CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
KochE C. Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen‑Bereich: DE19914095[P], 1999.
参考文献 2
李乐, 胡以华, 顾有林, 等. 生物材料红外波段消光性能分析[J]. 光谱学与光谱分析, 2017, 37(11): 3430-3434.
LILe, HUYi‑hua, GUYou‑lin, et al. Infrared extinction performance of biological materials[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3430-3434.
参考文献 3
马德跃, 李晓霞, 郭宇翔, 等. 红外烟幕遮蔽率及其分布表征方法[J]. 应用光学, 2014, 35(4): 708-712.
De‑yueMA, LIXiao‑xia, GUOYu‑xiang, et al. Measurement of screening rate and its distribution of infrared smoke screen[J]. Journal of Applied Optics, 2014, 35(4): 708-712.
参考文献 4
陈泽, 朱晨光, 封亚欧. 气凝胶基复合含能材料的制备及其红外遮蔽性能研究[J]. 火工品, 2017(4): 24-27.
CHENZe, ZHUChen‑guang, FENGYa‑ou. Study on the preparation and infrared shielding performance of composite energetic materials based on aerogel[J]. Initators & Pyrotechnics, 2017(4): 24-27.
参考文献 5
KromeU D, SchulzE. Pyrotechnic smoke for camouflage purpose: DE4337071[P], 1993.
参考文献 6
王玄玉. 雾油与石墨组合烟幕10.6 μm激光的衰减特性[J].红外与激光工程, 2011, 40(9): 1706-1708.
WANGXuan‑yu. Extinction performance of oil fog smoke combined with superfine graphite to 10.6 μm laser emission[J]. Infrared and Laser Engineering, 2011, 40(9): 1706-1708.
参考文献 7
王玄玉, 宋黎, 程乐见. 石墨气溶胶粒度分布及远红外消光因子研究[J]. 中国粉体技术, 2009, 15(1): 34-36.
WANGXuan‑yu, SONGLi, CHENGLe‑jian. Study on particle size distribution and far infrared extinction factors of graphite aerosol[J]. China Powder Science and Technology, 2009,15(1): 34-36.
参考文献 8
王玄玉, 潘功配. 红磷烟幕中红外光谱和红外消光性能研究[J].红外与毫米波学报, 2006, 25(5): 397-400.
WANGXuan‑yu, PANGong‑pei. Study on middle infrared spectrum and extinction performance of red phosphorus smoke[J]. Journal Infrared Millim Waves, 2006, 25(5): 397-400.
参考文献 9
周明善, 徐铭, 沈瑞琪, 等. 均匀设计法在赤磷发烟剂红外消光性能中的应用[J].含能材料, 2009, 17(3): 354-356.
ZHOUMing‑shan, XUMing, SHENRui‑qi, et al. Application of uniform design in infrared extinction performance of red phosphorus smoke agent[J]. ChineseJournal of Energetic Materials (Hanneng Cailiao), 2009, 17(3): 354-356.
参考文献 10
魏旭. 两种碳素材料的改性研究[D]. 南京:南京理工大学, 2014.
WEIXu. Studies on modification of the two kinds of carbon materials[D]. Nanjing: Nanjing University of Science &Technology, 2014.
参考文献 11
NINGGong‑tao, LIPing, CUIYu‑ling, et al. Flowability and infrared interference properties of modified graphite flake with hydropho‑bic nano‑silica[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2015, 23(12): 1217-1220.
参考文献 12
刘志龙, 王玄玉, 董文杰, 等. 短切碳纤维云团对毫米波/红外复合干扰性能影响[J].含能材料, 2016, 24(12): 1219-1224.
LIUZhi‑long, WANGXuan‑yu, DONGWen‑jie, et al. Composite interference performance of chopped carbon fiber clouds to millimeter wave and infrared[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(12):1219-1224.
参考文献 13
吴慧, 马拥军, 朱东升, 等. 石墨烯基纳米红外吸波材料的制备及消光性能研究[J]. 红外技术, 2013, 35(4): 242-246.
WUHui, Yong‑junMA, ZHUDong‑sheng, et al. Research on preparation and extinction characteristic of graphene‑based infrared absorbing nano‑composites[J]. Infrared Technology, 2013, 35(4): 242-246.
参考文献 14
王红霞, 宋子彪, 刘代志. 碳纳米管对信息激光的消光系数测试研究[J].光学技术, 2007, 33: 125-126.
WANGHong‑xia, SONGZi‑biao, LIUDai‑zhi. Study and test on extinction coefficient of carbon nanotubes to information laser[J]. Optical Technique, 2007, 33: 125-126.
参考文献 15
王红霞, 刘代志, 宋子彪. 碳纳米材料红外图像干扰特性研究[J].含能材料, 2008, 16(5): 588-591.
WANGHong‑xia, LIUDai‑zhi, SONGZi‑biao. Infrared images shielded characteristics of carbon nano materials[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2008,16(5): 588-591.
参考文献 16
李素芳, 查文珂, 方建军, 等. 石墨烯烟幕红外激光消光性能研究[J].红外技术, 2010, 32(6): 366-670.
LISu‑fang, ZHAWen‑ke, FANGJian‑jun, et al. Extinction characteristic of graphene smoke to infrared and laser wave[J]. Infrared Technology, 2010, 32(6): 366-670.
参考文献 17
甘雷. 碳包覆改性天然石墨与硅碳复合负极材料的制备及性能研究[D]. 湖南:中南大学, 2013.
GANLei. Preparation and properties of carbon‑coated natural graphite and silicon‑carbon composite anode materials[D]. Hu Nan: Central South University, 2013.
参考文献 18
ZHANGKai‑chuang, GAOXin‑bao, ZHANGQian, et al. Pitch carbon coating grapheme/carbon nanotubes lightweight composite and their excellent microwave absorption capacity[J]. Journal of Materials Science‑materials in Electronics, 2017, 28(2): 1352-1358.
参考文献 19
ZHANGKai‑chuang, GAOXin‑bao, ZHANGQian, et al. Preparation and microware absorption properties of asphalt carbon coated reduced grapheme oxide/magnetic CoFe2O4 hollow particles modified multi‑wall carbon nanotube composites[J]. Journal of Alloys and Compounds, 2017, 723: 912-921.
参考文献 20
姚禄玖, 高钧麟, 肖凯涛, 等. 烟幕理论与测试技术[M]. 北京:国防工业出版社, 2004: 105-162.
YAOLu‑jiu, GAOJun‑lin, XIAOKai‑tao, et al. Theory and testing technique of smoke[M]. Beijing: National Defense Industry Press, 2004: 105-162.
参考文献 21
陈文建, 穆让修, 张若凡, 等. 固体发烟剂烟幕几种波段透过率测试[J]. 应用光学, 2016, 37(5): 739-741.
CHENWen‑jian, MURang‑xiu, ZHANGRuo‑fan, et al. Transmittance measurement on smog of solid smoke agent in several wavebands[J]. Journal of Applied Optics, 2016, 37(5):739-741.
目录 contents

