CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
YeC, GaoH, BoatzJ A, et al. Polyazidopyrimidines: high‑energy compounds and precursors to carbon nanotubes[J]. Angewandte Chemie, 2006, 118(43): 7420-7423.
参考文献 2
王建龙, 欧育湘, 陈博仁, 等. N,N′‑双(间氯苯基)‑3, 4‑二氨基呋咱的合成[J]. 含能材料, 2003, 11(4): 213-214.
WANGJian‑long,Yu‑xiangOU,CHENBo‑ren,et al. Synthesis of N,N‑bis(3‑chlorophenyl)‑3,4‑diaminofurazan[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2003, 11(4): 213-214.
参考文献 3
ZhangJ, ParrishD A, ShreeveJ M. Curious cases of 3,6‑dinitropyrazolo [4,3‑c] pyrazole‑based energetic cocrystals with high nitrogen content: an alternative to salt formation[J]. Chemical Communications, 2015, 51(34): 7337-7340.
参考文献 4
HeC, ShreeveJ M. Potassium 4,5‑bis (dinitromethyl) furoxanate: a green primary explosive with a positive oxygen balance[J]. Angewandte Chemie, 2016, 128(2): 782-785.
参考文献 5
TangY, HeC, ShreeveJ M. A furazan‑fused pyrazole N‑oxide via unusual cyclization[J]. Journal of Materials Chemistry A,2017, 5(9): 4314-4319.
参考文献 6
张德雄, 张衍, 王琦. 呋咱系列高能量密度材料的发展[J]. 固体火箭技术, 2004, 27(1): 32-36.
ZHANGDe‑xiong,ZHANGYan,WANGQi. Advances in high energy density matter of furazan series[J]. Journal of Solid Rocket Technology,2004, 27(1): 32-36.
参考文献 7
顾昊, 马卿, 杨红伟, 等. 4,4′‑二(氯偕二硝基甲基)‑3,3′‑偶氮呋咱的晶体结构和热稳定性[J]. 含能材料, 2017, 25(7): 585-590.
GUHao,QingMA,YANGHong‑wei,et al. Crystal structure and thermal stability of 4,4′‑bis(chlorodinitromethyl)‑3,3′‑azofurazan[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2017, 25(7): 585-590.
参考文献 8
ChavezD E, HiskeyM A, GilardiR D. 3,3′‑azobis(6‑amino‑1,2,4,5‑tetrazine): a novel high‑nitrogen energetic material[J]. Angewandte Chemie International Edition, 2000, 39(10): 1791-1793.
参考文献 9
LiY C, QiC, LiS H, et al. 1,1′‑azobis‑1,2,3‑triazole: a high‑nitrogen compound with stable N8 structure and photochromism[J]. Journal of the American Chemical Society, 2010, 132(35): 12172-12173.
参考文献 10
BolotinaN, KirschbaumK, PinkertonA A. Energetic materials: α‑NTO crystallizes as a four‑component triclinic twin[J]. Acta Crystallographica Section B, 2005, 61(5): 577-584.
参考文献 11
LeeK Y, ChapmanL B, CoburaM D. 3‑nitro‑1,2,4‑triazol‑5‑one, a less sensitive explosive[J]. Journal of Energetic Materials, 1987, 5(1): 27-33.
参考文献 12
BodduV M, ViswanathD S, GhoshT K, et al. 2,4,6‑triamino‑1,3,5‑trinitrobenzene (TATB) and TATB‑based formulations‑a review[J]. Journal of Hazardous Materials, 2010, 181(1-3): 1-8.
参考文献 13
肖建雄, 杜小利, 乔丽燕, 等. 4,4′‑偶氮‑1H‑1,2,4‑三唑‑5‑酮铵盐AZTO·H2O的制备及热化学性质[J]. 含能材料, 2005, 23(8): 741-745.
XIAOJian‑xiong,DUXiao‑li,QIAOLi‑yan,et al. Preparation and thermal properties of 4,4′‑azo‑1H‑1,2,4‑triazol‑5‑one ammonium salt[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2005, 23(8): 741-745.
参考文献 14
邓沐聪, 王毅, 张文全, 等. 5‑甲基‑4‑硝基‑1H‑吡唑‑3‑(2H)‑酮及其含能离子化合物的合成与性能[J]. 含能材料, 2017, 25(8): 646-650.
DENGMu‑cong,WANGYi,ZHANGWen‑quan,et al. Synthesis and properties of 5‑methyl‑4‑nitro‑1H‑pyrazol‑3‑(2H)‑one and its energetic ion compounds[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(8): 646-650.
参考文献 15
ThottempudiV, ZhangJ, HeC, et al. Azo substituted 1,2,4‑oxadiazoles as insensitive energetic materials[J]. RSC Advances, 2014, 4(92): 50361-50364.
参考文献 16
XuZ, ChengG, YangH, et al. A facile and versatile synthesis of energetic furazan‑functionalized 5‑nitroimino‑1,2,4‑triazoles[J]. Angewandte Chemie International Edition, 2017, 56(21): 5877-5881.
参考文献 17
罗义芬, 毕福强, 王伯周, 等. 1,1'‑二羟基‑3,3'‑二硝基‑5,5'‑联‑1,2,4‑三唑含能离子盐合成, 晶体结构及性能[J]. 含能材料, 2017, 25(10): 848-852.
LUOYi‑fen,BIFu‑qiang,WANGBo‑zhou,et al. Synthesis, crystal structure and performance of 3,3′‑dinitro‑5,5′‑bis‑1,2,4‑triazole‑1,1′‑diolate energetic ionic salts[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(10): 848-852.
参考文献 18
张朝阳. 含能材料能量‑安全性间矛盾及低感高能材料发展策略[J]. 含能材料, 2018, 26(1): 2-10.
ZHANGChao‑yang. On the energy and safety contradiction of energetic materials and the strategy for developing low‑sensitive high‑energetic materials[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2018, 26(1): 2-10.
参考文献 19
FrischM J, TrucksG W, SchlegelH B, et al. Gaussian 09 Revision D. 01, 2009[CP]. Gaussian Inc. Wallingford CT, 2009.
参考文献 20
SućeskaM. Evaluation of detonation energy from EXPLO5 computer code results[J]. Propellants, Explosives, Pyrotechnics, 1999, 24(5): 280-285.
目录 contents

