CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
袁志锋,赵凤起,张教强,等.纳米镍粉对Al‑CMDB和CL‑20‑CMDB推进剂燃烧性能的影响[J] .火炸药学报, 2016,39(5): 99-103.
YUANZhi‑feng, ZHAOFeng‑qi, ZHANGJiao‑qiang, et al. Effect of nano‑Nickel on combustion properties of Al‑CMDB and CL‑20‑CMDB propellants[J].Chinese Journal of Explosives and Propellants, 2016, 39(5): 99-103.
参考文献 2
张晓宏,龙村,王铁成,等.纳米级氧化铅对双基推进剂燃烧性能影响研究[J] . 火炸药学报, 2002, 25(2): 39-41.
ZHANGXiao‑hong,LONGCun,WANGTie‑cheng,et al. Study on effects of nano‑PbO on the combustion properties of Double‑base propellant[J]. Chinese Journal of Explosives and Propellants, 2002, 25(2): 39-41.
参考文献 3
赵凤起,洪伟良,陈沛,等.纳米催化剂对双基系推进剂燃烧性能的影响[J] .火炸药学报, 2004, 27(3): 13-16.
ZHAOFeng‑qi, HONGWei‑liang,CHENPei,et al. Effect of CNTs catalysts on the combustion properties of DB/RDX‑CMDB propellants[J]. Chinese Journal of Explosives and Propellants, 2004, 27(3): 13-16.
参考文献 4
刘海飞,王梦雨,贾贤赏,等.纳米金属粉末的应用[J] .矿冶, 2004, 13(3): 65-67.
LIUHai‑Fei,WANGMeng‑yu,JIAXian‑shang,et al. Synthesis of nm meter powder[J].Mining And Metallourgy, 2004, 13(3): 65-67.
参考文献 5
庞维强,张教强,朱峰.新型纳米材料在固体推进剂中的应用[J] .纤维复合材料, 2005, 22(1): 12-15.
PANGWei‑qiang,ZHANGJiao‑qiang,ZHUFeng,et al. Reseach of application of a new‑type of nmmeter materials in solid propellants[J]. Fiber Composites, 2005, 22(1): 12-15.
参考文献 6
夏强,李疏芬,王桂兰,等.超细铝粉在AP/HTPB推进剂中的燃烧研究[J] .固体火箭技术, 1994(4): 35-42.
XIAQiang,LIShu‑fen,WANGGui‑lan,et al. Study on effects of superfine aluminum powder on the combustion properies of AP/HTPB propellant[J]. Journal of Solid Rocket Technology,1994(4): 35-42.
参考文献 7
陈雪莉,王瑛,王宏,等.铝粉含量及粒径对CMDB推进剂性能的影响[J] .含能材料, 2008, 16(6): 721-723.
CHENGXue‑li,WANGYin,WANGHong,et al. Effects of aluminum powder content and granularity on characteristics of CMDB propellant[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(6): 721-723.
参考文献 8
楚广,唐永建,楚士晋,等.纳米Al粉的结构和性能表征[J] .含能材料, 2006, 14(3): 22-230.
CHUGuang,TANGYong‑jian,CHUShi‑jin,et al. Characterization of structure and properties of Al nm Particles[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(3):22-230.
参考文献 9
李颖,宋武林,谢长生,等.纳米铝粉在固体推进剂中的应该进展[J] .兵工学报, 2005, 26(1): 121-125.
LIYing,SONGWu‑lin,XIEChang‑sheng,et al. Progress in the application of nm aluminum powder in solid propellants[J].Acta Armamentarii, 2005, 26(1): 121-125.
参考文献 10
袁志锋,王江宁,张超,等.纳米材料对双基和改性双基推进剂燃烧性能的影响[J] .火炸药学报, 2013, 36(3): 69-72.
YUANZhi‑feng,WANGJiang‑ning,ZHANGChao,et al. Effect of nm‑materials on combustion properties of DB and CMDB propellants[J]. Chinese Journal of Explosives and Propellants, 2013, 36(3): 69-72.
参考文献 11
赵凤起,仪建华,安亭,等.固体推进剂燃烧催化剂[M].北京:国防工业出版社, 2016:22.
ZHAOFeng‑qi,YIJian hua,ANTing,et al.Combustion catalysts for solid propellant[M]. Beijing: National Defence Industry Press,2016:22.
参考文献 12
裴江峰,赵凤起,宋秀铎,等.轻质碳材料及其复合物在固体推进剂中的应用研究进展[J] .火炸药学报, 2014, 37(2): 1-6.
PEIJiang‑feng,ZHAOFeng‑qi,SONGXiu‑duo,et al. Research progress in the application of lightweight carbon materials and their composites in solid rocket propellants[J].Chinese Journal of Explosives and Propellants, 2014, 37(2): 1-6.
参考文献 13
蔺向阳,骞伟中,李达,等.碳纳米管在双基推进剂中的分散技术[J] .固体火箭技术, 2011, 34(3): 335-338.
Xiang‑yangIIN,QIANWei‑zhong, LIDa,et al. Dispersing technology of carbon nanotubes in double base propellant[J]. Journal of Solid Rocket Technology, 2011, 34(3): 335-338.
参考文献 14
顾克壮,李晓东,杨荣杰.碳纳米管对高氯酸铵燃烧和热分解的催化作用[J] .火炸药学报, 2006, 29(1): 48-51.
GUKe‑zhuang,LIXiao‑dong,YANGRong‑jie. Catalytic action on combustion and thermal decomposition of AP with CNTs [J].Chinese Journal of Explosives and Propellants, 2006, 29(1):48-51.
参考文献 15
王晗,赵凤起,李上文,等.碳物质在固体推进剂中的功能及其作用机理[J] .火炸药学报, 2006, 29(4): 32-35.
WANGHan,ZHAOFeng‑qi,LIShang‑wen,et al. Function of carbon materials used in solid propellants and their action mechanism[J].Chinese Journal of Explosives and Propellants, 2006, 29(4): 32-35.
参考文献 16
刘建勋,李凤生,姜炜,等.纳米NiO/CNTs和CO3O4/CNTs对AP及HTPB/AP推进剂热分解的影响[J] .固体火箭技术, 2007, 30(3): 243-247.
LIUJian‑xun,LIFeng‑sheng,JIANGWei,et al. Effect of nano NiO/CNTs and CO3O4/CNTs on thermal decomposition of AP and HTPB/AP propellants[J]. Journa1 of Solid Rocket Technology, 2007, 30(3): 243-247.
参考文献 17
TomblerT W,ZhouC M, AlexsetevL,et al. Reversible eletromechanical characteristics of carbon nano tubes under local‑probe manipulation[J]. Nature, 2000, 405: 769-772.
参考文献 18
ColemanJ N,Khanu,BlauW J,et al. Small but strong:a review of the mechanical properties of carbon nanotube‑polymer composites[J]. Carbon, 2006, 44(9): 1624-1652.
参考文献 19
IubineauG,RahamanA. A review of strategies for improving the degradation properties of laminated continuous‑fiber/epoxy composites with carbon‑based nanoreinforcements[J]. Carbon, 2012, 50(7): 2377-2395.
参考文献 20
范壮军, 王矗, 罗国华,等.碳纳米管和炭黑在橡胶体系增强的协同效应[J] .新型碳材料, 2008, 23(2): 149-153.
FANZhuang‑jun, WANGYao,LUOGuo‑hua, et al. The synergetic effect of carbon nanotubes and carbon black in a rubber system[J]. New Carbon Materials, 2008, 23(2): 149-153.
参考文献 21
周文英,党智敏,丁小卫,等.聚合物基导热复合材料[M]. 北京:国防工业出版社,2017:55.
ZHOUWen‑ying,DANGZhi‑min,DINGXiao‑wei,et al. Heat conductive polymer composites[M]. Beijing: National Defense Industry Press, 2017: 55.
目录 contents