    摘要

    为探索碳纳米管/石墨烯/碳复合材料在3~5 μm和8~14 μm中远红外波段烟幕干扰方面的应用,用液相法制备了碳纳米管/石墨烯/碳复合材料。采用扫描电子显微镜,对比分析了石墨烯、碳纳米管和复合材料的微观形貌。采用傅里叶红外光谱仪技术,对比分析了三种材料的静态红外吸收能力。基于烟箱实验,测试了石墨烯、碳纳米管和复合材料对3~5 μm、8~14 μm中远红外的透过率,并根据“朗伯‑比尔”定律计算了烟幕的平均质量消光系数。结果表明,经过沥青碳化,以沥青碳为骨架,碳纳米管与石墨烯形成的复杂网状空间结构的烟幕干扰复合材料,抑制了碳纳米管的结团和石墨烯的堆叠现象,改善了悬浮性。针对3~5 μm波段,计算得到碳纳米管、石墨烯及碳纳米管/石墨烯/碳复合材料平均红外透过率分别约为9%、10%和5%,复合材料的有效遮蔽时间相比碳纳米管、石墨烯分别增加了约13%和21%;对8~14 μm红外波段的平均红外透过率分别约为3%、5%和4%,复合材料有效遮蔽时间相比碳纳米管、石墨烯增加了约28%和13%。碳纳米管/石墨烯/碳复合材料改善了单一碳材料的悬浮性能和红外光谱吸收性能,对中红外的干扰性能增强,对远红外的干扰性能有所下降,但有效干扰时间仍有所提高,其远红外干扰性能有待进一步改进。

    Abstract

    To explore the application in smoke interference at the middle and far infrared wave‑bands of 3-5 μm and 8-14 μm, the CNT/grapheme/carbon composite was prepared by a liquid phase method. Scanning electron microscopy was used to compare and analyze the microscopic morphology of graphene, carbon nanotubes and composite. The static infrared absorption ability of the three materials was compared and analyzed by Fourier transform infrared spectroscopy. Based on the smoke box experiment, the transmittances of graphene, carbon nanotube and composite for 3-5 μm and 8-14 μm in the middle and far infrared were measured, and the average mass extinction coefficient of the smoke screen was calculated according to the Lambert‑Beer law. The results show that after bituminous carbonization, bituminous carbon is used as the skeleton, the smoke‑screen interference composite material of the complex network structure formed by carbon nanotube and graphene inhibits the agglomeration of CNT and the stacking phenomenon of graphene, and improves the suspension properties. For the 3-5 μm wave‑band, the average transmittance of carbon nanotube, graphene and CNT/grapheme/carbon composite obtained by calculated is about 9%, 10% and 5% respectively. The effective shielding time of the composite increases by about 13% and 21% respectively compared with that of CNT and graphene. The average transmittance at the 8-14 μm infrared wave‑band is about 3%, 5% and 4%, respectively and the effective shielding time of the composite is about 28% and 13% higher than that of CNT and graphene. The CNT/grapheme/carbon composites improve the suspension performance and infrared absorption performance of the single carbon material, enhance the interference performance at the middle infrared wave‑band, decrease the interference performance at the far infrared wave‑band, but the effective interference time is still improved, and its far infrared interference time needs further improvement.

