CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
ZhouX, WangY, ChengZ, et al. Facile preparation and energetic characteristics of core‑shell Al/CuO metastable intermolecular composite thin film on a silicon substrate[J]. Chemical Engineering Journal, 2017, 328: 585-590.
参考文献 2
TaoY, ZhangJ L, YangY Y, et al. Metastable intermolecular composites of Al and CuO nanoparticles assembled with graphene quantum dots[J]. RSC Advances, 2017, 7(3): 1718-1723.
参考文献 3
SharmaM, SharmaV. Effect of carbon nanotube addition on the thermite reaction in the Al/CuO energetic nanocomposite[J]. Philosophical Magazine, 2017, 97(22): 1921-1938.
参考文献 4
WangH Y, JianG Q, EganG C, et al. Assembly and reactive properties of Al/CuO based nanothermite microparticles[J]. Combustion and Flame, 2014, 161(8): 2203-2208.
参考文献 5
MalchiJ Y, FoleyT J, YetterR A. Electrostatically self‑assembled nanocomposite reactive microspheres[J]. ACS Applied Materials & Interfaces, 2009, 1(11): 2420-2423.
参考文献 6
ZhangT, MaZ, LiG, et al. A new strategy for the fabrication of high performance reactive microspheres via energetic polyelectrolyte assembly[J]. RSC Advances, 2017, 7(2): 904-913.
参考文献 7
SunW, LuY, MaoJ, et al. Multidimensional sensor for pattern recognition of proteins based on DNA‑gold nanoparticles conjugates[J]. Analytical Chemistry,2015,87(6):3354-3359.
参考文献 8
ChouL Y T, SongF, ChanW C W. Engineering the structure and properties of DNA‑nanoparticle superstructures using polyvalent counterions[J]. Journal of the American Chemical Society, 2016, 138(13): 4565-4572.
参考文献 9
YangN, YouT T, LiangX, et al. An ultrasensitive near‑infrared satellite SERS sensor: DNA self‑assembled gold nanorod/nanospheres structure[J]. RSC Advances, 2017, 7(15): 9321-9327.
参考文献 10
WangG, AkiyamaY, KanayamaN, et al. Directed assembly of gold nanorods by terminal‑base pairing of surface‑grafted DNA[J]. Small, 2017, 13(44): 1702137.
参考文献 11
TangL, YuG, TanL, et al. Highly stabilized core‑satellite gold nanoassemblies in vivo: DNA‑directed self‑assembly, PEG modification and cell imaging[J]. Scientific Reports, 2017, 7(1): 8553.
参考文献 12
SeveracF, AlphonseP, EstèveA, et al. High‑energy Al/CuO nanocomposites obtained by DNA‑directed assembly[J]. Advanced Functional Materials, 2012, 22(2): 323-329.
参考文献 13
CalaisT, BourrierD, BancaudA, et al. DNA grafting and arrangement on oxide surfaces for self‑assembly of Al and CuO nanoparticles[J]. Langmuir, 2017, 33(43): 12193-12203.
参考文献 14
AndreaK A, WangL, CarrierA J, et al. Adsorption of oligo‑DNA on magnesium aluminum‑layered double‑hydroxide nanoparticle surfaces: mechanistic implication in gene delivery[J]. Langmuir, 2017, 33(16): 3926-3933.
参考文献 15
KuramitzH, SugawaraK, TanakaS. Electrochemical sensing of avidin‑biotin interaction using redox markers[J]. Electroanalysis: an International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis,2000,12(16):1299-1303.
参考文献 16
郑保辉,王平胜,罗观,等. 超级铝热剂反应特性研究[J].含能材料, 2015, 23( 10 ):1004-1009.
ZHENGBao‑hui, WANGPing‑sheng, LUOGuan, et al. Reaction properties of super thermites[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(10):1004-1009.
参考文献 17
王毅,李凤生,姜炜,等. A1 /Fe2O3纳米复合铝热剂的制备及其反应特性研究[J]火工品, 2008(4): 11-14.
WANGYi, LIFeng‑sheng, JIANGWei, et al. Synthesis of Al/Fe2O3 nano‑composite and research on its thermite reaction[J].
参考文献 18
LeeK, KimD, ShimJ, et al. Formation of Cu layer on Al nanoparticles during thermite reaction in Al/CuO nanoparticle composites: Investigation of off‑stoichiometry ratio of Al and CuO nanoparticles for maximum pressure change[J]. Combustion and Flame, 2015, 162(10): 3823-3828.
目录 contents

    摘要

    为了制备结构均匀且热性能优异的纳米复合含能材料,采用脱氧核糖核酸(DNA)自组装法在室温和水相中制备了CuO/Al纳米复合含能材料。采用红外光谱(FT‑IR)、动态光散射(DLS)、透射电镜(TEM)、扫描电镜(SEM)以及差示扫描量热仪(DSC)表征了纳米复合含能材料的结构及热反应性能。结果表明,通过DNA自组装法成功制备了一种微观结构更均匀的CuO/Al纳米复合含能材料;DNA自组装样品与同配比物理共混样品相比具有更高的反应热,且当φ=1.6时,自组装样品反应热达到1520 J∙g-1,比同配比物理共混样品(999 J∙g-1)提高52.15%。