    摘要

    为了研究碳纳米管(CNTs)对含Al改性双基(Al‑CMDB)推进剂燃烧性能和力学性能的影响,采用吸收‑压延的方法制备了推进剂样品,用靶线法测试了推进剂的燃速,并计算了压强指数;测试了推进剂样品在高低常温时的拉伸强度及延伸率。通过扫描电镜、火焰照片、燃烧波、熄火表面形貌及元素分析和DSC分析了碳纳米管影响Al‑CMDB推进剂燃烧性能的原因。结果表明,在Al‑CMDB推进剂中加入0.7%碳纳米管在6~20 MPa可提高推进剂的燃速,其中6 MPa下燃速提高最多,为4.98 mm·s-1;6~20 MPa下压强指数从0.57降低为0.45。管径10~20 nm的碳纳米管能提高Al‑CMDB推进剂高低常温的拉伸强度及延伸率。碳纳米管对推进剂的热分解峰温影响不明显,但可使推进剂分解放热量增加。

    Abstract

    To investigate the effect of carbon nanotubes(CNTs) on the combustion properties and mechanical properties of Al‑CMDB propellant, the propellant samples were prepared through an absorption‑extrusion method. The burning rate of propellants was measured by target line method and the pressure exponent was calculated. The tensile strength and ductility of propellant sample were tested at high, low and normal temperature. The reason of how CNTs affected the combustion performance of Al‑CMDB propellant was analyzed by scanning electron microscopy(SEM), flame photo, combustion wave, morphology and element analysis of quenching surface and DSC analysis. The results show that the burning rate of propellant in the range of 6-20 MPa can be increased by adding 0.7% CNTs in Al‑CMDB propellant, of which the burning rate at 6 MPa is increased most, which is 4.98 mm·s-1, and the pressure exponent decreases from 0.57 to 0.45 at 6-20 MPa. CNTs with pipe diameter of 10-20 nm can enhance the tensile strength and ductility of Al‑CMDB propellant at high, low and normal temperature. The effect of CNTs on the peak temperature of thermal decomposition of propellant is little but it can make the exothermic quantity of propellant decomposition increase.

  • 1 引 言

    1

    高燃速改性双基推进剂有着广阔的应用前景,在高速动能弹、防空导弹、反坦克导弹和新单兵武器上有着迫切的需求,而低压强指数可以提高发动机工作的可靠性,是发动机稳定可靠工作的重要保证。推进剂的力学性能是尤其是低温力学性能对发动机的稳定工作影响较大。引入纳米材料是提高推进剂燃速降低推进剂压强指数的方法之一,目前纳米材料得到了国内外广泛的关注,纳米金属材料、纳米氧化物、纳米复合材料等在双基体系推进剂中的应用也有大量报[1,2,3,4,5,6,7,8,9,10,11]。碳纳米管(CNTs)及其复合物对推进剂中的主要组分如高氯酸铵热分解特性的影响,及其在双基推进剂中的分散也有研[12,13,14,15,16,17],但碳纳米管对改性双基推进剂燃烧性能和力学性能的影响研究较少。含铝改性双基(Al‑CMDB)推进剂能量比双基(DB)推进剂高、质量一致性好,在战术导弹发动机装药上得到了广泛应用,但是由于Al‑CMDB推进剂的燃速不够高,燃烧性能调节困难,限制了Al‑CMDB推进剂的应用。为此,本研究采用燃速测试、力学性能等方法,分析了碳纳米管对Al‑CMDB推进剂燃烧性能和力学性能的影响,并分析了碳纳米管对推进剂燃烧性能影响的机理,以期提高推进剂的燃速、拉伸强度和延伸率。