  • 1 引 言

    1

    随着传感器与探测技术的发展,精确制导武器得到广泛运用。为保护己方目标,提高战场生存能力,发展与之对抗的烟幕干扰是一种有效手段,它具有成本低、效费比高等优点,近年来,受到世界各国的普遍重[1,2,3,4]

    在红外波段中,常规烟幕对低波段的干扰效果较好,而随着波长增加,对中高波段的红外波干扰效果明显减弱,难以满足战场需[5]。近年来,研究人员针对常规烟幕材料,如红磷、赤磷[6,7]燃烧型烟幕材料,进行性能改进和配方优化,使其对中远红外的干扰性能得到一定提高。如王玄玉[8]研究了空气湿度和红磷烟幕粒子的平均粒度对红外消光性能的影响,周明善[9]采用均匀设计法,对赤磷配方进行改进,提高了远红外的干扰性能。而爆炸分散型烟幕材料以纳米材料为代表,如碳纳米管、碳纳米纤维、石墨烯等,因其具有良好的电磁吸波特性,成为红外烟幕材料研究的热[10,11,12,13]。如王红霞[14,15]研究了碳纳米材料对红外图像的遮蔽性能,得到碳纳米材料对红外辐射具有散射和吸收双重作用,且对远红外具有良好的干扰性能。李素芳[16]采用快速加热引爆法制备了石墨烯烟幕材料,计算得到8~14 μm红外波段的质量消光系数达到2.1 m2·g-1,能有效干扰远红外波段。

    以上针对燃烧型和爆炸分散型烟幕材料的制备与改性进行了分析与研究,但仍存在以下问题:(1)传统干扰材料改性后,提高了单一红外波段的干扰性能,中远红外的综合干扰性能难以满足战场需求。(2)石墨烯、碳纳米管等单一碳材料容易发生结团和堆叠,悬浮性能和有效遮蔽时间有待提高,中远红外的综合干扰性能有待进一步改善。针对以上问题,为进一步提高单一碳材料烟幕有效遮蔽时间及中远红外干扰性能,采用液相法制备碳纳米管/石墨烯/碳复合材料(文中也称复合材料),采用红外光谱仪测试并分析碳纳米管、石墨烯和复合材料的静态红外消光性能,利用烟箱试验对三种材料的中远红外透过率与有效遮蔽时间进行测试,对比与分析材料的中远红外干扰性能。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    试剂:KNG‑150石墨烯,平均粒径为15 μm,深圳市德方纳米科技股份有限公司;碳纳米管,平均粒径为20 nm,深圳市德方纳米科技股份有限公司;煤沥青,工业级,保定中油沥青有限公司;无水乙醇,分析纯,国药集团化学试剂有限公司;甲苯,分析纯,国药集团化学试剂有限公司;氩气,纯度≥99.999%石家庄特种气体有限公司。

    仪器:磁力搅拌器,CJJ78‑1,大地仪器厂;恒温水浴槽,HHS‑4S,宜昌仪器纱筛厂;真空干燥箱,DZF‑6030A,上海一恒科技有限公司;气氛箱式炉,KBF‑16Q,南大仪器厂;超声波清洗器,KQ5200E,昆山市超声仪器有限公司;电子天平,FA2004N,上海天平仪器厂;行星式球磨机,QM‑3B,南大仪器厂;扫描电子显微镜,JSM‑6700F,日本电子公司;傅里叶变换红外光谱仪,VERTEX70,德国布鲁克光谱仪器公司。

  • 2.2 样品制备

    2.2

    称取一定量的煤沥青按照一定浓度加入适量的煤油溶剂并在常温下搅拌,直到沥青完全溶解,利用双层定性中速滤纸过滤得到沥青溶液。将获取的沥青溶液,按照一定比例加入碳纳米管(carbon nanotube,CNT)和石墨烯(Graphene[17,18,19],超声振荡并在60 ℃水浴条件下搅拌直到煤油完全蒸发,并放入鼓风干燥箱,在60 ℃下干燥12 h,得到碳纳米管/石墨烯/碳粗制样品。将粗制样品放入箱式气氛炉800 ℃碳化处理,同时通入氩气进行保护,待温度降为室温,得到碳纳米管/石墨烯/碳精制样品。

  • 2.3 烟箱实验

    2.3
  • 2.3.1 主要测试系统

    2.3.1

    (1)烟箱:容积为16.5 m3(4.3 m×2.1 m×1.8 m),光程为2.1 m,内部有两个用于搅拌的风扇。

    (2)JHF‑Ⅱ红外辐射计:工作波段分别为3~5 μm和8~14 μm,通过测试辐射计在烟幕前后接收到辐射源的信号电压值,计算获取不同时刻的烟幕透过率。

    (3)滤膜直径20 cm、流量2~5 L·min-1的滤膜浓度采样器:采用滤膜称重法测试烟幕浓度是烟箱实验常用的方[20]。通过抽取烟幕内一定量的体积,并通过玻璃纤维滤膜,使烟幕粒子残留在滤膜上,称量通过前后滤波的质量差,计算得到烟幕的质量浓度。为减小由于分布不均匀带来的测量误差,确保烟幕质量浓度的测试精度,分别在不同位置布设三组采样器,并计算平均值作为烟幕的质量浓度。

  • 2.3.2 测试原理

    2.3.2

    测试仪器布置如图1所示。红外辐射源和红外辐射计分别布置在烟箱两侧窗口,在没有释放烟幕的情况下,通过调试仪器,使辐射计的初始电压保持稳定。释放烟幕后,由于烟幕对红外辐射的散射与吸收作用,使得红外辐射计接收到的信号电压变弱,通过对比初始电压,从而计算得到烟幕在该时刻的透过率衰减曲线。

    html/hncl/CJEM2018200/media/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-image001.png

    a. schematic diagram of smoke box test system

    html/hncl/CJEM2018200/media/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-image002.png

    b. physical image of smoke box test system

    图1 烟箱测试系统布置图

    Fig.1 Smoke box test system layout

  • 2.3.3 测试方法

    2.3.3

    测试过程中,首先对红外辐射计接收电压进行稳定调试,然后分别称取16.5 g碳纳米管、石墨烯、碳纳米管/石墨烯复合材料的样品,将其装入喷撒罐体中,利用高压气泵将罐体中材料喷撒到烟幕箱中,并启动风扇搅拌20 s,然后停止风扇并开始计时,50 s后待浓度稳定,浓度采样器开始采样,每次采样时间为50 s,间隔50 s,进行下一次采样,共采样三次。