    Abstract

    To prepare nanocomposite energetic materials with homogeneous structure and excellent thermal properties, CuO/Al nanocomposite energetic materials were prepared by deoxyribonucleic acid (DNA) self‑assembly method at room temperature and in water phase. The structures and thermal reaction properties of the nanocomposite energetic materials were characterized by Fourier transform infrared (FT‑IR) spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), scanning electron microscope (SEM) and differential scanning calorimeter (DSC). Results show that CuO/Al nanocomposite energetic materials with more homogeneous structure are successfully prepared by DNA self‑assembly. The reaction heat of DNA self‑assembled CuO/Al nanocomposites is higher than that of physically mixed samples with the same proportion and at φ=1.6, the reaction heat of DNA self‑assembled CuO/Al nanocomposites reaches 1520 J·g-1,which is 52.15% higher than that of the physically mixed samples (999 J·g-1).

    Graphic Abstract

    图文摘要

    html/hncl/CJEM2018227/alternativeImage/e80dc1d7-ef51-4d21-adaf-7212f566537d-F012.jpg

  • 1 引 言

    1

    纳米复合含能材料与传统大尺寸含能材料相比,在很大程度上提高了反应速度和化学反应的完整性,具有更高的能量以及更高的燃烧速率,且点火延迟时间更短,因此在炸药、推进剂、烟火剂中具有广泛的应[1]。目前纳米复合含能材料的传统制备方法主要有:超声混合法、球磨法、静电纺丝法、溶胶‑凝胶法[2],得到的纳米复合含能材料较传统大尺寸含能材料性能有大幅提升,但仍存在以下问题:如纳米粒子在混合过程中不可避免的团聚对纳米复合含能材料中的扩散过程产生相反的影[3],微观组分分布不均匀,微观结构难以控制,使其能量释放效率高的优点不能充分发挥,应用受到限制。

    自组装技术能够有效控制组分粒子之间的分散,使复合材料的热性能得到显著提[4],因此自组装法成为人们研究的重点。如Malchi[5]分别用ω‑功能化烷酸和ω‑功能化硫醇修饰Al和CuO纳米颗粒,制备纳米复合含能材料,使两种纳米反应物紧密接触,增加反应热。Zhang[6]首先通过化学法制备了带有阴阳离子基团的聚叠氮缩水甘油醚基(GAP)含能聚电解质,然后利用静电组装的方法制备了Fe2O3/Al纳米复合含能材料,当含能聚电解质含量为10%时,增压速率达到410.36 MPa∙s-1

    脱氧核糖核酸(DNA)是一种天然生物大分子,DNA本身优越的特性使它在构建纳米结构方面发挥极大作用。DNA链碱基互补配对的原则可以预测和控制链段之间的结合,控制纳米材料的结构,并且DNA链碱基互补配对是自发进行的,能够与各种纳米材料包括其他的生物材料以及金属纳米颗粒一起组装成多功能纳米结[7,8,9]。目前,已有多篇文献报导用DNA链诱导组装纳米贵金属(Au、Ag),Wang[10]用不同DNA链选择性修饰金纳米棒(AuNR),当互补DNA与表面修饰的DNA杂交时,可以以非交联方式形成并排(SBS)和端对端(ETE)高度有序的结构。Tang[11]通过DNA链碱基互补配对的原则制备了高度稳定的金纳米核壳卫星结构,并且通过改变两种纳米颗粒的摩尔比可以得到不同的纳米结构。Carole课题[12,13]第一次把DNA链碱基互补配对、互补配对自发性应用到纳米复合含能材料的制备中,开辟了一种制备纳米复合含能材料的新方法,文献中样品热性能得到提升,但组装后材料混合不均匀,并且文中缺乏对热性能的系统考察。针对上述问题,本研究以Al纳米颗粒为燃料,CuO纳米颗粒为氧化剂,加入微量的DNA分子,通过DNA链碱基互补配对原则制备了CuO/Al纳米复合含能材料,并综合分析表征了CuO/Al纳米复合含能材料的结构和热性能。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    纳米氧化铜(CuO):平均粒径100 nm,类球形,上海攀田粉体材料有限公司;纳米铝(Al):平均粒径100 nm,球形,河南焦作伴侣纳米材料工程有限公司;磷酸盐缓冲溶液(PBS):浓度0.1 M,pH=7.0,北京索莱宝科技有限公司;表面活性剂(Tween‑20):阿拉丁;亲和素(Avidin):生工生物工程(上海)股份有限公司,用0.1 M PBS配成0.1 mg∙mL-1亲和素溶液;生物素修饰的DNA链(biotin‑DNA):研究所用DNA链a和b为互补配对DNA链,互补杂交效率高,并且自杂交率和错配率低,熔点为57.9 ℃,上海桑尼生物科技股份有限公司;氯化镁(MgCl2),分析纯,国药集团化学试剂有限公司。