    摘要

    以二氰胺钠为原料,经环化、偶联、硝化三步反应分别合成了5‑酮‑3‑(5′‑氨基‑3′‑偶氮异呋咱)‑异呋咱(BAKIF)和5,5′‑二酮‑3,3′‑偶氮异呋咱(BDKIF)。采用溶剂挥发法从甲醇中得到了BAKIF·2H2O和BDKIF的单晶。利用X‑射线单晶衍射技术对它们的单晶结构进行了表征。用DSC‑TG研究了它们的热稳定性。采用EXPLO5预测了它们的的爆轰性能。结果表明,BAKIF·2H2O分子在173 K下晶体密度为1.645 g·cm-3,该晶体属于正交晶系,P212121空间群,晶胞参数为a=4.6661(4) Å,b=13.5836(10) Å,c=14.8537(10) Å,V=941.46(12) Å3Z=4,μ=0.149 mm-1F(000)=480。BDKIF分子在173 K下晶体密度为1.708 g·cm-3,该晶体属于三方晶系,R‑3空间群,晶胞参数为a=20.4183(12) Å,b=20.4183(12) Å,c=4.8017(7) Å,V=1733.7(3) Å3Z=9,μ=0.153 mm-1F(000)=900。5 ℃·min-1时,BAKIF和BDKIF的放热峰温度分别为290.01 ℃和149.75 ℃。BAKIF的理论爆速和理论爆压分别为7292 m·s-1和21.5 GPa,BDKIF的理论爆速和理论爆压分别为7363 m·s-1和20.7 GPa,均优于TNT,认为它们是潜在的钝感含能材料。

    Abstract

    3‑(5′‑Amino‑3′‑diazenyl‑1′,2′,4′‑oxadiazol)‑5‑one‑1,2,4‑oxadiazol (BAKIF) and 3,3′‑azo‑1,2,4‑oxadiazol‑5,5′‑dione (BDKIF) were synthesized respectively via three step reactions of cyclization, coupling and nitrification using sodium dicyanamide as raw material. The single crystals of BAKIF and BDKIF were obtained by solvent evaporation method from methanol. Their crystal structures were characterized by X‑ray single‑crystal diffraction technique. Their thermal stabilities were studied by DSC‑TG. Their detonation performances were predicted by EXPLO5. The results show that the crystal density of BAKIF·2H2O molecule is 1.645 g·cm-3 at 173 K. The crystal belongs to orthorhombic system, space group P212121 with cell parameters of a=4.6661(4) Å, b=13.5836(10) Å, c=14.8537(10) Å, V=941.46(12) Å3, Z=4, μ=0.149 mm-1, F(000)=480. The crystal density of BDKIF molecule is 1.708 g·cm-3 at 173 K. The crystal belongs to trigonal system, space group R‑3 with cell parameters of a=20.4183(12) Å, b=20.4183(12) Å, c=4.8017(7) Å, V=1733.7(3) Å3, Z=9, μ=0.153 mm-1, F(000)=900. The exothermic peak temperature of BAKIF and BDKIF at 5 ℃·min-1 is 290.01 ℃ and 149.75 ℃, respectively. Theoretical detonation velocity and theoretical detonation pressure are 7292 m·s-1 and 21.5 GPa for BAKIF, and 7363 m·s-1 and 20.7 GPa for BDKIF, which are superior to those of TNT. Considering that they are potential insensitive energetic materials.

  • 1 引 言

    在世界范围内,含能材料的研究热度一直不减,但现在使用的含能材料大多数都是20世纪开发的,如何研究出新的高能低感含能材料成为各国武器行业的焦[1]。其中,噁二唑类五元氮氧杂环对设计含C、H、O、N的高能低感化合物是一个非常有效的结构单元。噁二唑环由于氮氧原子的电负性较高,且氮杂芳环体系能形成类苯类结构的大π键,具有钝感、热稳定等性[2,3,4,5]。噁二唑环可以连接氨基,偶氮,叠氮等基团,同时也引入了更多的修饰位点,便于对其能量和感度的匹配进行调[6,7]。有实验结果表明,将偶氮基团引入富氮杂环体系中,不仅降低了含能化合物的感度,还显著增加了含能化合物的生成[8,9]

    酮类含能材料因为羰基的引入增大了共轭体系,同时可加强分子间氢键作用,使结构更加稳[10],这也使得酮类含能材料感度较低。3‑硝基‑1,2,4‑三唑‑5‑酮(NTO)是近年来广受关注的酮类高能低感含能材料,其密度达1.93 g·cm-3,爆轰性能接近黑索今(RDX),机械感度接近三氨基三硝基苯(TATB[11,12]。肖建雄[13]以4‑氨基‑1,2,3‑三唑‑5‑酮(ATO)为原料,合成出新型高能酮类偶氮铵盐4,4′‑偶氮‑1,2,4‑三唑‑5‑酮铵盐,其临界爆炸温度为233.1 ℃。邓沐聪[14]合成5‑甲基‑4‑硝基‑吡唑‑3‑酮,其密度为1.65 g·cm-3,分解温度为235 ℃,撞击感度为12 J。Thottempuli[15]利用100% HNO3以及HNO3H2SO4硝化体系对5,5′‑二氨基‑3,3′‑偶氮异呋咱进行硝化,均未得到5,5‑二硝氨基‑3,3′‑偶氮异呋咱,而采用HNO3‑Ac2O为硝化剂,得到5,5′‑二酮‑3,3′‑偶氮异呋咱(BDKIF),产率54%。其密度为1.70 g·cm-3,撞击感度大于40 J,比TNT钝感,是一种新型钝感含能材料。但没有得到BDKIF的晶体结构,并未对BDKIF的晶体结构进一步分析。