  • 3 实验结果分析

    3
  • 3.1 SEM结果与分析

    3.1

    用扫描电子显微镜观测碳纳米管、石墨烯以及碳纳米管/石墨烯/碳复合材料的微观形貌,结果如图2所示。观察图2a和图2b发现,碳纳米管相互缠绕构成了较大的球形颗粒,而石墨烯薄片层出现折皱并互相堆叠成较厚的片状颗粒。这主要是由于单个碳纳米管颗粒呈现细长的管状,大量的碳纳米管颗粒在实验过程中受到不可避免的压力作用,发生了“结团”现象。而单一的石墨烯颗粒呈现薄片层状,在实验和使用过程中很容易受外界因素而使多个石墨烯片层堆叠在一起形成较厚的石墨烯团聚颗粒。因此,基于以上原因,致使这两种单个的碳材料悬浮性能和分散性受到极大的限制。从图2c发现,管状结构的碳纳米管附着在了片层状的石墨烯表面,使得石墨烯片层相互分隔开。这主要是由于沥青经过碳化,将碳纳米管粘连在石墨烯片层表面,从而抑制了多片层的石墨烯相互堆叠,二者交叉排列,形成了复杂的网状空间结构。这种复杂的网状结构,使得烟幕粒子表面形成孔隙,降低了单一碳材料的密度。因此,从微观形貌可以看出,将这两种单一碳材料进行复合制备新的干扰剂样品,能够有效抑制单一材料结团和堆叠,降低其密度,改善其悬浮性能。

  • 3.2 红外结果与分析

    3.2

    分别采用石墨烯、碳纳米管和沥青包覆石墨烯/碳纳米管/碳复合材料与溴化钾进行混合制成质量比为1∶500的压片,利用傅里叶变换红外光谱仪分析测试其红外透过率,结果如图3所示。

    图3
                            碳纳米管、石墨烯和碳纳米管/石墨烯/碳复合材料的红外透过率光谱

    图3 碳纳米管、石墨烯和碳纳米管/石墨烯/碳复合材料的红外透过率光谱

    Fig.3 Infrared transmittance spectra of CNT, graphene and CNT/grapheme/carbon composite

    html/hncl/CJEM2018200/media/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-image004.png

    a. CNT

    html/hncl/CJEM2018200/media/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-image005.png

    b. graphene

    html/hncl/CJEM2018200/media/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-image006.png

    c. CNT/grapheme/carbon composite

    图2 碳纳米管、石墨烯和碳纳米管/石墨烯/碳复合材料的SEM图

    Fig.2 SEM images of CNT, graphene and CNT/grapheme/carbon composite

    由图3可知,碳纳米管和石墨烯在1375 cm-1和3400~3500 cm-1存在宽吸收峰,这两个峰为C—O—H的特征峰。石墨烯在1612 cm-1存在吸收峰,此为C C的伸缩振动峰。而复合材料无明显特征峰,但红外透过率降低,这可能是由于碳纳米管与石墨烯复合形成的复杂结构,增强了复合材料在整个红外波段的红外吸收性能,弱化了官能团对红外透过率的影响。

  • 3.3 烟箱测试结果与分析

    3.3
  • 3.3.1 透过率

    3.3.1

    在释放烟幕前,需打开红外透过率测试系统,标定红外辐射计的初始电压。当烟幕释放以后,待风扇将烟幕搅拌均匀,开始测试并记录红外辐射计的信号电压,其红外透过率采用式(2[20]计算。

    τ=UtU0
    (2)

    式中,τ为红外透过率,%;U0为释放烟幕前测得探测器的输出电压值,V。Ut为烟幕稳定后,探测器的输出电压值,V。

    通过烟箱测试得到碳纳米管、石墨烯和碳纳米管/石墨烯/碳复合材料烟幕对3~5 μm和8~14 μm中远红外的透过率曲线,如图4和图5所示。

    由图4和图5可知,碳纳米管、石墨烯及碳纳米管/石墨烯/碳复合材料形成的烟幕对3~5 μm波段的有效遮蔽时间分别为330,307 s和372 s,复合材料的有效遮蔽时间相比碳纳米管、石墨烯分别增加了约13%和21%;而这三种材料形成的烟幕对8~14 μm波段的有效遮蔽时间分别为344,389 s和441 s,复合材料有效遮蔽时间相比碳纳米管、石墨烯分别增加了约28%和13%。在有效遮蔽时间内,选取以一定时间间隔选取瞬时透过率,通过均值法计算得到碳纳米管、石墨烯及碳纳米管/石墨烯/碳复合材料形成的烟幕对3~5 μm红外波段的平均红外透过率分别约为9%、10%和5%,对8~14 μm红外波段的平均红外透过率分别约为3%、5%和4%。

    图4
                            三种材料在3~5 μm波段的红外透过率曲线

    图4 三种材料在3~5 μm波段的红外透过率曲线

    Fig.4 The infrared transmittance curves at the 3~5 μm wave‑band of three materials

    图5
                            三种材料在8~14 μm波段的红外透过率曲线

    图5 三种材料在8~14 μm波段的红外透过率曲线

    Fig.5 The infrared transmittance curves at the 8~14 μm wave‑band of three materials