    超声波细胞粉碎机:宁波新芝生物科技股份有限公司,工作功率为100 W,超声工作时间2 s,间隔时间1 s;JW‑2019HR型高速冷冻离心机:安徽嘉文仪器装备有限公司;Nicolet 6700型红外光谱仪,美国Thermo Fisher公司,红外光谱测试之前,离心洗涤3次去除未修饰生物分子,防止残留生物分子影响测试结果;Nano‑ZS型纳米激光粒度分析仪,Malvern公司;H‑7650型透射电子显微镜,日本日立公司,样品经乙醇分散后滴于铜网,干燥测试;S‑4800型场发射扫描电镜,日本日立公司;FD‑1C‑50型冷冻干燥机,北京博医康实验仪器有限公司;STA449F5 jupiter型同步热重‑差示扫描量热仪,美国耐驰公司,温度范围25~900 ℃,升温速率10 ℃∙min-1N2氛围,20 mL∙min-1

  • 2.2 实验过程

    2.2

    纳米复合含能材料制备流程图如图1所示。

    图1
                            CuO/Al纳米复合含能材料制备流程图

    图1 CuO/Al纳米复合含能材料制备流程图

    Fig.1 Flow chart for preparation of CuO/Al nanocomposite energetic materials

    首先,分别精确称取CuO纳米颗粒和Al纳米颗粒于2 mL磷酸盐缓冲溶液中,利用超声波细胞粉碎机分别超声处理12 min和10 min成均匀分散体系,分散浓度及摩尔配比见表1;其次,分别向各分散体系中加入140 μL亲和素(浓度0.1 mg∙mL-1),分散均匀后修饰24 h,并离心洗涤3次去除未修饰亲和素,得到亲和素修饰纳米颗粒体系;再次,向亲和素修饰CuO体系中加入DNA‑a链,亲和素修饰Al体系中加入DNA‑b链(DNA浓度1×10-2 mM,体积180 μL)混匀后进行DNA接枝反应,2 h后离心洗涤3次,得到DNA接枝体系;最后将两体系混合,并加入20 mM MgCl2盐溶液促进组装,组装2 h后离心洗涤3次,冷冻干燥后得到不同配比CuO/Al 纳米复合含能材料。

    表1 CuO/Al纳米复合含能材料的组成

    Table 1 Composition of CuO/Al nanocomposites energetic materials

    sampleCAl / mMCCuO / mMMAlMCuOφ
    129.6544.480.67∶1.001.0
    229.6537.060.80∶1.001.2
    329.6531.770.93∶1.001.4
    429.6527.801.07∶1.001.6
    529.6524.711.20∶1.001.8
    表1
                    CuO/Al纳米复合含能材料的组成

    NOTE: CAl is the molar concentration of Al, CCuO is the molar concentration of CuO, MAlMCuO is the molar ratio of Al to CuO, φ is the equivalence ratio.

    物理共混样品制备:CuO、Al纳米分散体系制备过程同组装体系,将分散均匀的两体系混合后超声分散均匀,并离心洗涤3次,冷冻干燥后得到不同配比CuO/Al物理共混样品。

  • 3 结果与讨论

    3
  • 3.1 红外光谱测试

    3.1

    为了验证是否实现了纳米颗粒表面生物分子的修饰,对Al、CuO、生物分子及不同修饰阶段的纳米颗粒进行红外谱图表征,如图2所示。亲和素(Avidin)是一类蛋白质,由氨基酸构成,含有大量不饱和双键,由图2亲和素红外光谱可知,其重要特征峰有3400 cm-1附近N─H伸缩振动峰,2900 cm-1附近饱和C‑H伸缩振动峰,1600 cm‑1附近C C双键、C O吸收峰,以及669 cm-1苯环面外弯曲振动峰。亲和素修饰CuO、Al纳米颗粒红外光谱中,均在1600 cm-1、669 cm-1处出现亲和素特征峰,说明纳米颗粒表面成功修饰亲和素。

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image002.png

    a. Al

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image003.png

    b. CuO

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image004.png

    c. DNA[14]

    图2 Al、CuO、生物分子及不同修饰阶段纳米颗粒的FT‑IR谱

    Fig.2 FT‑IR spectra of Al, CuO, biomolecules and nanoparticles at the different steps of the process

    由图2c可知,DNA链重要特征峰有1000~800 cm-1附近五碳糖吸收峰,1100 cm-1附近DNA磷酸二酯键对称伸缩振动[14]。DNA接枝CuO、Al纳米颗粒红外光谱中,在1100 cm-1附近出现DNA特征峰,而且发生红移,说明纳米颗粒表面成功接枝DNA。

  • 3.2 粒径分析

    3.2

    为了进一步证明通过DNA实现了纳米复合含能材料的组装,利用纳米激光粒度仪测定DNA自组装样品和物理共混样品粒径随着时间的变化曲线,如图3所示。测试了CuO、Al纳米颗粒不同修饰阶段的zeta电位,结果见表2

    图3
                            物理共混CuO/Al样品、DNA自组装CuO/Al样品粒径随时间的变化曲线

    图3 物理共混CuO/Al样品、DNA自组装CuO/Al样品粒径随时间的变化曲线

    Fig.3 Change curves of the particle size of physically mixed CuO/Al samples and DNA self‑assembled CuO/Al samples with time