    鉴于含能材料中羰基的作用以及偶氮噁二唑环的性质,本研究以二氰胺钠为原料,经环化,偶联,硝化三步反应合成出基于异呋咱酮骨架结构的含能化合物5‑酮‑3‑(5′‑氨基‑3′‑偶氮异呋咱)‑异呋咱(BAKIF)以及5,5′‑二酮‑3,3′‑偶氮异呋咱(BDKIF)。通过筛选溶剂在无水甲醇中采用溶剂挥发法得到BAKIF和BDKIF的单晶,并利用X‑射线单晶衍射仪对单晶进行了分析。采用差示扫描量热分析研究对其热性能进行测试,为其进一步研究和测试提供参考。

  • 2 实验部分

  • 2.1 试剂与仪器

    试剂:二氰胺钠为分析纯,购自韶远科技(上海)有限公司;盐酸羟胺为分析纯,购自上海泰坦科技股份有限公司;无水乙醇,无水甲醇为分析纯,购自成都科龙试剂有限公司;高锰酸钾,浓盐酸为分析纯,购自国药集团化学试剂有限公司;100%硝酸为自制。

    仪器:XRD单晶衍射采用Bruker SMART APEX Ⅱ CCD面探X射线单晶衍射仪;瑞士Metter Toledo公司差示扫描量热—热重联用仪(TGA/DSC 3+)。

  • 2.2 实验过程

    以二氰胺钠为原料,通过一步关环反应制得3,5‑二氨基异呋咱,在酸性高锰酸钾条件下偶联制得5,5′‑二氨基‑3,3′‑偶氮异呋咱(1),最后在不同温度下硝化分别制得BAKIF和BDKIF。合成路线如Scheme 1所示。

    Scheme 1 Synthetic route of compounds BAKIF and BDKIF

  • 2.2.1 化合物1的合成

    称取10 g二氰胺钠和7.78 g盐酸羟胺加入到250 mL三口烧瓶中。量取100 mL无水乙醇加入到烧瓶中,在室温下搅拌12 h,过滤得到滤液。将滤液旋转蒸发除去,自然干燥,得到8 g 3,5‑二氨基‑1,2,4‑噁二唑,为白色固体,得率71%。

    取5 g 3,5‑二氨基‑1,2,4‑噁二唑加入到250 mL三口烧瓶中,向内加入75 mL乙腈和40 mL浓盐酸并开始搅拌。称取7.9 g高锰酸钾,分批缓慢添加到混合溶液中。加热至40~50 ℃反应8 h。加入200 mL水稀释,滴加5%过氧化氢溶液除去多余的高锰酸钾,过滤得到黄色固体,自然干燥,得到3.2 g化合物1,得率64%。

  • 2.2.2 BAKIF的合成

    取0.5 g 5,5′‑二氨基‑3,3′‑偶氮异呋咱,分批缓慢添加到2 mL 100%纯硝酸中,在0 ℃下反应12 h,用冰水淬灭,用无水乙醚萃取多次,合并萃取后的无水乙醚,用无水硫酸钠干燥,旋转蒸发除去无水乙醚,制得黄色固体BAKIF 0.38 g,得率76%。

  • 2.2.3 BDKIF的合成

    取0.5 g 5,5′‑二氨基‑3,3′‑偶氮异呋咱,分批缓慢添加到5 mL 100%纯硝酸中,常温下反应3 h,用冰水淬灭析出固体,过滤,用冰水洗涤滤渣,晾干,得到黄色固体BDKIF 0.41 g,得率81%。

  • 2.2.4 BAKIF和BDKIF的单晶培养

    取适量BAKIF和BDKIF,先后分别以无水乙醇、甲醇、丙酮、氯仿、乙腈、甲醇水溶液作为溶剂,进行单晶培养。采用溶剂挥发法,在甲醇水溶液中得到BAKIF·2H2O单晶,在无水甲醇中得到不含溶剂分子的BDKIF单晶。

  • 3 结果与讨论

  • 3.1 BAKIF和BDKIF的单晶结构表征和分析

    选取尺寸合适的BAKIF和BDKIF的单晶置于X‑射线单晶衍射仪上,采用经石墨单色化的Mo Kα射线(λ=0.71073Å)以ω‑θ方式扫描,并收集X‑射线单晶衍射数据。各化合物的结构通过SHELX‑97程序用直接法解得,对所有非氢原子进行各向异性修正,同时运用全矩阵最小二乘法进行修正。具体参数见表1表2