  • 3.3.2 质量消光系数

    3.3.2

    为进一步分析复合材料对中远红外的干扰性能,根据烟幕消光理论,碳纳米管/石墨烯/碳烟幕服从“朗伯—比尔”定律,其质量消光系数可表示[20,21]

    αe=-lnτcL
    (2)

    式中,c为干扰剂样品浓度,g·m-3L为光程,m。τ为透过率,%。αe为质量消光系数,m2·g-1

    根据式(2)计算了碳纳米管、石墨烯和碳纳米管/石墨烯/碳复合材料烟幕在3~5 μm和8~14 μm波段的质量消光系数,结果见表1

    表1 中远红外质量消光系数计算结果

    Table 1 Calculation results of middle to far infrared mass extinction coefficient

    sample namejamming band / μmsampling numberc / g·m-3τ / %αe / m2·g-1α¯e / m2·g-1
    carbon nanotube3-510.9784.5651.5031.556
    20.7926.4211.651
    30.59515.0541.515
    8-1410.9781.8821.9341.924
    20.7923.6341.993
    30.5959.9711.845
    graphene3-510.9145.6721.4951.483
    20.8376.7751.532
    30.68313.0131.422
    8-1410.9141.3742.2342.124
    20.8372.1522.184
    30.6836.0761.953
    composite material3-510.9812.7031.7531.731
    20.8464.0711.802
    30.7457.7241.637
    8-1410.9812.0561.8861.885
    20.8463.2521.928
    30.7455.6031.842

    NOTE: τ is the infrared transmittance. αe is the mass extinction coefficient. α¯e is the average mass extinction coefficient.

    由表1可知,单一碳纳米管、石墨烯和碳纳米管/石墨烯/碳复合材料的质量消光系数均大于1 m2·g-1,说明其对中远红外均具有良好的消光性能。在3~5 μm波段,复合材料比碳纳米管和石墨烯的质量消光系数大,且透过率较低。在8~14 μm波段,碳纳米管、石墨烯比复合材料的质量消光系数稍大。因此,复合材料增强了中红外消光性能,损失了一定的远红外消光性能。综合消光性能和有效遮蔽时间分析,复合材料虽然损失了一定的远红外消光性能,但中红外性能增强,有效遮蔽时间变长,其应用前景仍然可观。

  • 4 结 论

    4

    (1)采用液相法制备的碳纳米管/石墨烯/碳复合材料,抑制了碳纳米管的结团和石墨烯的堆叠现象,使得碳纳米管填充在石墨烯片层间,形成复杂网状空间结构,改善了单一碳材料的悬浮性能。该复合材料比单一的碳纳米管、石墨烯的红外吸收性能好。

    (2)碳纳米管/石墨烯/碳复合材料对3~5 μm和8~14 μm中远红外的平均质量消光系数均大于1 m2·g-1,对中远红外具有良好的消光性能。在3~5 μm中红外波段,该复合材料比单一的碳纳米管、石墨烯的透过率低,计算得到的平均质量消光系数大,有效遮蔽时间长。在8~14 μm远红外波段,该复合材料的平均质量消光系数有所下降,但有效遮蔽时间仍有所增加。因此,该复合材料的中红外干扰性能增强,而远红外干扰性能有所下降,这有待于通过控制粒径分布对远红外干扰性能作进一步改进。

    (责编 王艳秀)

  • 参考文献

    • 1

      Koch E C. Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen‑Bereich: DE19914095[P], 1999.

    • 2

      李乐, 胡以华, 顾有林, 等. 生物材料红外波段消光性能分析[J]. 光谱学与光谱分析, 2017, 37(11): 3430-3434.

      LI Le, HU Yi‑hua, GU You‑lin, et al. Infrared extinction performance of biological materials[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3430-3434.

    • 3

      马德跃, 李晓霞, 郭宇翔, 等. 红外烟幕遮蔽率及其分布表征方法[J]. 应用光学, 2014, 35(4): 708-712.

      MA De‑yue, LI Xiao‑xia, GUO Yu‑xiang, et al. Measurement of screening rate and its distribution of infrared smoke screen[J]. Journal of Applied Optics, 2014, 35(4): 708-712.

    • 4

      陈泽, 朱晨光, 封亚欧. 气凝胶基复合含能材料的制备及其红外遮蔽性能研究[J]. 火工品, 2017(4): 24-27.

      CHEN Ze, ZHU Chen‑guang, FENG Ya‑ou. Study on the preparation and infrared shielding performance of composite energetic materials based on aerogel[J]. Initators & Pyrotechnics, 2017(4): 24-27.

    • 5

      Krome U D, Schulz E. Pyrotechnic smoke for camouflage purpose: DE4337071[P], 1993.

    • 6

      王玄玉. 雾油与石墨组合烟幕10.6 μm激光的衰减特性[J].红外与激光工程, 2011, 40(9): 1706-1708.

      WANG Xuan‑yu. Extinction performance of oil fog smoke combined with superfine graphite to 10.6 μm laser emission[J]. Infrared and Laser Engineering, 2011, 40(9): 1706-1708.

    • 7

      王玄玉, 宋黎, 程乐见. 石墨气溶胶粒度分布及远红外消光因子研究[J]. 中国粉体技术, 2009, 15(1): 34-36.

      WANG Xuan‑yu, SONG Li, CHENG Le‑jian. Study on particle size distribution and far infrared extinction factors of graphite aerosol[J]. China Powder Science and Technology, 2009,15(1): 34-36.