  • 2 实验部分

    2
  • 2.1 材料

    2.1

    硝化棉(NC,含氮量12.0%),工业纯,四川北方硝化棉股份有限公司;硝化甘油(NG),工业纯,西安近代化学研究所;普通Al粉,粒径3~5 μm,纯度大于99.5%,哈尔滨东轻金属粉业有限责任公司;催化剂为有机铅盐、有机铜盐和炭黑。碳纳米管(CNTs),规格见表1,深圳纳米港有限公司。

  • 2.2 试验方法及仪器

    2.2
  • 2.2.1 配方设计及推进剂样品制备

    2.2.1

    基础配方(配方0#)组成为NC+NG含量为78%,催化剂5%,铝粉7.1%,其它9.2%。在基础配方基础上加入不同规格(见表1)的碳纳米管0.7%,设计6种配方(1#~6#),其编号与表1中CNTs的编号相对应。

    表1 碳纳米管规格

    Table 1 The specifications of CNTs

    No.diameter / nmlength / μm
    1#10-20<2
    2#20-40<2
    3#40-60<2
    4#10-20>5
    5#20-40>5
    6#40-60>5
    表1
                    碳纳米管规格

    样品制备:采用吸收‑离心驱水‑光辊压延‑塑化成型‑切成药条的工艺制备,制备的药条处理为Φ5 mm×160 mm后经聚乙烯醇包覆用于燃速测试,1.5 mm×5 mm×15 mm的不包覆样品用于燃烧火焰照片、结构测试,Φ7 mm×20 mm不包覆样品用于燃烧波温度分布测试。

  • 2.2.2 燃速测试

    2.2.2

    采用GJB770B-2005方法706.1“燃速 靶线法”测试样品燃速。将已处理的Φ5 mm×160 mm药柱包覆后,在氮气气氛中测量燃速;再根据Vieille燃速与压强关系式 r = a p n [1],计算压强指数n,式中r为燃速,mm·s-1;p为压强,MPa;a为常数。

  • 2.2.3 拉伸强度测试

    2.2.3

    按照GJB770B-2005方法413.1“抗拉强度、断裂强度、伸长率和断裂伸长率 单向拉伸法”要求将推进剂样品加工成哑铃状,在40,20,50 ℃下测试其拉伸强度和延伸率。

  • 2.2.4 燃烧火焰结构单幅照相试验

    2.2.4

    试验时将不包覆的1.5 mm×5 mm×15 mm的推进剂样品垂直安装在自制的点火架上,然后把点火架放入四视窗透明燃烧室,充氮气达到预定压力,并形成自下而上的流动氮气气氛,以保证样品燃烧时火焰的清晰度,同样用镍铬丝从上端点燃试样,在适当时候启动照相机拍摄,即可得到推进剂稳态燃烧时的火焰结构照片。

  • 2.2.5 燃烧波温度分布试验

    2.2.5

    将“Π”型双钨铼微热电偶(Φ25 μm)埋没在自制的Φ7 mm×20 mm用特制刀具切断的推进剂药柱中间,然后用聚乙烯醇包覆侧面数次,晾干待用。将嵌入的热电偶的试样垂直地装在点火架上,放置于专用的四视窗透明燃烧室内,充氮气使燃烧室内达到预定压力,采用20 V直流电作点火电源,通过程序控制器用Φ0.15 mm镍铬合金丝从样品上端点燃试样,推进剂燃烧后自动触发采集系统记录热电偶的输出信号,随着推进剂的层层燃烧,热电偶逐渐接近燃烧表面,然后达到燃烧表面并通过气相区,最后通过火焰区,这样微型热电偶就测得了推进剂从凝聚相到气相区整个燃烧波的温度分布曲线。

  • 2.2.6 电镜扫描试验

    2.2.6

    采用电子扫描显微镜(QUANTA‑600型,荷兰FEI公司)测试碳纳米管的形貌以及推进剂样品表面以及推进剂燃烧后的燃面形貌和元素。

  • 2.2.7 热分解性能(DSC)试验

    2.2.7

    采用德国Netzsch公司DSC204HP型高压差示扫描量热仪测试样品在压强为6 MPa下的恒压热分解性能。氮气充压,铝样品池,样品用量约1 mg,升温速率为10 ℃·min-1

  • 3 结果与讨论

    3
  • 3.1 CNTs对Al‑CMDB推进剂燃烧性能的影响

    3.1

    6~20 MPa下,0#配方及添加碳纳米管的6种配方燃速测试结果及压强指数的计算结果见表2

    表2 CNTs对Al‑CMDB推进剂燃烧性能的影响

    Table 2 Effects of CNTs on the combustion properties of Al‑CMDB propellants

    No.r / mm·s-1n
    6 MPa8 MPa10 MPa12 MPa15 MPa18 MPa20 MPa6-20 MPa
    0#14.8818.2321.5823.6225.3928.3530.210.57
    1#19.8622.3625.6727.3830.2132.5734.170.45
    2#17.8020.6823.6226.5128.3630.2832.640.49
    3#17.6120.3823.5325.8127.4729.5231.410.47
    4#20.4823.0526.2728.5230.6432.5934.480.43
    5#17.7620.3123.9526.5829.1331.2532.900.52
    6#16.5019.8423.0325.6827.9429.5432.360.54

    从表2中的0#配方和1#6#配方可以看出,在Al‑CMDB推进剂中加入0.7%碳纳米管能全面提高推进剂的燃速(其中配方1#在6 MPa的燃速提高4.98 mm·s-1,20 MPa的燃速提高3.96 mm·s-1),高压区燃速的提高幅度相比中低压区的要小,因此降低了压强指数,1#配方6~20 MPa的压强指数从0.57降低为0.45。