    表1 BAKIF·2H2O和BDKIF的晶体学数据和细化参数

    Table 1 Crystallography data and refinement parameters of BAKIF·2H2O and BDKIF

    crystalBAKIF·2H2OBDKIF
    CCDC number18412411841239
    empirical formulaC4H3N7O3,2(H2O)C4H2N6O4
    formula mass233.17198.12
    temperature / K173173
    crystal dimensions / mm30.070×0.120×0.4700.070×0.130×0.270
    crystal systemorthorhombictrigonal
    space groupP212121R‑3
    a / Å4.6661(4)20.4183(12)
    b / Å13.5836(10)20.4183(12)
    c / Å14.8537(10)4.8017(7)
    α / (°)9090
    β / (°)9090
    γ / (°)90120
    V / Å3941.46(12)1733.7(3)
    Z49
    Dc / g·cm-31.6451.708
    μ / mm-10.1490.153
    F(000)480900
    index ranges-5≤h≤5,-16≤k≤1,-18≤l≤18-24≤h≤22,-13≤k≤24,-4≤l≤5
    goodness‑of‑fit on F21.041.06
    final R indexes [I≥2σ (I)]R1=0.0435, wR2=0.0766R1=0.0410, wR2=0.0873
    final R indexes [all data]R1=0.0795, wR2=0.0876R1=0.0690, wR2=0.0996

    表2 BAKIF·2H2O的部分键长

    Table 2 Select bond length of BAKIF·2H2O

    bondlength / Å
    O(1)—N(3)1.412(4)
    O(1)—C(4)1.384(4)
    O(2)—C(4)1.195(4)
    O(3)—N(5)1.410(4)
    O(3)—C(1)1.361(4)
    N(1)—C(3)1.396(5)
    N(1)—N(2)1.269(4)
    N(2)—C(2)1.399(5)
    N(3)—C(3)1.296(5)
    N(4)—C(3)1.359(4)
    N(4)—C(4)1.359(5)
    N(5)—C(2)1.303(5)
    N(6)—C(1)1.322(5)
    N(6)—C(2)1.358(4)
    N(7)—C(1)1.309(5)

    结晶后的BAKIF和BDKIF为黄色针状晶体。分子结构图如图1所示,晶胞堆积如图2所示。部分键长、键角数据列于表2~表5

    html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image004.png

    a. BAKIF·2H2O

    html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image005.png

    b. BDKIF

    图1 BAKIF和BDKIF的晶体结构图

    Fig.1 Crystal structure of BAKIF·2H2O and BDKIF

    html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image006.png

    a. BAKIF·2H2O

    html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image007.png

    b. BDKIF

    图2 BAKIF和BDKIF的晶胞堆积图(虚线表示分子间氢键作用)

    Fig.2 Crystal packing map of BAKIF and BDKIF (Dashed lines indicate intermolecular hydrogen‑bond interaction)

    表5 BDKIF的键角

    Table 5 Bond angles of BDKIF

    bondangle/(°)bondangle/(°)
    N(2)—O(1)—C(2)109.49(17)N(2)—C(1)—N(3)113.9(2)
    N(1A)—N(1)—C(1)111.1(2)N(1)—C(1)—N(2)118.6(2)
    O(1)—N(2)—C(1)103.4(2)O(2)—C(2)—N(3)131.6(2)
    C(1)—N(3)—C(2)107.1(2)O(1)—C(2)—O(2)122.4(2)
    N(1)—C(1)—N(3)127.5(2)O(1)—C(2)—N(3)106.0(2)

    表2可知,异呋咱五元环的键长在1.29~1.42 Å,说明键长趋于平均化,与异呋咱的芳香性一致。异呋咱上的C—NH2键C(1)—N(7)键长1.309 Å,比呋咱上的C—NH2键键长(1.352 Å)稍短,接近C N键长(1.313 Å)[16],表明氨基同异呋咱环存在一定程度的共轭。而由单晶的扭转角数据可以看出,BAKIF·2H2O单晶中,N(4)—C(3)—N(1)—N(2)和N(3)—C(3)—N(1)—N(2)的扭转角分别为0.9(5)°和-176.7(3)°,N(6)—C(2)—N(2)—N(1)和N(5)—C(2)—N(2)—N(1)的扭转角分别为3.3(6)°和-177.1(3)°,说明偶氮键与两个异呋咱环近似处于同一个平面,有利于分子的紧密堆积。

    表4可知,BDKIF与BAKIF的异呋咱环键长相近。C(2)—O(2)键长为1.207 Å,接近C=O键长1.22 Å,说明氧原子与异呋咱共轭。C(1)—N(1)键长为1.394 Å,介于C—N单双键长(1.28~1.47 Å)之间,说明偶氮基团与异呋咱环存在一定程度的共[17]。由单晶的扭转角数据可以看出,BDKIF单晶中,N(2)—O(1)—C(2)—N(3)、N(2)—O(1)—C(2)—O(2)、N(3)—C(1)—N(1)—N(1A)、N(2)—C(1)—N(1)—N(1A)、O(1)—N(2)—C(1)—N(1)、O(1)—N(2)—C(1)—N(3)、C(2)—N(3)—C(1)—N(2)、C(2)—N(3)—C(1)—N(1)、C(1)—N(3)—C(2)—O(1)、C(1)—N(3)—C(2)—O(2)的扭转角分别为-1.6(3)°、179.1(2)°、-2.9(4)°、176.2(2)°、-178.2(2)°、1.1(3)°、-2.1(3)°、177.0(3)°、2.2(3)°、-178.6(3)°,说明BDKIF所有原子近似处于同一个平面上。BDKIF的分子结构高度对称,两个具有芳香性的异呋咱母体环和偶氮键构成的平面结构,有利于分子的紧密堆积。

    表4 BDKIF的部分键长

    Table 4 Select bond length of BDKIF

    bondlength/ Å
    O(1)—N(2)1.420(3)
    O(1)—C(2)1.371(3)
    O(2)—C(2)1.207(3)
    N(1)—C(1)1.394(3)
    N(1)—N(1A)1.270(3)
    N(2)—C(1)1.291(3)
    N(3)—C(1)1.356(3)
    N(3)—C(2)1.351(3)