    • 8

      王玄玉, 潘功配. 红磷烟幕中红外光谱和红外消光性能研究[J].红外与毫米波学报, 2006, 25(5): 397-400.

      WANG Xuan‑yu, PAN Gong‑pei. Study on middle infrared spectrum and extinction performance of red phosphorus smoke[J]. Journal Infrared Millim Waves, 2006, 25(5): 397-400.

    • 9

      周明善, 徐铭, 沈瑞琪, 等. 均匀设计法在赤磷发烟剂红外消光性能中的应用[J].含能材料, 2009, 17(3): 354-356.

      ZHOU Ming‑shan, XU Ming, SHEN Rui‑qi, et al. Application of uniform design in infrared extinction performance of red phosphorus smoke agent[J]. ChineseJournal of Energetic Materials (Hanneng Cailiao), 2009, 17(3): 354-356.

    • 10

      魏旭. 两种碳素材料的改性研究[D]. 南京:南京理工大学, 2014.

      WEI Xu. Studies on modification of the two kinds of carbon materials[D]. Nanjing: Nanjing University of Science &Technology, 2014.

    • 11

      NING Gong‑tao, LI Ping, CUI Yu‑ling, et al. Flowability and infrared interference properties of modified graphite flake with hydropho‑bic nano‑silica[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2015, 23(12): 1217-1220.

    • 12

      刘志龙, 王玄玉, 董文杰, 等. 短切碳纤维云团对毫米波/红外复合干扰性能影响[J].含能材料, 2016, 24(12): 1219-1224.

      LIU Zhi‑long, WANG Xuan‑yu, DONG Wen‑jie, et al. Composite interference performance of chopped carbon fiber clouds to millimeter wave and infrared[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(12):1219-1224.

    • 13

      吴慧, 马拥军, 朱东升, 等. 石墨烯基纳米红外吸波材料的制备及消光性能研究[J]. 红外技术, 2013, 35(4): 242-246.

      WU Hui, MA Yong‑jun, ZHU Dong‑sheng, et al. Research on preparation and extinction characteristic of graphene‑based infrared absorbing nano‑composites[J]. Infrared Technology, 2013, 35(4): 242-246.

    • 14

      王红霞, 宋子彪, 刘代志. 碳纳米管对信息激光的消光系数测试研究[J].光学技术, 2007, 33: 125-126.

      WANG Hong‑xia, SONG Zi‑biao, LIU Dai‑zhi. Study and test on extinction coefficient of carbon nanotubes to information laser[J]. Optical Technique, 2007, 33: 125-126.

    • 15

      王红霞, 刘代志, 宋子彪. 碳纳米材料红外图像干扰特性研究[J].含能材料, 2008, 16(5): 588-591.

      WANG Hong‑xia, LIU Dai‑zhi, SONG Zi‑biao. Infrared images shielded characteristics of carbon nano materials[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2008,16(5): 588-591.

    • 16

      李素芳, 查文珂, 方建军, 等. 石墨烯烟幕红外激光消光性能研究[J].红外技术, 2010, 32(6): 366-670.

      LI Su‑fang, ZHA Wen‑ke, FANG Jian‑jun, et al. Extinction characteristic of graphene smoke to infrared and laser wave[J]. Infrared Technology, 2010, 32(6): 366-670.

    • 17

      甘雷. 碳包覆改性天然石墨与硅碳复合负极材料的制备及性能研究[D]. 湖南:中南大学, 2013.

      GAN Lei. Preparation and properties of carbon‑coated natural graphite and silicon‑carbon composite anode materials[D]. Hu Nan: Central South University, 2013.

    • 18

      ZHANG Kai‑chuang, GAO Xin‑bao, ZHANG Qian, et al. Pitch carbon coating grapheme/carbon nanotubes lightweight composite and their excellent microwave absorption capacity[J]. Journal of Materials Science‑materials in Electronics, 2017, 28(2): 1352-1358.

    • 19

      ZHANG Kai‑chuang, GAO Xin‑bao, ZHANG Qian, et al. Preparation and microware absorption properties of asphalt carbon coated reduced grapheme oxide/magnetic CoFe2O4 hollow particles modified multi‑wall carbon nanotube composites[J]. Journal of Alloys and Compounds, 2017, 723: 912-921.

    • 20

      姚禄玖, 高钧麟, 肖凯涛, 等. 烟幕理论与测试技术[M]. 北京:国防工业出版社, 2004: 105-162.

      YAO Lu‑jiu, GAO Jun‑lin, XIAO Kai‑tao, et al. Theory and testing technique of smoke[M]. Beijing: National Defense Industry Press, 2004: 105-162.

    • 21

      陈文建, 穆让修, 张若凡, 等. 固体发烟剂烟幕几种波段透过率测试[J]. 应用光学, 2016, 37(5): 739-741.

      CHEN Wen‑jian, MU Rang‑xiu, ZHANG Ruo‑fan, et al. Transmittance measurement on smog of solid smoke agent in several wavebands[J]. Journal of Applied Optics, 2016, 37(5):739-741.