    对比1#2#3#配方可以看出,在碳纳米管长度相同时(均小于2 μm),推进剂的燃速随碳纳米管管径的增大而下降。随着碳纳米管管径的增大,推进剂10 MPa的燃速依次降低2.05 mm·s-1,0.09 mm·s-1,推进剂的压强指数随碳纳米管管径的增大先增大然后减小,但变化幅度较小。对比4#5#6#配方可以得出,当碳纳米管的管径在10~60 nm范围内时,碳纳米管管径越小,推进剂的燃速越高,而且压强指数也随管径的增大而增大。对比1#配方和4#配方,可以看出,在管径为10~20 nm的情况下,碳纳米管的长度越大,推进剂的燃速越高。

    总的来说,在相同长度的条件下,碳纳米管的管径越小,推进剂的燃速越高。这可能是因为管径小,则可加入更多碳纳米管,同时也提高了碳纳米管的比表面,增大碳纳米管与推进剂其它组分的接触面积,提高催化效果,有助于提高燃速。

  • 3.2 CNTs对Al‑CMDB推进剂力学性能的影响

    3.2

    碳纳米管的扫描电镜图片见1,从图1中可以看出CNTs管径较均匀,管径尺寸为纳米级。

    图1
                            CNTs扫描电镜图

    图1 CNTs扫描电镜图

    Fig.1 SEM image of CNTs

    选择基础配方(0#)及含碳纳米管、相对燃速较高的4#配方制成相应的样品在-40,20,50 ℃下测试其拉伸强度和延伸率,结果见表3

    从表3可以看出,在低温-40 ℃、常温20 ℃和高温50 ℃下,碳纳米管的加入使推进剂的拉伸强度均有提高,其中低温时的拉伸强度从不含碳纳米管的20.9 MPa提高到22.28 MPa,约提高6.6%;拉伸强度在常温20 ℃时提高24%,在高温50 ℃时提高17.6%。添加碳纳米管对推进剂的延伸率也有较大幅度的提高。低温-40 ℃的延伸率从12.04%增加到17.9%,相对增加48.7%,常温20 ℃时增加36.6%,高温50 ℃时增加29.1%。

    表3 碳纳米管对Al‑CMDB推进剂力学性能的影响

    Table 3 Effects of CNTs on the mechanical properties of Al‑CMDB propellant

    No.T / ℃δm / MPaεm / %
    0#-4020.9012.04
    202.6635.14
    500.5147.40
    4#-4022.2817.90
    203.3048.01
    500.6061.20
    表3
                    碳纳米管对Al‑CMDB推进剂力学性能的影响

    NOTE: T is the temperature. δm is the tensile strength. εm is the ductility.

    根据文献报道,碳纳米管具有高模量、高强度的特点,抗拉强度达50~200 GPa,是钢的100倍,弹性模量达1 TPa,与金刚石相当,约为钢的5倍,碳纳米管硬度与金刚石相当,却有良好的柔韧[17,18,19,20,21]。为了揭示碳纳米管对推进剂力学性能影响的原因,对推进剂样品(4#)进行了SEM分析,结果如图2所示。4#配方是在0#配方的基础上加入碳纳米管,因为碳纳米管加入量少以及碳纳米管团聚的原因,4#配方的表面电镜扫描图必然出现有的部位含碳纳米管,有的部位不含碳纳米管,不含碳纳米管的部位基本与0#配方保持一致,因此,从4#配方的电镜图就可以观察碳纳米管在推进剂样品中的形貌分布,从而分析其对推进剂力学性能的影响原因。从图2可以看出,碳纳米管在推进剂中成簇地集中在一起,碳纳米管的两端分别与推进剂中的黏合剂缠结,当推进剂受到拉伸作用时,碳纳米管自身的高抗拉强度及高柔韧性就起到了补强的作用。这可能就是推进剂力学性能和延伸率明显增长的原因。

    图2
                            4#配方进剂样品扫描电镜图

    图2 4#配方进剂样品扫描电镜图

    Fig.2 SEM images of propellant sample of formulation 4#

  • 4 碳纳米管对推进剂燃烧性能影响机理分析

    4
    图 4
                            CNTs对Al‑CMDB推进剂(0#,4#)燃烧波温度的影响

    图 4 CNTs对Al‑CMDB推进剂(0#,4#)燃烧波温度的影响

    Fig.4 Effect of CNTs on the combustion wave temperature of Al‑CMDB propellant(0#,4#)

    为揭示CNTs对Al‑CMDB推进剂燃烧性能的影响机理,选择0#配方和燃速相对较高的4#配方作为对比研究,在2,4,6 MPa下拍摄了0#配方和4#配方的火焰照片,如图3所示;6 MPa下测试了这两种配方样品的燃烧波温度分布,结果如图4所示;这两种配方6 MPa下的熄火表面电镜照片见图5;6 MPa下熄火表面元素含量分析取样区域见6,测试图6所示区域的元素含量,结果见表4;这两种配方的DSC曲线如图7所示。

    图3
                            0#配方和4#配方的火焰照片

    a. 0# b. 4#

    图3 0#配方和4#配方的火焰照片

    Fig.3 Flame photographs of formulations 0# and 4#

    图7
                            0#配方和4#配方的DSC曲线

    图7 0#配方和4#配方的DSC曲线

    Fig.7 DSC curves of formulations 0# and 4#

    表 4 0#配方和4#配方熄火表面元素含量

    Table 4 The element content of flameout surface of formulations 0# and 4#%

    formulationCOAlCuPbNi
    0#52.4537.553.713.250.692.35
    4#53.0035.276.093.020.492.13
    表 4
                    0#配方和4#配方熄火表面元素含量
    图 6
                            0#配方和4#配方熄火表面元素含量分析取样区域

    a. 0#,6 MPa b. 4#, 6 MPa

    图 6 0#配方和4#配方熄火表面元素含量分析取样区域

    Fig.6 The sampling region of flameout surface of formulations 0# and 4# for element content analysis