    表2 CuO、Al纳米颗粒不同修饰阶段的zeta电位

    Table 2 Zeta potentials of the CuO and Al nanoparticles at the different steps of the processmV

    materialszeta‑potentialdeviation
    CuO-47.3±2
    CuO+avidin-18.5±1
    CuO+avidin+DNA-39.3±1.5
    Al-46.7±2
    Al+avidin-23.1±1.4
    Al+avidin+DNA-39.2±1.8
    表2
                    CuO、Al纳米颗粒不同修饰阶段的zeta电位

    由图3可知,与物理共混样品相比,DNA自组装样品平均粒径先随时间延长逐渐增大,后趋于平稳,这是由于DNA碱基互补配对导致CuO与Al组装聚集,粒径逐渐增大,组装稳定后粒径不再增大;物理共混样品平均粒径随时间延长基本不变。由表2可知,亲和素修饰CuO、Al纳米颗粒后,分散体系zeta电位绝对值减小,这是由于亲和素在分散体系中等电点为(pI=10~10.5[15],是一种稳定的碱性蛋白,容易吸附到CuO、Al纳米颗粒表面导致电荷绝对值减小;DNA接枝CuO、Al纳米颗粒后,分散体系zeta电位绝对值增大,这是由于DNA水解后磷酸基团带负电荷,DNA接枝到纳米颗粒表面后导致电荷绝对值增大。

  • 3.3 微观结构表征

    3.3

    研究表明,铝热反应是扩散控制反应,即铝热还原反应速率受金属铝通过氧化剂的扩散传质控[16],因此铝热剂的微观形貌对其反应特性有重要影响。为了表征纳米复合含能材料的微观结构,通过透射电镜(TEM)和扫描电镜(SEM)对物理共混样品和DNA自组装样品进行表征分析,图4为原料和两种样品的TEM和SEM图。

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image006.png

    a. Al TEM b. CuO TEM

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image007.png

    c. physically mixed nanocomposites TEM d. DNA‑assembled nanocomposites TEM

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image008.png

    e. physically mixed nanocomposites SEM f. DNA‑assembled nanocomposites SEM

    图4 Al和CuO纳米颗粒、物理共混CuO/Al和DNA自组装CuO/Al样品的TEM和SEM图(MAlMCuO=0.80∶1.00)

    Fig.4 TEM and SEM images of Al and CuO nanoparticles、physically mixed CuO/Al samples and DNA self‑assembled CuO/Al samples

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image013.png

    a. selected area b. Cu

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image014.png

    c. Al d. O

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image015.png

    e. EDS analysis

    图5 物理共混CuO/Al样品选定区域的元素面分布图和能谱图(MAlMCuO=0.80∶1.00)

    Fig.5 Element surface distribution and energy spectra of in selected areas of physically mixed CuO/Al samples

    由图4a和图4b可知,Al纳米颗粒平均粒径约为100 nm,为规则球形,CuO纳米颗粒平均粒径约为100 nm,为不规则类球形;物理共混样品(图4c和图4e)中多数CuO、Al成聚集团聚现象,只有少部分CuO与Al紧密接触,CuO、Al分布不均匀;DNA自组装样品(图4d和图4f)中CuO、Al分布较均匀,CuO纳米颗粒周围包覆Al纳米颗粒,两种纳米颗粒紧密接触,未出现纳米颗粒明显聚集团聚现象,这是由于DNA在体系中起到一定的诱导组装作用,诱导CuO、Al纳米颗粒均匀组装导致的。

    为了进一步表征DNA组装样品中CuO、Al纳米颗粒分布的均匀性,对物理共混样品和DNA自组装样品进行能谱测试,结果分别如图5和图6所示。从图5中可以看出,物理共混样品中出现明显不规则聚集现象,CuO和Al纳米颗粒分布不均匀;从图6中可以看出DNA组装样品中CuO、Al两种纳米颗粒分布较均匀,而且元素面分布图中含有DNA特征元素P元素,说明DNA存在于组装体系中,进一步验证了DNA诱导两组分均匀组装,得到结构均匀的CuO/Al纳米复合含能材料。

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image009.png

    a. selected area b. Cu

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image010.png

    c. Al d. P

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image011.png

    e. EDS analysis

    图6 DNA自组装CuO/Al样品选定区域的元素面分布图和能谱图(MAlMCuO=0.80∶1.00)

    Fig.6 Element surface distribution and energy spectra of in selected areas of DNA self‑assembled CuO/Al sample

  • 3.4 热性能分析

    3.4

    为表征样品的热性能,利用差示扫描量热仪测试DNA自组装样品及其同配比物理共混样品的热反应特性,DSC结果如图7所示,对其放热峰进行积分得出样品的反应热,结果见表3

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image016.png

    a. DNA‑assembled CuO/Al Nanocomposites

    html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image017.png

    b. physically mixed CuO/Al nanocomposites

    图7 DNA自组装CuO/Al样品和物理共混CuO/Al样品的DSC曲线

    Fig.7 DSC curves of DNA self‑assembled CuO/Al samples and physically mixed CuO/Al samples