    表3 BAKIF·2H2O的键角

    Table 3 Bond angles of BAKIF·2H2O

    bondangle/(°)bondangle/(°)
    N(3)—O(1)—C(4)109.5(3)O(3)—C(1)—N(7)116.5(3)
    N(5)—O(3)—C(1)105.8(3)N(2)—C(2)—N(6)128.0(3)
    N(2)—N(1)—C(3)110.2(3)N(2)—C(2)—N(5)114.7(3)
    N(1)—N(2)—C(2)112.2(3)N(5)—C(2)—N(6)117.4(3)
    O(1)—N(3)—C(3)104.0(3)N(1)—C(3)—N(3)118.2(3)
    C(3)—N(4)—C(4)107.2(3)N(1)—C(3)—N(4)128.1(3)
    O(3)—N(5)—C(2)102.6(3)N(3)—C(3)—N(4)113.6(3)
    C(1)—N(6)—C(2)100.9(3)O(1)—C(4)—O(2)122.4(3)
    N(6)—C(1)—N(7)130.2(3)O(1)—C(4)—N(4)105.7(3)
    O(3)—C(1)—N(6)113.3(3)O(2)—C(4)—N(4)131.9(3)

    由BAKIF·2H2O和BDKIF的晶胞堆积图(图2)可知,BAKIF·2H2O分子母体环和BDKIF分子母体环之间都存在波状π‑π堆积,分子间存在氢键作用,氢键的存在可以提高化合物的稳定性。在晶体水平上,分子堆积可以影响含能材料的机械感度,由图2可以看出,化合物BAKIF和化合物BDKIF分子均相互有序堆积,结合分子排布的有序性可知,BAKIF分子的母体环之间以及BDKIF分子的母体环之间存在的波状π‑π堆积能够有效缓冲外界机械刺激,这主要得益于其较小的空间位阻和牢固的层结[18]

  • 3.2 BAKIF和BDKIF的热稳定性

    BAKIF和BDKIF的TG‑DSC曲线如图3所示。由图3a可知,BAKIF在N2氛围中,5 ℃·min-1的升温速率下,在61.25 ℃有一个吸热峰,且质量损失13.20%,表明该化合物中含有的结晶水受热挥发。在266.75 ℃开始出现放热峰,在290.01 ℃时出现明显的放热峰,且峰形窄而尖,表明该化合物在290.01 ℃下发生了剧烈的放热分解反应,且在此阶段质量损失53.62%。这表明BAKIF具有十分优异的热稳定性,与耐热性炸药TNT的分解温度(Td=290 ℃)相当。由图3b可知,BDKIF在N2氛围中,5 ℃·min-1的升温速率下,在127.25 ℃开始出现放热峰,在149.75 ℃放热达到峰值,在此阶段质量损失74.77%。

    html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image002.png

    a. TG‑DSC curve of BAKIF·2H2O

    html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image003.png

    b. TG‑DSC curve of BDKIF

    图3 BAKIF和BDKIF的TG‑DSC曲线

    Fig.3 TG‑DSC curves of BAKIF·2H2O and BDKIF

    对比BAKIF和BDKIF的热分析结果发现,BAKIF的热稳定性优于BDKIF。这是由于BAKIF分子中的氨基氢可以与相邻分子形成氢键,使得BAKIF分子间的氢键数远多于BDKIF,提高了分子的晶格能,导致热稳定性增加。

  • 3.3 BAKIF和BDKIF的能量与感度性质

    运用Gaussian 09 程[19]在B3LYP/6‑31+G**//MP2/6‑311++G**水平下计算得到BAKIF和BDKIF的热力学函数,并基于等键反应(Scheme 2)计算得到生成热数据。采用EXPLO5程[20]对BAKIF和BDKIF的爆轰性能进行预估,结果如表6所示。BAKIF的标准摩尔生成热为50.7 kJ·mol-1,理论爆速7292 m·s-1,理论爆压21.5 GPa。BDKIF的标准摩尔生成热为-80.8 kJ·mol-1,理论爆速7363 m·s-1,理论爆压20.7 GPa ,BAKIF和BDKIF的爆轰性能相当,虽不及RDX但均优于TNT。

    表6 BAKIF, BDKIF和其他炸药的能量特性对比

    Table 6 Comparison of the energy properties of BAKIF, BDKIF and other explosives

    Compd.

    ρ

    / g·cm-3

    ΔHf,solid

    / kJ·mol-1

    D

    / m·s-1

    p

    /GPa

    IS

    /J

    FS

    /N

    BAKIF1.7150.7729221.5>40>360
    BDKIF1.70-80.8736320.7>40>360
    RDX1.8292.6899735.27.4120
    TNT1.65-67.0688119.515358

    NOTE: ρ is the density measured by a gas pycnometer at 25 ℃. ΔHf,solid is the molar enthalpy of formation obtained by calculation. D is the detonation velocity obtained by calculation. p is the detonation pressure obtained by calculation. IS is the impact sensitivity. FS is the friction sensitivity.