    图 5
                            0#配方和4#配方的熄火表面扫描电镜照片

    a. 0#, 6 MPa b. 4#, 6 MPa

    图 5 0#配方和4#配方的熄火表面扫描电镜照片

    Fig.5 The SEM images of flameout surface of formulations 0# and 4#

    从图3可以看出,加入碳纳米管不影响推进剂的预热区、暗区,嘶嘶区以及发光火焰区等火焰结构。从图4可以看出,加入碳纳米管对推进剂的发光火焰温度没有明显影响,但使火焰温度达到最高的时间明显变短;在达到最高温度前相同的时间点,加入碳纳米管的推进剂火焰温度更高。从图5可以看出,加入了碳纳米管的样品其熄火表面的“沟壑”更浅,燃烧生成的三氧化二铝球体分散得更加均匀。从图6及表4可以看出,加入碳纳米管后推进剂熄火表面的Al元素含量提高。从图7中的DSC曲线可以看出,加入碳纳米管对推进剂的分解温度影响较小,仅仅使分解峰温后移1.4 ℃,但在碳纳米管促进推进剂分解时放出更多的热量,从2573 kJ·kg-1增加到2768 kJ·kg-1,约增加7.6%。推进剂燃速提高的原因可能是由于碳纳米管的导热性能优良,在燃烧时碳纳米管将燃面热量导入推进剂固相,促进固相区的热分解,使火焰温度达到最高的时间明显变短,使火焰达到最高温前的升温速率更快,促进推进剂分解时放出更多的热量,因此提高了推进剂燃速。

  • 5 结 论

    5

    (1)在Al‑CMDB推进剂中加入0.7%碳纳米管能全面提高推进剂6~20 MPa的燃速,其中6 MPa的燃速提高最多,为4.98 mm·s-1;6~20 MPa的压强指数从0.57降为0.45。

    (2)管径10~20 nm的碳纳米管能提高Al‑CMDB推进剂高低常温的拉伸强度及延伸率,其中常温20 ℃的拉伸强度提高24%;低温-40 ℃的延伸率从12.04%增加到17.9%,增加48.7%。

    (3)Al‑CMDB推进剂燃速提高的原因可能是由于碳纳米管的导热性能优良,在燃烧时碳纳米管将燃面热量导入推进剂固相,促进固相区的热分解,因此提高了推进剂燃速。碳纳米管由于自身的高强度、高柔韧性以及与黏合剂的缠结作用,提高了推进剂的拉伸强度和延伸率。

  • 参考文献

    • 1

      袁志锋,赵凤起,张教强,等.纳米镍粉对Al‑CMDB和CL‑20‑CMDB推进剂燃烧性能的影响[J] .火炸药学报, 2016,39(5): 99-103.

      YUAN Zhi‑feng, ZHAO Feng‑qi, ZHANG Jiao‑qiang, et al. Effect of nano‑Nickel on combustion properties of Al‑CMDB and CL‑20‑CMDB propellants[J].Chinese Journal of Explosives and Propellants, 2016, 39(5): 99-103.

    • 2

      张晓宏,龙村,王铁成,等.纳米级氧化铅对双基推进剂燃烧性能影响研究[J] . 火炸药学报, 2002, 25(2): 39-41.

      ZHANG Xiao‑hong,LONG Cun,WANG Tie‑cheng,et al. Study on effects of nano‑PbO on the combustion properties of Double‑base propellant[J]. Chinese Journal of Explosives and Propellants, 2002, 25(2): 39-41.

    • 3

      赵凤起,洪伟良,陈沛,等.纳米催化剂对双基系推进剂燃烧性能的影响[J] .火炸药学报, 2004, 27(3): 13-16.

      ZHAO Feng‑qi, HONG Wei‑liang,CHEN Pei,et al. Effect of CNTs catalysts on the combustion properties of DB/RDX‑CMDB propellants[J]. Chinese Journal of Explosives and Propellants, 2004, 27(3): 13-16.

    • 4

      刘海飞,王梦雨,贾贤赏,等.纳米金属粉末的应用[J] .矿冶, 2004, 13(3): 65-67.

      LIU Hai‑Fei,WANG Meng‑yu,JIA Xian‑shang,et al. Synthesis of nm meter powder[J].Mining And Metallourgy, 2004, 13(3): 65-67.

    • 5

      庞维强,张教强,朱峰.新型纳米材料在固体推进剂中的应用[J] .纤维复合材料, 2005, 22(1): 12-15.

      PANG Wei‑qiang,ZHANG Jiao‑qiang,ZHU Feng,et al. Reseach of application of a new‑type of nmmeter materials in solid propellants[J]. Fiber Composites, 2005, 22(1): 12-15.

    • 6

      夏强,李疏芬,王桂兰,等.超细铝粉在AP/HTPB推进剂中的燃烧研究[J] .固体火箭技术, 1994(4): 35-42.

      XIA Qiang,LI Shu‑fen,WANG Gui‑lan,et al. Study on effects of superfine aluminum powder on the combustion properies of AP/HTPB propellant[J]. Journal of Solid Rocket Technology,1994(4): 35-42.

    • 7

      陈雪莉,王瑛,王宏,等.铝粉含量及粒径对CMDB推进剂性能的影响[J] .含能材料, 2008, 16(6): 721-723.

      CHENG Xue‑li,WANG Yin,WANG Hong,et al. Effects of aluminum powder content and granularity on characteristics of CMDB propellant[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(6): 721-723.