    表3 DNA自组装CuO/Al样品与物理共混CuO/Al样品反应热

    Table 3 The reaction heat of DNA self‑assembled CuO/Al samples and physically mixed CuO/Al samples

    φDNA‑assembled CuO/Al nanocompositesphysically mixed CuO/Al nanocomposites
    T / ℃ΔH / J∙g-1T / ℃ΔH / J∙g-1
    1.0580.21019705.8939
    1.2600.71228709.4945
    1.4586.21346702.1958
    1.6587.11520708.2999
    1.8585.21106705.0969
    表3
                    DNA自组装CuO/Al样品与物理共混CuO/Al样品反应热

    NOTE: φ is equivalence ratio, T is the major peak temperature, ΔH is the exothermic enthalpy.

    由图7和表3可知,DNA自组装样品DSC放热峰温约为580~600 ℃,低于Al的熔融温度(660 ℃),表明反应过程主要是由纳米Al与CuO发生的铝热反应引起的,属于固‑固相扩散反[17],这是由于DNA自组装样品中纳米CuO、Al分布均匀,两组分紧密接触,热反应速率及效率明显提升导致的;物理共混样品主要放热峰温为700~710 ℃,高于Al的熔融温度,表明反应过程主要是由熔化后的Al与CuO发生反应引起的,属于液‑固相扩散反[17],这是由于物理共混样品中,纳米CuO、Al颗粒各自团聚严重,两组分接触面积较小,在Al熔融后,液态Al与CuO充分反应导致的。DNA自组装样品的放热峰温比物理共混样品提前115~125 ℃,进一步验证了DNA可以诱导CuO、Al两组分均匀分布,提高纳米复合含能材料的热反应速率及效率。

    由表3可以看出,DNA自组装样品反应热较相同配比的物理共混样品高,这是由于DNA自组装样品中两组分分布均匀,接触面积较大,反应充分所致;当φ=1.6时,DNA自组装样品和物理共混样品反应热均达到最大值,较物理共混样品反应热提高了52.15%,由于纳米Al表面存在部分Al2O3,且铝热反应过程中,Al纳米颗粒表面包覆一层Cu膜,Cu膜的存在使Al纳米颗粒反应相对较少,Al2O3和Cu膜的存在共同导致了φ=1.6时,即Al过剩时样品反应热出现最大[18]

  • 4 结 论

    4

    (1)采用DNA自组装法制备了结构均匀有序的纳米复合含能材料,热性能分析表明,相同φ值时,DNA组装样品较物理共混样品具有更高的反应热。

    (2)DNA自组装样品的DSC放热峰温较物理共混样品的放热峰温提前115~125 ℃,DNA自组装样品热反应过程主要为固‑固相扩散反应,放热峰温在Al熔融温度之前;物理共混样品热反应过程主要为液‑固相扩散反应,放热峰温在Al熔融温度之后。

    (3)当φ=1.6时,DNA组装样品反应热达到1520 J∙g-1,较物理共混样品反应热提高了52.15%。通过优化条件有望得到结构可控和性能优异的纳米复合含能材料,可在高能炸药及推进剂中进行应用,具有较高的应用潜力。

  • 参考文献

    • 1

      Zhou X, Wang Y, Cheng Z, et al. Facile preparation and energetic characteristics of core‑shell Al/CuO metastable intermolecular composite thin film on a silicon substrate[J]. Chemical Engineering Journal, 2017, 328: 585-590.

    • 2

      Tao Y, Zhang J L, Yang Y Y, et al. Metastable intermolecular composites of Al and CuO nanoparticles assembled with graphene quantum dots[J]. RSC Advances, 2017, 7(3): 1718-1723.

    • 3

      Sharma M, Sharma V. Effect of carbon nanotube addition on the thermite reaction in the Al/CuO energetic nanocomposite[J]. Philosophical Magazine, 2017, 97(22): 1921-1938.

    • 4

      Wang H Y, Jian G Q, Egan G C, et al. Assembly and reactive properties of Al/CuO based nanothermite microparticles[J]. Combustion and Flame, 2014, 161(8): 2203-2208.

    • 5

      Malchi J Y, Foley T J, Yetter R A. Electrostatically self‑assembled nanocomposite reactive microspheres[J]. ACS Applied Materials & Interfaces, 2009, 1(11): 2420-2423.

    • 6

      Zhang T, Ma Z, Li G, et al. A new strategy for the fabrication of high performance reactive microspheres via energetic polyelectrolyte assembly[J]. RSC Advances, 2017, 7(2): 904-913.

    • 7

      Sun W, Lu Y, Mao J, et al. Multidimensional sensor for pattern recognition of proteins based on DNA‑gold nanoparticles conjugates[J]. Analytical Chemistry,2015,87(6):3354-3359.

    • 8

      Chou L Y T, Song F, Chan W C W. Engineering the structure and properties of DNA‑nanoparticle superstructures using polyvalent counterions[J]. Journal of the American Chemical Society, 2016, 138(13): 4565-4572.

