8e06-e86bf7a63f2a-image009.png

Scheme 1 Synthesis of self‑healing binder based on GAP

图1 GAP基自修复粘结剂及对比样的红外光谱图及羰基的局部放大图 -- a. FTIR spectra

Fig.1 FTIR spectra of self‑healing binders based on GAP and the control sample and the partial enlarged figures of carbonyl group -- a. FTIR spectra

图1 GAP基自修复粘结剂及对比样的红外光谱图及羰基的局部放大图 -- b. partial enlarged figures

Fig.1 FTIR spectra of self‑healing binders based on GAP and the control sample and the partial enlarged figures of carbonyl group -- b. partial enlarged figures

图2 60 ℃下GAP基自修复粘结剂的修复过程 -- a. pristine b. after cutted

Fig.2 The healing process of GAP based self‑healing binders at 60 ℃ -- a. pristine b. after cutted

图2 60 ℃下GAP基自修复粘结剂的修复过程 -- c. after 24 h self‑healing d. stretched by hands

Fig.2 The healing process of GAP based self‑healing binders at 60 ℃ -- c. after 24 h self‑healing d. stretched by hands

图3 对比样和GAP基自修复粘结剂放大100倍的三维显微镜照片

Fig.3 3D microscope photographs(x100) of control sample and self‑healing binder based on GAP

图4 GAP基自修复粘结剂与对比样的XRD谱图

Fig.4 XRD patterns of self‑healing binders based on GAP and the control sample

图5 GAP基自修复粘结剂样品与对比样的应力‑应变曲线

Fig.5 Stress‑strain curves of self‑healing binders based on GAP and the control sample

图6 交联剂质量分数对GAP基自修复粘结剂自修复效率的影响

Fig.6 Influence of mass fraction of cross‑linker on the self‑healing efficiency of self‑healing binders based on GAP

图7 自修复温度对GAP基自修复粘结剂应力‑应变曲线的影响

Fig.7 Effect of self‑healing temperatures on the stress‑strain curves of self‑healing binders based on GAP

图8 自修复时间对GAP基自修复粘结剂应力‑应变曲线的影响

Fig.8 Effect of self‑healing time on the stress‑strain curves of self‑healing binders based on GAP

图9 不同时间自修复后的粘结剂拉伸强度

Fig.9 The tensile strength of binders at different self‑healing time

image /

无注解

无注解

无注解

无注解

无注解

无注解

a. control sample b. self‑healing binder based on GAP

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      罗运军,葛震.叠氮类含能粘合剂研究进展[J]. 精细化工,2013,30(4):374-377.

      LUO Yun‑jun,GE Zhen. Progress in the research into azide energetic binders[J]. Fine Chemicals, 2013,30(4): 374-377.

    • 2

      Amamoto Y, Otsuka H, Takahara A, et al. Self‑healing of covalently cross‑linked polymers by reshuffling thiuram disulfide moieties in air under visible light[J]. Advanced Materials, 2012, 24(29): 3975-3980.

    • 3

      Jo Y Y, Lee A S, Baek K Y, et al. Thermally reversible self‑healing polysilsesquioxane structure‑property relationships based on Diels‑Alder chemistry[J]. Polymer, 2017, 108(1):58-65.

    • 4

      Huyang G, Debertin A E, Sun J. Design and development of self‑healing dental composites[J]. Materials & Design, 2016,94: 295-302.

    • 5

      Zhang Y, Ying H, Hart K R, et al. Malleable and recyclable poly(urea‑urethane) thermosets bearing hindered urea bonds[J]. Advanced Materials, 2016,28(35): 7646-7651.

    • 6

      Xu Y, Chen D. A novel self‑healing polyurethane based on disulfide bonds[J]. Macromolecular Chemistry and Physics, 2016, 217(10): 1191-1196.

    • 7

      An S Y, Noh S M, Nam J H, et al. Dual sulfide‑disulfide crosslinked networks with rapid and room temperature self‑healability[J]. Macromolecular Rapid Communications, 2015, 36(13): 1255-1260.

    • 8

      Rekondo A, Martin R, Ruizdeluzuriaga A, et al. Catalyst‑free room‑temperature self‑healing elastomers based on aromatic disulfide metathesis[J]. Materials Horizons, 2014, 1(2):237-240.

    • 9

      杨一林,卢珣,王巍巍,等.热可逆自修复聚氨酯弹性体的制备及表征[J].材料工程, 2017, 45(8): 1-8.

      YANG Yi‑lin,LU Xun,WANG Wei‑wei,et al. Preparation and characterization of thermally reversible self‑healing polyurethane elastomer[J]. Journal of Materials Engineering, 2017, 45(8): 1-8.

    • 10

      Jian X, Hu Y, Zhou W, et al. Self‑healing polyurethane based on disulfide bond and hydrogen bond[J]. Polymers for Advanced Technologies, DOI:10.1002/pat.4135.

    • 11

      菅晓霞,郑启龙,胡义文,等. PBT弹性体力学性能及低温脆性研究[J].固体火箭技术, 2017, 40(2): 189-193.

      JIAN Xiao‑xia,ZHENG Qi‑long,HU Yi‑wen,et al. Mechanical properties and low temperature embrittleness of PBT elastomer[J]. Journal of Solid Rocket Technology, 2017, 40(2):189-193.

    • 12

      王巍巍.热可逆自修复弹性体的制备、结构与性能研究[D]. 广州: 华南理工大学, 2015.

      WANG Wei‑wei. Studies on preparation, structure and properties of thermally reversible self‑healing elastomers[D]. Guangzhou: South China University of Technology, 2015.

    • 13

      Lafont U, Van Z H, Van d Z S. Influence of cross‑linkers on the cohesive and adhesive self‑healing ability of polysulfide‑based thermosets[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6280-6288.

    • 14

      Yang J X, Long Y Y, Pan L, et al. Spontaneously healable thermoplastic elastomers achieved through one‑pot living ring‑opening metathesis copolymerization of well‑designed bulky monomers[J].ACS Applied Materials & Interfaces, 2016, 8(19): 12445-12455.

    • 15

      菅晓霞, 肖乐勤, 左海丽,等.GAP基热塑性弹性体的合成及表征[J]. 含能材料, 2008, 16(5): 614-617.

      JIAN Xiao‑xia, XIAO Le‑qin, ZUO Hai‑li, et al. Synthesis and characterization of GAP‑based thermoplastic elastomer[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(5):614-617.

    • 16

      Xu Y, Chen D. A novel self‑healing polyurethane based on disulfide bonds[J]. Macromolecular Chemistry & Physics, 2016, 217(10): 1191-1196.