    • 8

      楚广,唐永建,楚士晋,等.纳米Al粉的结构和性能表征[J] .含能材料, 2006, 14(3): 22-230.

      CHU Guang,TANG Yong‑jian,CHU Shi‑jin,et al. Characterization of structure and properties of Al nm Particles[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(3):22-230.

    • 9

      李颖,宋武林,谢长生,等.纳米铝粉在固体推进剂中的应该进展[J] .兵工学报, 2005, 26(1): 121-125.

      LI Ying,SONG Wu‑lin,XIE Chang‑sheng,et al. Progress in the application of nm aluminum powder in solid propellants[J].Acta Armamentarii, 2005, 26(1): 121-125.

    • 10

      袁志锋,王江宁,张超,等.纳米材料对双基和改性双基推进剂燃烧性能的影响[J] .火炸药学报, 2013, 36(3): 69-72.

      YUAN Zhi‑feng,WANG Jiang‑ning,ZHANG Chao,et al. Effect of nm‑materials on combustion properties of DB and CMDB propellants[J]. Chinese Journal of Explosives and Propellants, 2013, 36(3): 69-72.

    • 11

      赵凤起,仪建华,安亭,等.固体推进剂燃烧催化剂[M].北京:国防工业出版社, 2016:22.

      ZHAO Feng‑qi,YI Jian hua,AN Ting,et al.Combustion catalysts for solid propellant[M]. Beijing: National Defence Industry Press,2016:22.

    • 12

      裴江峰,赵凤起,宋秀铎,等.轻质碳材料及其复合物在固体推进剂中的应用研究进展[J] .火炸药学报, 2014, 37(2): 1-6.

      PEI Jiang‑feng,ZHAO Feng‑qi,SONG Xiu‑duo,et al. Research progress in the application of lightweight carbon materials and their composites in solid rocket propellants[J].Chinese Journal of Explosives and Propellants, 2014, 37(2): 1-6.

    • 13

      蔺向阳,骞伟中,李达,等.碳纳米管在双基推进剂中的分散技术[J] .固体火箭技术, 2011, 34(3): 335-338.

      IIN Xiang‑yang,QIAN Wei‑zhong, LI Da,et al. Dispersing technology of carbon nanotubes in double base propellant[J]. Journal of Solid Rocket Technology, 2011, 34(3): 335-338.

    • 14

      顾克壮,李晓东,杨荣杰.碳纳米管对高氯酸铵燃烧和热分解的催化作用[J] .火炸药学报, 2006, 29(1): 48-51.

      GU Ke‑zhuang,LI Xiao‑dong,YANG Rong‑jie. Catalytic action on combustion and thermal decomposition of AP with CNTs [J].Chinese Journal of Explosives and Propellants, 2006, 29(1):48-51.

    • 15

      王晗,赵凤起,李上文,等.碳物质在固体推进剂中的功能及其作用机理[J] .火炸药学报, 2006, 29(4): 32-35.

      WANG Han,ZHAO Feng‑qi,LI Shang‑wen,et al. Function of carbon materials used in solid propellants and their action mechanism[J].Chinese Journal of Explosives and Propellants, 2006, 29(4): 32-35.

    • 16

      刘建勋,李凤生,姜炜,等.纳米NiO/CNTs和CO3O4/CNTs对AP及HTPB/AP推进剂热分解的影响[J] .固体火箭技术, 2007, 30(3): 243-247.

      LIU Jian‑xun,LI Feng‑sheng,JIANG Wei,et al. Effect of nano NiO/CNTs and CO3O4/CNTs on thermal decomposition of AP and HTPB/AP propellants[J]. Journa1 of Solid Rocket Technology, 2007, 30(3): 243-247.

    • 17

      Tombler T W,Zhou C M, Alexsetev L,et al. Reversible eletromechanical characteristics of carbon nano tubes under local‑probe manipulation[J]. Nature, 2000, 405: 769-772.

    • 18

      Coleman J N,Khan u,Blau W J,et al. Small but strong:a review of the mechanical properties of carbon nanotube‑polymer composites[J]. Carbon, 2006, 44(9): 1624-1652.

    • 19

      Iubineau G,Rahaman A. A review of strategies for improving the degradation properties of laminated continuous‑fiber/epoxy composites with carbon‑based nanoreinforcements[J]. Carbon, 2012, 50(7): 2377-2395.

    • 20

      范壮军, 王矗, 罗国华,等.碳纳米管和炭黑在橡胶体系增强的协同效应[J] .新型碳材料, 2008, 23(2): 149-153.

      FAN Zhuang‑jun, WANG Yao,LUO Guo‑hua, et al. The synergetic effect of carbon nanotubes and carbon black in a rubber system[J]. New Carbon Materials, 2008, 23(2): 149-153.

    • 21

      周文英,党智敏,丁小卫,等.聚合物基导热复合材料[M]. 北京:国防工业出版社,2017:55.

      ZHOU Wen‑ying,DANG Zhi‑min,DING Xiao‑wei,et al. Heat conductive polymer composites[M]. Beijing: National Defense Industry Press, 2017: 55.