    • 9

      Yang N, You T T, Liang X, et al. An ultrasensitive near‑infrared satellite SERS sensor: DNA self‑assembled gold nanorod/nanospheres structure[J]. RSC Advances, 2017, 7(15): 9321-9327.

    • 10

      Wang G, Akiyama Y, Kanayama N, et al. Directed assembly of gold nanorods by terminal‑base pairing of surface‑grafted DNA[J]. Small, 2017, 13(44): 1702137.

    • 11

      Tang L, Yu G, Tan L, et al. Highly stabilized core‑satellite gold nanoassemblies in vivo: DNA‑directed self‑assembly, PEG modification and cell imaging[J]. Scientific Reports, 2017, 7(1): 8553.

    • 12

      Severac F, Alphonse P, Estève A, et al. High‑energy Al/CuO nanocomposites obtained by DNA‑directed assembly[J]. Advanced Functional Materials, 2012, 22(2): 323-329.

    • 13

      Calais T, Bourrier D, Bancaud A, et al. DNA grafting and arrangement on oxide surfaces for self‑assembly of Al and CuO nanoparticles[J]. Langmuir, 2017, 33(43): 12193-12203.

    • 14

      Andrea K A, Wang L, Carrier A J, et al. Adsorption of oligo‑DNA on magnesium aluminum‑layered double‑hydroxide nanoparticle surfaces: mechanistic implication in gene delivery[J]. Langmuir, 2017, 33(16): 3926-3933.

    • 15

      Kuramitz H, Sugawara K, Tanaka S. Electrochemical sensing of avidin‑biotin interaction using redox markers[J]. Electroanalysis: an International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis,2000,12(16):1299-1303.

    • 16

      郑保辉,王平胜,罗观,等. 超级铝热剂反应特性研究[J].含能材料, 2015, 23( 10 ):1004-1009.

      ZHENG Bao‑hui, WANG Ping‑sheng, LUO Guan, et al. Reaction properties of super thermites[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(10):1004-1009.

    • 17

      王毅,李凤生,姜炜,等. A1 /Fe2O3纳米复合铝热剂的制备及其反应特性研究[J]火工品, 2008(4): 11-14.

      WANG Yi, LI Feng‑sheng, JIANG Wei, et al. Synthesis of Al/Fe2O3 nano‑composite and research on its thermite reaction[J].

      Initiators & Pyrotechnics, 2008(4): 11-14.

    • 18

      Lee K, Kim D, Shim J, et al. Formation of Cu layer on Al nanoparticles during thermite reaction in Al/CuO nanoparticle composites: Investigation of off‑stoichiometry ratio of Al and CuO nanoparticles for maximum pressure change[J]. Combustion and Flame, 2015, 162(10): 3823-3828.

吴喜娜

机 构:青岛科技大学化学与分子工程学院,山东 青岛 266042

Affiliation:College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China

邮 箱:1710839585@qq.com

作者简介:吴喜娜(1993-),女,硕士研究生,主要从事含能材料研究。e‑mail:1710839585@qq.com

咸漠

机 构:中国科学院青岛生物能源与过程研究所,中国科学院生物基材料重点实验室,山东 青岛 266101

Affiliation:CAS Key Laboratory of Bio‑based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

陈夫山

机 构:青岛科技大学山东省生物化学重点实验室,山东 青岛 260042

Affiliation:Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China

角 色:通讯作者

Role:Corresponding author

邮 箱:chen-fushan@263.com

作者简介:陈夫山(1963-),男,教授,博士生导师,主要从事造纸湿部化学,生物质化工研究。e‑mail:chen-fushan@263.com

晋苗苗

机 构:中国科学院青岛生物能源与过程研究所,中国科学院生物基材料重点实验室,山东 青岛 266101

Affiliation:CAS Key Laboratory of Bio‑based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

角 色:通讯作者

Role:Corresponding author

邮 箱:jinmm@qibebt.ac.cn

作者简介:晋苗苗(1987-),女,副研究员,硕士生导师,主要从事含能材料研究。e‑mail:jinmm@qibebt.ac.cn

html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image001.png
sampleCAl / mMCCuO / mMMAlMCuOφ
129.6544.480.67∶1.001.0
229.6537.060.80∶1.001.2
329.6531.770.93∶1.001.4
429.6527.801.07∶1.001.6
529.6524.711.20∶1.001.8
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image002.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image003.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image004.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image005.png
materialszeta‑potentialdeviation
CuO-47.3±2
CuO+avidin-18.5±1
CuO+avidin+DNA-39.3±1.5
Al-46.7±2
Al+avidin-23.1±1.4
Al+avidin+DNA-39.2±1.8
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image006.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image007.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image008.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image013.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image014.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image015.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image009.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image010.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image011.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image016.png
html/hncl/CJEM2018227/media/e80dc1d7-ef51-4d21-adaf-7212f566537d-image017.png
φDNA‑assembled CuO/Al nanocompositesphysically mixed CuO/Al nanocomposites
T / ℃ΔH / J∙g-1T / ℃ΔH / J∙g-1
1.0580.21019705.8939
1.2600.71228709.4945
1.4586.21346702.1958
1.6587.11520708.2999
1.8585.21106705.0969