陈浩

机 构:陆军工程大学 石家庄校区,河北 石家庄 050003

Affiliation:Shijiazhuang Campus of Army University of Engineering, Shijiazhuang 050003, China

作者简介:陈浩(1990-),男,博士研究生,主要从事弹药系统设计及试验评估研究。e‑mail:chen1274061939@163.com

高欣宝

机 构:陆军工程大学 石家庄校区,河北 石家庄 050003

Affiliation:Shijiazhuang Campus of Army University of Engineering, Shijiazhuang 050003, China

角 色:通讯作者

Role:Corresponding author

邮 箱:xbgaotg@126.com

作者简介:高欣宝(1966-),男,博导,教授,主要从事弹药系统设计及试验评估研究。e‑mail:xbgaotg@126.com

许兴春

机 构:63983部队,江苏 无锡 214035

Affiliation:3983 Army, Wuxi 214035, China

张倩

机 构:陆军工程大学 石家庄校区,河北 石家庄 050003

Affiliation:Shijiazhuang Campus of Army University of Engineering, Shijiazhuang 050003, China

张开创

机 构:陆军工程大学 石家庄校区,河北 石家庄 050003

Affiliation:Shijiazhuang Campus of Army University of Engineering, Shijiazhuang 050003, China

html/hncl/CJEM2018200/media/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-image001.png
html/hncl/CJEM2018200/media/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-image002.png
html/hncl/CJEM2018200/alternativeImage/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-F003.jpg
html/hncl/CJEM2018200/media/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-image004.png
html/hncl/CJEM2018200/media/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-image005.png
html/hncl/CJEM2018200/media/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-image006.png
html/hncl/CJEM2018200/alternativeImage/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-F007.jpg
html/hncl/CJEM2018200/alternativeImage/6a229fd4-7b2a-4f45-a407-8342a59a8d6b-F008.jpg
sample namejamming band / μmsampling numberc / g·m-3τ / %αe / m2·g-1α¯e / m2·g-1
carbon nanotube3-510.9784.5651.5031.556
20.7926.4211.651
30.59515.0541.515
8-1410.9781.8821.9341.924
20.7923.6341.993
30.5959.9711.845
graphene3-510.9145.6721.4951.483
20.8376.7751.532
30.68313.0131.422
8-1410.9141.3742.2342.124
20.8372.1522.184
30.6836.0761.953
composite material3-510.9812.7031.7531.731
20.8464.0711.802
30.7457.7241.637
8-1410.9812.0561.8861.885
20.8463.2521.928
30.7455.6031.842

图1 烟箱测试系统布置图 -- a. schematic diagram of smoke box test system

Fig.1 Smoke box test system layout -- a. schematic diagram of smoke box test system

图1 烟箱测试系统布置图 -- b. physical image of smoke box test system

Fig.1 Smoke box test system layout -- b. physical image of smoke box test system

图3 碳纳米管、石墨烯和碳纳米管/石墨烯/碳复合材料的红外透过率光谱

Fig.3 Infrared transmittance spectra of CNT, graphene and CNT/grapheme/carbon composite

图2 碳纳米管、石墨烯和碳纳米管/石墨烯/碳复合材料的SEM图 -- a. CNT

Fig.2 SEM images of CNT, graphene and CNT/grapheme/carbon composite -- a. CNT

图2 碳纳米管、石墨烯和碳纳米管/石墨烯/碳复合材料的SEM图 -- b. graphene

Fig.2 SEM images of CNT, graphene and CNT/grapheme/carbon composite -- b. graphene

图2 碳纳米管、石墨烯和碳纳米管/石墨烯/碳复合材料的SEM图 -- c. CNT/grapheme/carbon composite

Fig.2 SEM images of CNT, graphene and CNT/grapheme/carbon composite -- c. CNT/grapheme/carbon composite

图4 三种材料在3~5 μm波段的红外透过率曲线

Fig.4 The infrared transmittance curves at the 3~5 μm wave‑band of three materials

图5 三种材料在8~14 μm波段的红外透过率曲线

Fig.5 The infrared transmittance curves at the 8~14 μm wave‑band of three materials

表1 中远红外质量消光系数计算结果

Table 1 Calculation results of middle to far infrared mass extinction coefficient

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

τ is the infrared transmittance. αe is the mass extinction coefficient. α¯e is the average mass extinction coefficient.

  • 参考文献

    • 1

      Koch E C. Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen‑Bereich: DE19914095[P], 1999.

    • 2

      李乐, 胡以华, 顾有林, 等. 生物材料红外波段消光性能分析[J]. 光谱学与光谱分析, 2017, 37(11): 3430-3434.

      LI Le, HU Yi‑hua, GU You‑lin, et al. Infrared extinction performance of biological materials[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3430-3434.

    • 3

      马德跃, 李晓霞, 郭宇翔, 等. 红外烟幕遮蔽率及其分布表征方法[J]. 应用光学, 2014, 35(4): 708-712.

      MA De‑yue, LI Xiao‑xia, GUO Yu‑xiang, et al. Measurement of screening rate and its distribution of infrared smoke screen[J]. Journal of Applied Optics, 2014, 35(4): 708-712.

    • 4

      陈泽, 朱晨光, 封亚欧. 气凝胶基复合含能材料的制备及其红外遮蔽性能研究[J]. 火工品, 2017(4): 24-27.

      CHEN Ze, ZHU Chen‑guang, FENG Ya‑ou. Study on the preparation and infrared shielding performance of composite energetic materials based on aerogel[J]. Initators & Pyrotechnics, 2017(4): 24-27.

    • 5

      Krome U D, Schulz E. Pyrotechnic smoke for camouflage purpose: DE4337071[P], 1993.

    • 6

      王玄玉. 雾油与石墨组合烟幕10.6 μm激光的衰减特性[J].红外与激光工程, 2011, 40(9): 1706-1708.

      WANG Xuan‑yu. Extinction performance of oil fog smoke combined with superfine graphite to 10.6 μm laser emission[J]. Infrared and Laser Engineering, 2011, 40(9): 1706-1708.