    Scheme 2 Isodesmic reaction of compounds BAKIF and BDKIF

    使用标准的BAM Fallhammer、BAM摩擦测试方法对BAKIF和BDKIF的撞击感度和摩擦感度进行测定,结果如表6所示。由表6可知,BAKIF和BDKIF的撞击感度均大于40 J,摩擦感度均大于360 N,优于传统低感含能材料TNT,是一种新型的钝感含能材料。

  • 4 结 论

    (1)BAKIF和BDKIF的合成步骤简单,以二氰胺钠为原料,经环化、偶联、硝化三步反应分别制得BAKIF和BDKIF。

    (2)用溶剂挥发法得到BAKIF和BDKIF的单晶。采用X‑射线单晶衍射仪检测分析其单晶结构。BAKIF分子属于正交晶系,P212121空间群,在173 K下晶体密度为1.645 g·cm-3。BDKIF分子属于三方晶系,R‑3空间群,在173 K下晶体密度为1.708 g·cm-3

    (3)BAKIF在61.25 ℃有一个吸热峰,质量损失13.20%,表明化合物中含有结晶水挥发。在290.01 ℃有一个窄而尖的放热峰,质量损失53.62%,表明BAKIF在此阶段剧烈分解,具有十分良好的热稳定性。BDKIF分解温度为149.75 ℃,质量损失74.77%。

    (4)BAKIF理论爆速7292 m·s-1,理论爆压21.5 GPa。BDKIF理论爆速7363 m·s-1,理论爆压20.7 GPa。它们的爆轰性能和感度性质均优于TNT,是一种潜在的新型钝感含能材料。

    (责编:张 琪)

  • 参考文献

    • 1

      Ye C, Gao H, Boatz J A, et al. Polyazidopyrimidines: high‑energy compounds and precursors to carbon nanotubes[J]. Angewandte Chemie, 2006, 118(43): 7420-7423.

    • 2

      王建龙, 欧育湘, 陈博仁, 等. N,N′‑双(间氯苯基)‑3, 4‑二氨基呋咱的合成[J]. 含能材料, 2003, 11(4): 213-214.

      WANG Jian‑long,OU Yu‑xiang,CHEN Bo‑ren,et al. Synthesis of N,N‑bis(3‑chlorophenyl)‑3,4‑diaminofurazan[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2003, 11(4): 213-214.

    • 3

      Zhang J, Parrish D A, Shreeve J M. Curious cases of 3,6‑dinitropyrazolo [4,3‑c] pyrazole‑based energetic cocrystals with high nitrogen content: an alternative to salt formation[J]. Chemical Communications, 2015, 51(34): 7337-7340.

    • 4

      He C, Shreeve J M. Potassium 4,5‑bis (dinitromethyl) furoxanate: a green primary explosive with a positive oxygen balance[J]. Angewandte Chemie, 2016, 128(2): 782-785.

    • 5

      Tang Y, He C, Shreeve J M. A furazan‑fused pyrazole N‑oxide via unusual cyclization[J]. Journal of Materials Chemistry A,2017, 5(9): 4314-4319.

    • 6

      张德雄, 张衍, 王琦. 呋咱系列高能量密度材料的发展[J]. 固体火箭技术, 2004, 27(1): 32-36.

      ZHANG De‑xiong,ZHANG Yan,WANG Qi. Advances in high energy density matter of furazan series[J]. Journal of Solid Rocket Technology,2004, 27(1): 32-36.

    • 7

      顾昊, 马卿, 杨红伟, 等. 4,4′‑二(氯偕二硝基甲基)‑3,3′‑偶氮呋咱的晶体结构和热稳定性[J]. 含能材料, 2017, 25(7): 585-590.

      GU Hao,MA Qing,YANG Hong‑wei,et al. Crystal structure and thermal stability of 4,4′‑bis(chlorodinitromethyl)‑3,3′‑azofurazan[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2017, 25(7): 585-590.

    • 8

      Chavez D E, Hiskey M A, Gilardi R D. 3,3′‑azobis(6‑amino‑1,2,4,5‑tetrazine): a novel high‑nitrogen energetic material[J]. Angewandte Chemie International Edition, 2000, 39(10): 1791-1793.

    • 9

      Li Y C, Qi C, Li S H, et al. 1,1′‑azobis‑1,2,3‑triazole: a high‑nitrogen compound with stable N8 structure and photochromism[J]. Journal of the American Chemical Society, 2010, 132(35): 12172-12173.

    • 10

      Bolotina N, Kirschbaum K, Pinkerton A A. Energetic materials: α‑NTO crystallizes as a four‑component triclinic twin[J]. Acta Crystallographica Section B, 2005, 61(5): 577-584.

    • 11

      Lee K Y, Chapman L B, Cobura M D. 3‑nitro‑1,2,4‑triazol‑5‑one, a less sensitive explosive[J]. Journal of Energetic Materials, 1987, 5(1): 27-33.

    • 12

      Boddu V M, Viswanath D S, Ghosh T K, et al. 2,4,6‑triamino‑1,3,5‑trinitrobenzene (TATB) and TATB‑based formulations‑a review[J]. Journal of Hazardous Materials, 2010, 181(1-3): 1-8.

    • 13

      肖建雄, 杜小利, 乔丽燕, 等. 4,4′‑偶氮‑1H‑1,2,4‑三唑‑5‑酮铵盐AZTO·H2O的制备及热化学性质[J]. 含能材料, 2005, 23(8): 741-745.

      XIAO Jian‑xiong,DU Xiao‑li,QIAO Li‑yan,et al. Preparation and thermal properties of 4,4′‑azo‑1H‑1,2,4‑triazol‑5‑one ammonium salt[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2005, 23(8): 741-745.

    • 14

      邓沐聪, 王毅, 张文全, 等. 5‑甲基‑4‑硝基‑1H‑吡唑‑3‑(2H)‑酮及其含能离子化合物的合成与性能[J]. 含能材料, 2017, 25(8): 646-650.

      DENG Mu‑cong,WANG Yi,ZHANG Wen‑quan,et al. Synthesis and properties of 5‑methyl‑4‑nitro‑1H‑pyrazol‑3‑(2H)‑one and its energetic ion compounds[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(8): 646-650.

    • 15

      Thottempudi V, Zhang J, He C, et al. Azo substituted 1,2,4‑oxadiazoles as insensitive energetic materials[J]. RSC Advances, 2014, 4(92): 50361-50364.