图1 CuO/Al纳米复合含能材料制备流程图

Fig.1 Flow chart for preparation of CuO/Al nanocomposite energetic materials

表1 CuO/Al纳米复合含能材料的组成

Table 1 Composition of CuO/Al nanocomposites energetic materials

图2 Al、CuO、生物分子及不同修饰阶段纳米颗粒的FT‑IR谱 -- a. Al

Fig.2 FT‑IR spectra of Al, CuO, biomolecules and nanoparticles at the different steps of the process -- a. Al

图2 Al、CuO、生物分子及不同修饰阶段纳米颗粒的FT‑IR谱 -- b. CuO

Fig.2 FT‑IR spectra of Al, CuO, biomolecules and nanoparticles at the different steps of the process -- b. CuO

图2 Al、CuO、生物分子及不同修饰阶段纳米颗粒的FT‑IR谱 -- c. DNA[14]

Fig.2 FT‑IR spectra of Al, CuO, biomolecules and nanoparticles at the different steps of the process -- c. DNA[14]

图3 物理共混CuO/Al样品、DNA自组装CuO/Al样品粒径随时间的变化曲线

Fig.3 Change curves of the particle size of physically mixed CuO/Al samples and DNA self‑assembled CuO/Al samples with time

表2 CuO、Al纳米颗粒不同修饰阶段的zeta电位

Table 2 Zeta potentials of the CuO and Al nanoparticles at the different steps of the processmV

图4 Al和CuO纳米颗粒、物理共混CuO/Al和DNA自组装CuO/Al样品的TEM和SEM图(MAlMCuO=0.80∶1.00) -- a. Al TEM b. CuO TEM

Fig.4 TEM and SEM images of Al and CuO nanoparticles、physically mixed CuO/Al samples and DNA self‑assembled CuO/Al samples -- a. Al TEM b. CuO TEM

图4 Al和CuO纳米颗粒、物理共混CuO/Al和DNA自组装CuO/Al样品的TEM和SEM图(MAlMCuO=0.80∶1.00) -- c. physically mixed nanocomposites TEM d. DNA‑assembled nanocomposites TEM

Fig.4 TEM and SEM images of Al and CuO nanoparticles、physically mixed CuO/Al samples and DNA self‑assembled CuO/Al samples -- c. physically mixed nanocomposites TEM d. DNA‑assembled nanocomposites TEM

图4 Al和CuO纳米颗粒、物理共混CuO/Al和DNA自组装CuO/Al样品的TEM和SEM图(MAlMCuO=0.80∶1.00) -- e. physically mixed nanocomposites SEM f. DNA‑assembled nanocomposites SEM

Fig.4 TEM and SEM images of Al and CuO nanoparticles、physically mixed CuO/Al samples and DNA self‑assembled CuO/Al samples -- e. physically mixed nanocomposites SEM f. DNA‑assembled nanocomposites SEM

图5 物理共混CuO/Al样品选定区域的元素面分布图和能谱图(MAlMCuO=0.80∶1.00) -- a. selected area b. Cu

Fig.5 Element surface distribution and energy spectra of in selected areas of physically mixed CuO/Al samples -- a. selected area b. Cu

图5 物理共混CuO/Al样品选定区域的元素面分布图和能谱图(MAlMCuO=0.80∶1.00) -- c. Al d. O

Fig.5 Element surface distribution and energy spectra of in selected areas of physically mixed CuO/Al samples -- c. Al d. O

图5 物理共混CuO/Al样品选定区域的元素面分布图和能谱图(MAlMCuO=0.80∶1.00) -- e. EDS analysis

Fig.5 Element surface distribution and energy spectra of in selected areas of physically mixed CuO/Al samples -- e. EDS analysis

图6 DNA自组装CuO/Al样品选定区域的元素面分布图和能谱图(MAlMCuO=0.80∶1.00) -- a. selected area b. Cu

Fig.6 Element surface distribution and energy spectra of in selected areas of DNA self‑assembled CuO/Al sample -- a. selected area b. Cu

图6 DNA自组装CuO/Al样品选定区域的元素面分布图和能谱图(MAlMCuO=0.80∶1.00) -- c. Al d. P

Fig.6 Element surface distribution and energy spectra of in selected areas of DNA self‑assembled CuO/Al sample -- c. Al d. P

图6 DNA自组装CuO/Al样品选定区域的元素面分布图和能谱图(MAlMCuO=0.80∶1.00) -- e. EDS analysis

Fig.6 Element surface distribution and energy spectra of in selected areas of DNA self‑assembled CuO/Al sample -- e. EDS analysis

图7 DNA自组装CuO/Al样品和物理共混CuO/Al样品的DSC曲线 -- a. DNA‑assembled CuO/Al Nanocomposites

Fig.7 DSC curves of DNA self‑assembled CuO/Al samples and physically mixed CuO/Al samples -- a. DNA‑assembled CuO/Al Nanocomposites

图7 DNA自组装CuO/Al样品和物理共混CuO/Al样品的DSC曲线 -- b. physically mixed CuO/Al nanocomposites

Fig.7 DSC curves of DNA self‑assembled CuO/Al samples and physically mixed CuO/Al samples -- b. physically mixed CuO/Al nanocomposites

表3 DNA自组装CuO/Al样品与物理共混CuO/Al样品反应热

Table 3 The reaction heat of DNA self‑assembled CuO/Al samples and physically mixed CuO/Al samples

image /

无注解

CAl is the molar concentration of Al, CCuO is the molar concentration of CuO, MAlMCuO is the molar ratio of Al to CuO, φ is the equivalence ratio.