袁志锋

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

邮 箱:2430837263@qq.com

作者简介:袁志锋(1980-),男,副研究员,从事固体推进剂配方与工艺研究。e‑mail:2430837263@qq.com

赵凤起

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

角 色:通讯作者

Role:Corresponding author

邮 箱:zhaofqi@163.com

作者简介:赵凤起(1963-),男,研究员,博士生导师,从事固体推进剂配方与性能研究。e‑mail:zhaofqi@163.com

宋秀铎

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

高红旭

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

郑伟

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

罗红艳

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

王克勇

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

No.diameter / nmlength / μm
1#10-20<2
2#20-40<2
3#40-60<2
4#10-20>5
5#20-40>5
6#40-60>5
No.r / mm·s-1n
6 MPa8 MPa10 MPa12 MPa15 MPa18 MPa20 MPa6-20 MPa
0#14.8818.2321.5823.6225.3928.3530.210.57
1#19.8622.3625.6727.3830.2132.5734.170.45
2#17.8020.6823.6226.5128.3630.2832.640.49
3#17.6120.3823.5325.8127.4729.5231.410.47
4#20.4823.0526.2728.5230.6432.5934.480.43
5#17.7620.3123.9526.5829.1331.2532.900.52
6#16.5019.8423.0325.6827.9429.5432.360.54
html/hncl/CJEM2018274/media/26cfd821-d053-44ec-b31c-bb1bdd01f52f-image001.png
No.T / ℃δm / MPaεm / %
0#-4020.9012.04
202.6635.14
500.5147.40
4#-4022.2817.90
203.3048.01
500.6061.20
html/hncl/CJEM2018274/media/26cfd821-d053-44ec-b31c-bb1bdd01f52f-image002.png
html/hncl/CJEM2018274/alternativeImage/26cfd821-d053-44ec-b31c-bb1bdd01f52f-F005.jpg
html/hncl/CJEM2018274/media/26cfd821-d053-44ec-b31c-bb1bdd01f52f-image006.png
html/hncl/CJEM2018274/media/26cfd821-d053-44ec-b31c-bb1bdd01f52f-image007.png
formulationCOAlCuPbNi
0#52.4537.553.713.250.692.35
4#53.0035.276.093.020.492.13
html/hncl/CJEM2018274/media/26cfd821-d053-44ec-b31c-bb1bdd01f52f-image003.png
html/hncl/CJEM2018274/media/26cfd821-d053-44ec-b31c-bb1bdd01f52f-image004.png

表1 碳纳米管规格

Table 1 The specifications of CNTs

表2 CNTs对Al‑CMDB推进剂燃烧性能的影响

Table 2 Effects of CNTs on the combustion properties of Al‑CMDB propellants

图1 CNTs扫描电镜图

Fig.1 SEM image of CNTs

表3 碳纳米管对Al‑CMDB推进剂力学性能的影响

Table 3 Effects of CNTs on the mechanical properties of Al‑CMDB propellant

图2 4#配方进剂样品扫描电镜图

Fig.2 SEM images of propellant sample of formulation 4#

图 4 CNTs对Al‑CMDB推进剂(0#,4#)燃烧波温度的影响

Fig.4 Effect of CNTs on the combustion wave temperature of Al‑CMDB propellant(0#,4#)

图3 0#配方和4#配方的火焰照片

Fig.3 Flame photographs of formulations 0# and 4# a. 0# b. 4#

图7 0#配方和4#配方的DSC曲线

Fig.7 DSC curves of formulations 0# and 4#

表 4 0#配方和4#配方熄火表面元素含量

Table 4 The element content of flameout surface of formulations 0# and 4#%

图 6 0#配方和4#配方熄火表面元素含量分析取样区域

Fig.6 The sampling region of flameout surface of formulations 0# and 4# for element content analysis a. 0#,6 MPa b. 4#, 6 MPa

图 5 0#配方和4#配方的熄火表面扫描电镜照片

Fig.5 The SEM images of flameout surface of formulations 0# and 4# a. 0#, 6 MPa b. 4#, 6 MPa

image /

无注解

无注解

无注解

T is the temperature. δm is the tensile strength. εm is the ductility.

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      袁志锋,赵凤起,张教强,等.纳米镍粉对Al‑CMDB和CL‑20‑CMDB推进剂燃烧性能的影响[J] .火炸药学报, 2016,39(5): 99-103.

      YUAN Zhi‑feng, ZHAO Feng‑qi, ZHANG Jiao‑qiang, et al. Effect of nano‑Nickel on combustion properties of Al‑CMDB and CL‑20‑CMDB propellants[J].Chinese Journal of Explosives and Propellants, 2016, 39(5): 99-103.

    • 2

      张晓宏,龙村,王铁成,等.纳米级氧化铅对双基推进剂燃烧性能影响研究[J] . 火炸药学报, 2002, 25(2): 39-41.

      ZHANG Xiao‑hong,LONG Cun,WANG Tie‑cheng,et al. Study on effects of nano‑PbO on the combustion properties of Double‑base propellant[J]. Chinese Journal of Explosives and Propellants, 2002, 25(2): 39-41.

    • 3

      赵凤起,洪伟良,陈沛,等.纳米催化剂对双基系推进剂燃烧性能的影响[J] .火炸药学报, 2004, 27(3): 13-16.

      ZHAO Feng‑qi, HONG Wei‑liang,CHEN Pei,et al. Effect of CNTs catalysts on the combustion properties of DB/RDX‑CMDB propellants[J]. Chinese Journal of Explosives and Propellants, 2004, 27(3): 13-16.

    • 4

      刘海飞,王梦雨,贾贤赏,等.纳米金属粉末的应用[J] .矿冶, 2004, 13(3): 65-67.

      LIU Hai‑Fei,WANG Meng‑yu,JIA Xian‑shang,et al. Synthesis of nm meter powder[J].Mining And Metallourgy, 2004, 13(3): 65-67.

    • 5

      庞维强,张教强,朱峰.新型纳米材料在固体推进剂中的应用[J] .纤维复合材料, 2005, 22(1): 12-15.

      PANG Wei‑qiang,ZHANG Jiao‑qiang,ZHU Feng,et al. Reseach of application of a new‑type of nmmeter materials in solid propellants[J]. Fiber Composites, 2005, 22(1): 12-15.

    • 6

      夏强,李疏芬,王桂兰,等.超细铝粉在AP/HTPB推进剂中的燃烧研究[J] .固体火箭技术, 1994(4): 35-42.