    • 16

      Xu Z, Cheng G, Yang H, et al. A facile and versatile synthesis of energetic furazan‑functionalized 5‑nitroimino‑1,2,4‑triazoles[J]. Angewandte Chemie International Edition, 2017, 56(21): 5877-5881.

    • 17

      罗义芬, 毕福强, 王伯周, 等. 1,1'‑二羟基‑3,3'‑二硝基‑5,5'‑联‑1,2,4‑三唑含能离子盐合成, 晶体结构及性能[J]. 含能材料, 2017, 25(10): 848-852.

      LUO Yi‑fen,BI Fu‑qiang,WANG Bo‑zhou,et al. Synthesis, crystal structure and performance of 3,3′‑dinitro‑5,5′‑bis‑1,2,4‑triazole‑1,1′‑diolate energetic ionic salts[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(10): 848-852.

    • 18

      张朝阳. 含能材料能量‑安全性间矛盾及低感高能材料发展策略[J]. 含能材料, 2018, 26(1): 2-10.

      ZHANG Chao‑yang. On the energy and safety contradiction of energetic materials and the strategy for developing low‑sensitive high‑energetic materials[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2018, 26(1): 2-10.

    • 19

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09 Revision D. 01, 2009[CP]. Gaussian Inc. Wallingford CT, 2009.

    • 20

      Sućeska M. Evaluation of detonation energy from EXPLO5 computer code results[J]. Propellants, Explosives, Pyrotechnics, 1999, 24(5): 280-285.

吴克林

机 构:南京理工大学 化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

邮 箱:1057304583@qq.com

作者简介:吴克林(1993-),男,硕士,主要从事含能材料的合成与应用研究。e‑mail:1057304583@qq.com

杨红伟

机 构:南京理工大学 化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

程广斌

机 构:南京理工大学 化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

角 色:通讯作者

Role:Corresponding author

邮 箱:gcheng@mail.njust.edu.cn

作者简介:程广斌(1967-),男,教授,主要从事含能材料的合成与应用研究。e‑mail:gcheng@mail.njust.edu.cn

html/hncl/CJEM2018278/alternativeImage/31b37d03-e23f-4d22-9b6b-728a109c9e64-F001.png
crystalBAKIF·2H2OBDKIF
CCDC number18412411841239
empirical formulaC4H3N7O3,2(H2O)C4H2N6O4
formula mass233.17198.12
temperature / K173173
crystal dimensions / mm30.070×0.120×0.4700.070×0.130×0.270
crystal systemorthorhombictrigonal
space groupP212121R‑3
a / Å4.6661(4)20.4183(12)
b / Å13.5836(10)20.4183(12)
c / Å14.8537(10)4.8017(7)
α / (°)9090
β / (°)9090
γ / (°)90120
V / Å3941.46(12)1733.7(3)
Z49
Dc / g·cm-31.6451.708
μ / mm-10.1490.153
F(000)480900
index ranges-5≤h≤5,-16≤k≤1,-18≤l≤18-24≤h≤22,-13≤k≤24,-4≤l≤5
goodness‑of‑fit on F21.041.06
final R indexes [I≥2σ (I)]R1=0.0435, wR2=0.0766R1=0.0410, wR2=0.0873
final R indexes [all data]R1=0.0795, wR2=0.0876R1=0.0690, wR2=0.0996
bondlength / Å
O(1)—N(3)1.412(4)
O(1)—C(4)1.384(4)
O(2)—C(4)1.195(4)
O(3)—N(5)1.410(4)
O(3)—C(1)1.361(4)
N(1)—C(3)1.396(5)
N(1)—N(2)1.269(4)
N(2)—C(2)1.399(5)
N(3)—C(3)1.296(5)
N(4)—C(3)1.359(4)
N(4)—C(4)1.359(5)
N(5)—C(2)1.303(5)
N(6)—C(1)1.322(5)
N(6)—C(2)1.358(4)
N(7)—C(1)1.309(5)
html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image004.png
html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image005.png
html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image006.png
html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image007.png
bondangle/(°)bondangle/(°)
N(2)—O(1)—C(2)109.49(17)N(2)—C(1)—N(3)113.9(2)
N(1A)—N(1)—C(1)111.1(2)N(1)—C(1)—N(2)118.6(2)
O(1)—N(2)—C(1)103.4(2)O(2)—C(2)—N(3)131.6(2)
C(1)—N(3)—C(2)107.1(2)O(1)—C(2)—O(2)122.4(2)
N(1)—C(1)—N(3)127.5(2)O(1)—C(2)—N(3)106.0(2)
bondlength/ Å
O(1)—N(2)1.420(3)
O(1)—C(2)1.371(3)
O(2)—C(2)1.207(3)
N(1)—C(1)1.394(3)
N(1)—N(1A)1.270(3)
N(2)—C(1)1.291(3)
N(3)—C(1)1.356(3)
N(3)—C(2)1.351(3)
bondangle/(°)bondangle/(°)
N(3)—O(1)—C(4)109.5(3)O(3)—C(1)—N(7)116.5(3)
N(5)—O(3)—C(1)105.8(3)N(2)—C(2)—N(6)128.0(3)
N(2)—N(1)—C(3)110.2(3)N(2)—C(2)—N(5)114.7(3)
N(1)—N(2)—C(2)112.2(3)N(5)—C(2)—N(6)117.4(3)
O(1)—N(3)—C(3)104.0(3)N(1)—C(3)—N(3)118.2(3)
C(3)—N(4)—C(4)107.2(3)N(1)—C(3)—N(4)128.1(3)
O(3)—N(5)—C(2)102.6(3)N(3)—C(3)—N(4)113.6(3)
C(1)—N(6)—C(2)100.9(3)O(1)—C(4)—O(2)122.4(3)
N(6)—C(1)—N(7)130.2(3)O(1)—C(4)—N(4)105.7(3)
O(3)—C(1)—N(6)113.3(3)O(2)—C(4)—N(4)131.9(3)
html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image002.png
html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image003.png
Compd.