    • 7

      王玄玉, 宋黎, 程乐见. 石墨气溶胶粒度分布及远红外消光因子研究[J]. 中国粉体技术, 2009, 15(1): 34-36.

      WANG Xuan‑yu, SONG Li, CHENG Le‑jian. Study on particle size distribution and far infrared extinction factors of graphite aerosol[J]. China Powder Science and Technology, 2009,15(1): 34-36.

    • 8

      王玄玉, 潘功配. 红磷烟幕中红外光谱和红外消光性能研究[J].红外与毫米波学报, 2006, 25(5): 397-400.

      WANG Xuan‑yu, PAN Gong‑pei. Study on middle infrared spectrum and extinction performance of red phosphorus smoke[J]. Journal Infrared Millim Waves, 2006, 25(5): 397-400.

    • 9

      周明善, 徐铭, 沈瑞琪, 等. 均匀设计法在赤磷发烟剂红外消光性能中的应用[J].含能材料, 2009, 17(3): 354-356.

      ZHOU Ming‑shan, XU Ming, SHEN Rui‑qi, et al. Application of uniform design in infrared extinction performance of red phosphorus smoke agent[J]. ChineseJournal of Energetic Materials (Hanneng Cailiao), 2009, 17(3): 354-356.

    • 10

      魏旭. 两种碳素材料的改性研究[D]. 南京:南京理工大学, 2014.

      WEI Xu. Studies on modification of the two kinds of carbon materials[D]. Nanjing: Nanjing University of Science &Technology, 2014.

    • 11

      NING Gong‑tao, LI Ping, CUI Yu‑ling, et al. Flowability and infrared interference properties of modified graphite flake with hydropho‑bic nano‑silica[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2015, 23(12): 1217-1220.

    • 12

      刘志龙, 王玄玉, 董文杰, 等. 短切碳纤维云团对毫米波/红外复合干扰性能影响[J].含能材料, 2016, 24(12): 1219-1224.

      LIU Zhi‑long, WANG Xuan‑yu, DONG Wen‑jie, et al. Composite interference performance of chopped carbon fiber clouds to millimeter wave and infrared[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(12):1219-1224.

    • 13

      吴慧, 马拥军, 朱东升, 等. 石墨烯基纳米红外吸波材料的制备及消光性能研究[J]. 红外技术, 2013, 35(4): 242-246.

      WU Hui, MA Yong‑jun, ZHU Dong‑sheng, et al. Research on preparation and extinction characteristic of graphene‑based infrared absorbing nano‑composites[J]. Infrared Technology, 2013, 35(4): 242-246.

    • 14

      王红霞, 宋子彪, 刘代志. 碳纳米管对信息激光的消光系数测试研究[J].光学技术, 2007, 33: 125-126.

      WANG Hong‑xia, SONG Zi‑biao, LIU Dai‑zhi. Study and test on extinction coefficient of carbon nanotubes to information laser[J]. Optical Technique, 2007, 33: 125-126.

    • 15

      王红霞, 刘代志, 宋子彪. 碳纳米材料红外图像干扰特性研究[J].含能材料, 2008, 16(5): 588-591.

      WANG Hong‑xia, LIU Dai‑zhi, SONG Zi‑biao. Infrared images shielded characteristics of carbon nano materials[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2008,16(5): 588-591.

    • 16

      李素芳, 查文珂, 方建军, 等. 石墨烯烟幕红外激光消光性能研究[J].红外技术, 2010, 32(6): 366-670.

      LI Su‑fang, ZHA Wen‑ke, FANG Jian‑jun, et al. Extinction characteristic of graphene smoke to infrared and laser wave[J]. Infrared Technology, 2010, 32(6): 366-670.

    • 17

      甘雷. 碳包覆改性天然石墨与硅碳复合负极材料的制备及性能研究[D]. 湖南:中南大学, 2013.

      GAN Lei. Preparation and properties of carbon‑coated natural graphite and silicon‑carbon composite anode materials[D]. Hu Nan: Central South University, 2013.

    • 18

      ZHANG Kai‑chuang, GAO Xin‑bao, ZHANG Qian, et al. Pitch carbon coating grapheme/carbon nanotubes lightweight composite and their excellent microwave absorption capacity[J]. Journal of Materials Science‑materials in Electronics, 2017, 28(2): 1352-1358.

    • 19

      ZHANG Kai‑chuang, GAO Xin‑bao, ZHANG Qian, et al. Preparation and microware absorption properties of asphalt carbon coated reduced grapheme oxide/magnetic CoFe2O4 hollow particles modified multi‑wall carbon nanotube composites[J]. Journal of Alloys and Compounds, 2017, 723: 912-921.

    • 20

      姚禄玖, 高钧麟, 肖凯涛, 等. 烟幕理论与测试技术[M]. 北京:国防工业出版社, 2004: 105-162.

      YAO Lu‑jiu, GAO Jun‑lin, XIAO Kai‑tao, et al. Theory and testing technique of smoke[M]. Beijing: National Defense Industry Press, 2004: 105-162.

    • 21

      陈文建, 穆让修, 张若凡, 等. 固体发烟剂烟幕几种波段透过率测试[J]. 应用光学, 2016, 37(5): 739-741.

      CHEN Wen‑jian, MU Rang‑xiu, ZHANG Ruo‑fan, et al. Transmittance measurement on smog of solid smoke agent in several wavebands[J]. Journal of Applied Optics, 2016, 37(5):739-741.