      XIA Qiang,LI Shu‑fen,WANG Gui‑lan,et al. Study on effects of superfine aluminum powder on the combustion properies of AP/HTPB propellant[J]. Journal of Solid Rocket Technology,1994(4): 35-42.

    • 7

      陈雪莉,王瑛,王宏,等.铝粉含量及粒径对CMDB推进剂性能的影响[J] .含能材料, 2008, 16(6): 721-723.

      CHENG Xue‑li,WANG Yin,WANG Hong,et al. Effects of aluminum powder content and granularity on characteristics of CMDB propellant[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(6): 721-723.

    • 8

      楚广,唐永建,楚士晋,等.纳米Al粉的结构和性能表征[J] .含能材料, 2006, 14(3): 22-230.

      CHU Guang,TANG Yong‑jian,CHU Shi‑jin,et al. Characterization of structure and properties of Al nm Particles[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(3):22-230.

    • 9

      李颖,宋武林,谢长生,等.纳米铝粉在固体推进剂中的应该进展[J] .兵工学报, 2005, 26(1): 121-125.

      LI Ying,SONG Wu‑lin,XIE Chang‑sheng,et al. Progress in the application of nm aluminum powder in solid propellants[J].Acta Armamentarii, 2005, 26(1): 121-125.

    • 10

      袁志锋,王江宁,张超,等.纳米材料对双基和改性双基推进剂燃烧性能的影响[J] .火炸药学报, 2013, 36(3): 69-72.

      YUAN Zhi‑feng,WANG Jiang‑ning,ZHANG Chao,et al. Effect of nm‑materials on combustion properties of DB and CMDB propellants[J]. Chinese Journal of Explosives and Propellants, 2013, 36(3): 69-72.

    • 11

      赵凤起,仪建华,安亭,等.固体推进剂燃烧催化剂[M].北京:国防工业出版社, 2016:22.

      ZHAO Feng‑qi,YI Jian hua,AN Ting,et al.Combustion catalysts for solid propellant[M]. Beijing: National Defence Industry Press,2016:22.

    • 12

      裴江峰,赵凤起,宋秀铎,等.轻质碳材料及其复合物在固体推进剂中的应用研究进展[J] .火炸药学报, 2014, 37(2): 1-6.

      PEI Jiang‑feng,ZHAO Feng‑qi,SONG Xiu‑duo,et al. Research progress in the application of lightweight carbon materials and their composites in solid rocket propellants[J].Chinese Journal of Explosives and Propellants, 2014, 37(2): 1-6.

    • 13

      蔺向阳,骞伟中,李达,等.碳纳米管在双基推进剂中的分散技术[J] .固体火箭技术, 2011, 34(3): 335-338.

      IIN Xiang‑yang,QIAN Wei‑zhong, LI Da,et al. Dispersing technology of carbon nanotubes in double base propellant[J]. Journal of Solid Rocket Technology, 2011, 34(3): 335-338.

    • 14

      顾克壮,李晓东,杨荣杰.碳纳米管对高氯酸铵燃烧和热分解的催化作用[J] .火炸药学报, 2006, 29(1): 48-51.

      GU Ke‑zhuang,LI Xiao‑dong,YANG Rong‑jie. Catalytic action on combustion and thermal decomposition of AP with CNTs [J].Chinese Journal of Explosives and Propellants, 2006, 29(1):48-51.

    • 15

      王晗,赵凤起,李上文,等.碳物质在固体推进剂中的功能及其作用机理[J] .火炸药学报, 2006, 29(4): 32-35.

      WANG Han,ZHAO Feng‑qi,LI Shang‑wen,et al. Function of carbon materials used in solid propellants and their action mechanism[J].Chinese Journal of Explosives and Propellants, 2006, 29(4): 32-35.

    • 16

      刘建勋,李凤生,姜炜,等.纳米NiO/CNTs和CO3O4/CNTs对AP及HTPB/AP推进剂热分解的影响[J] .固体火箭技术, 2007, 30(3): 243-247.

      LIU Jian‑xun,LI Feng‑sheng,JIANG Wei,et al. Effect of nano NiO/CNTs and CO3O4/CNTs on thermal decomposition of AP and HTPB/AP propellants[J]. Journa1 of Solid Rocket Technology, 2007, 30(3): 243-247.

    • 17

      Tombler T W,Zhou C M, Alexsetev L,et al. Reversible eletromechanical characteristics of carbon nano tubes under local‑probe manipulation[J]. Nature, 2000, 405: 769-772.

    • 18

      Coleman J N,Khan u,Blau W J,et al. Small but strong:a review of the mechanical properties of carbon nanotube‑polymer composites[J]. Carbon, 2006, 44(9): 1624-1652.

    • 19

      Iubineau G,Rahaman A. A review of strategies for improving the degradation properties of laminated continuous‑fiber/epoxy composites with carbon‑based nanoreinforcements[J]. Carbon, 2012, 50(7): 2377-2395.

    • 20

      范壮军, 王矗, 罗国华,等.碳纳米管和炭黑在橡胶体系增强的协同效应[J] .新型碳材料, 2008, 23(2): 149-153.

      FAN Zhuang‑jun, WANG Yao,LUO Guo‑hua, et al. The synergetic effect of carbon nanotubes and carbon black in a rubber system[J]. New Carbon Materials, 2008, 23(2): 149-153.

    • 21

      周文英,党智敏,丁小卫,等.聚合物基导热复合材料[M]. 北京:国防工业出版社,2017:55.

      ZHOU Wen‑ying,DANG Zhi‑min,DING Xiao‑wei,et al. Heat conductive polymer composites[M]. Beijing: National Defense Industry Press, 2017: 55.