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

φ is equivalence ratio, T is the major peak temperature, ΔH is the exothermic enthalpy.

  • 参考文献

    • 1

      Zhou X, Wang Y, Cheng Z, et al. Facile preparation and energetic characteristics of core‑shell Al/CuO metastable intermolecular composite thin film on a silicon substrate[J]. Chemical Engineering Journal, 2017, 328: 585-590.

    • 2

      Tao Y, Zhang J L, Yang Y Y, et al. Metastable intermolecular composites of Al and CuO nanoparticles assembled with graphene quantum dots[J]. RSC Advances, 2017, 7(3): 1718-1723.

    • 3

      Sharma M, Sharma V. Effect of carbon nanotube addition on the thermite reaction in the Al/CuO energetic nanocomposite[J]. Philosophical Magazine, 2017, 97(22): 1921-1938.

    • 4

      Wang H Y, Jian G Q, Egan G C, et al. Assembly and reactive properties of Al/CuO based nanothermite microparticles[J]. Combustion and Flame, 2014, 161(8): 2203-2208.

    • 5

      Malchi J Y, Foley T J, Yetter R A. Electrostatically self‑assembled nanocomposite reactive microspheres[J]. ACS Applied Materials & Interfaces, 2009, 1(11): 2420-2423.

    • 6

      Zhang T, Ma Z, Li G, et al. A new strategy for the fabrication of high performance reactive microspheres via energetic polyelectrolyte assembly[J]. RSC Advances, 2017, 7(2): 904-913.

    • 7

      Sun W, Lu Y, Mao J, et al. Multidimensional sensor for pattern recognition of proteins based on DNA‑gold nanoparticles conjugates[J]. Analytical Chemistry,2015,87(6):3354-3359.

    • 8

      Chou L Y T, Song F, Chan W C W. Engineering the structure and properties of DNA‑nanoparticle superstructures using polyvalent counterions[J]. Journal of the American Chemical Society, 2016, 138(13): 4565-4572.

    • 9

      Yang N, You T T, Liang X, et al. An ultrasensitive near‑infrared satellite SERS sensor: DNA self‑assembled gold nanorod/nanospheres structure[J]. RSC Advances, 2017, 7(15): 9321-9327.

    • 10

      Wang G, Akiyama Y, Kanayama N, et al. Directed assembly of gold nanorods by terminal‑base pairing of surface‑grafted DNA[J]. Small, 2017, 13(44): 1702137.

    • 11

      Tang L, Yu G, Tan L, et al. Highly stabilized core‑satellite gold nanoassemblies in vivo: DNA‑directed self‑assembly, PEG modification and cell imaging[J]. Scientific Reports, 2017, 7(1): 8553.

    • 12

      Severac F, Alphonse P, Estève A, et al. High‑energy Al/CuO nanocomposites obtained by DNA‑directed assembly[J]. Advanced Functional Materials, 2012, 22(2): 323-329.

    • 13

      Calais T, Bourrier D, Bancaud A, et al. DNA grafting and arrangement on oxide surfaces for self‑assembly of Al and CuO nanoparticles[J]. Langmuir, 2017, 33(43): 12193-12203.

    • 14

      Andrea K A, Wang L, Carrier A J, et al. Adsorption of oligo‑DNA on magnesium aluminum‑layered double‑hydroxide nanoparticle surfaces: mechanistic implication in gene delivery[J]. Langmuir, 2017, 33(16): 3926-3933.

    • 15

      Kuramitz H, Sugawara K, Tanaka S. Electrochemical sensing of avidin‑biotin interaction using redox markers[J]. Electroanalysis: an International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis,2000,12(16):1299-1303.

    • 16

      郑保辉,王平胜,罗观,等. 超级铝热剂反应特性研究[J].含能材料, 2015, 23( 10 ):1004-1009.

      ZHENG Bao‑hui, WANG Ping‑sheng, LUO Guan, et al. Reaction properties of super thermites[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(10):1004-1009.

    • 17

      王毅,李凤生,姜炜,等. A1 /Fe2O3纳米复合铝热剂的制备及其反应特性研究[J]火工品, 2008(4): 11-14.

      WANG Yi, LI Feng‑sheng, JIANG Wei, et al. Synthesis of Al/Fe2O3 nano‑composite and research on its thermite reaction[J].

      Initiators & Pyrotechnics, 2008(4): 11-14.

    • 18

      Lee K, Kim D, Shim J, et al. Formation of Cu layer on Al nanoparticles during thermite reaction in Al/CuO nanoparticle composites: Investigation of off‑stoichiometry ratio of Al and CuO nanoparticles for maximum pressure change[J]. Combustion and Flame, 2015, 162(10): 3823-3828.