ρ

/ g·cm-3

ΔHf,solid

/ kJ·mol-1

D

/ m·s-1

p

/GPa

IS

/J

FS

/N

BAKIF1.7150.7729221.5>40>360
BDKIF1.70-80.8736320.7>40>360
RDX1.8292.6899735.27.4120
TNT1.65-67.0688119.515358
html/hncl/CJEM2018278/media/31b37d03-e23f-4d22-9b6b-728a109c9e64-image008.png

Scheme 1 Synthetic route of compounds BAKIF and BDKIF

表1 BAKIF·2H2O和BDKIF的晶体学数据和细化参数

Table 1 Crystallography data and refinement parameters of BAKIF·2H2O and BDKIF

表2 BAKIF·2H2O的部分键长

Table 2 Select bond length of BAKIF·2H2O

图1 BAKIF和BDKIF的晶体结构图 -- a. BAKIF·2H2O

Fig.1 Crystal structure of BAKIF·2H2O and BDKIF -- a. BAKIF·2H2O

图1 BAKIF和BDKIF的晶体结构图 -- b. BDKIF

Fig.1 Crystal structure of BAKIF·2H2O and BDKIF -- b. BDKIF

图2 BAKIF和BDKIF的晶胞堆积图(虚线表示分子间氢键作用) -- a. BAKIF·2H2O

Fig.2 Crystal packing map of BAKIF and BDKIF (Dashed lines indicate intermolecular hydrogen‑bond interaction) -- a. BAKIF·2H2O

图2 BAKIF和BDKIF的晶胞堆积图(虚线表示分子间氢键作用) -- b. BDKIF

Fig.2 Crystal packing map of BAKIF and BDKIF (Dashed lines indicate intermolecular hydrogen‑bond interaction) -- b. BDKIF

表5 BDKIF的键角

Table 5 Bond angles of BDKIF

表4 BDKIF的部分键长

Table 4 Select bond length of BDKIF

表3 BAKIF·2H2O的键角

Table 3 Bond angles of BAKIF·2H2O

图3 BAKIF和BDKIF的TG‑DSC曲线 -- a. TG‑DSC curve of BAKIF·2H2O

Fig.3 TG‑DSC curves of BAKIF·2H2O and BDKIF -- a. TG‑DSC curve of BAKIF·2H2O

图3 BAKIF和BDKIF的TG‑DSC曲线 -- b. TG‑DSC curve of BDKIF

Fig.3 TG‑DSC curves of BAKIF·2H2O and BDKIF -- b. TG‑DSC curve of BDKIF

表6 BAKIF, BDKIF和其他炸药的能量特性对比

Table 6 Comparison of the energy properties of BAKIF, BDKIF and other explosives

Scheme 2 Isodesmic reaction of compounds BAKIF and BDKIF

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

ρ is the density measured by a gas pycnometer at 25 ℃. ΔHf,solid is the molar enthalpy of formation obtained by calculation. D is the detonation velocity obtained by calculation. p is the detonation pressure obtained by calculation. IS is the impact sensitivity. FS is the friction sensitivity.

无注解

  • 参考文献

    • 1

      Ye C, Gao H, Boatz J A, et al. Polyazidopyrimidines: high‑energy compounds and precursors to carbon nanotubes[J]. Angewandte Chemie, 2006, 118(43): 7420-7423.

    • 2

      王建龙, 欧育湘, 陈博仁, 等. N,N′‑双(间氯苯基)‑3, 4‑二氨基呋咱的合成[J]. 含能材料, 2003, 11(4): 213-214.

      WANG Jian‑long,OU Yu‑xiang,CHEN Bo‑ren,et al. Synthesis of N,N‑bis(3‑chlorophenyl)‑3,4‑diaminofurazan[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2003, 11(4): 213-214.

    • 3

      Zhang J, Parrish D A, Shreeve J M. Curious cases of 3,6‑dinitropyrazolo [4,3‑c] pyrazole‑based energetic cocrystals with high nitrogen content: an alternative to salt formation[J]. Chemical Communications, 2015, 51(34): 7337-7340.

    • 4

      He C, Shreeve J M. Potassium 4,5‑bis (dinitromethyl) furoxanate: a green primary explosive with a positive oxygen balance[J]. Angewandte Chemie, 2016, 128(2): 782-785.

    • 5

      Tang Y, He C, Shreeve J M. A furazan‑fused pyrazole N‑oxide via unusual cyclization[J]. Journal of Materials Chemistry A,2017, 5(9): 4314-4319.

    • 6

      张德雄, 张衍, 王琦. 呋咱系列高能量密度材料的发展[J]. 固体火箭技术, 2004, 27(1): 32-36.

      ZHANG De‑xiong,ZHANG Yan,WANG Qi. Advances in high energy density matter of furazan series[J]. Journal of Solid Rocket Technology,2004, 27(1): 32-36.

    • 7

      顾昊, 马卿, 杨红伟, 等. 4,4′‑二(氯偕二硝基甲基)‑3,3′‑偶氮呋咱的晶体结构和热稳定性[J]. 含能材料, 2017, 25(7): 585-590.

      GU Hao,MA Qing,YANG Hong‑wei,et al. Crystal structure and thermal stability of 4,4′‑bis(chlorodinitromethyl)‑3,3′‑azofurazan[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2017, 25(7): 585-590.

    • 8

      Chavez D E, Hiskey M A, Gilardi R D. 3,3′‑azobis(6‑amino‑1,2,4,5‑tetrazine): a novel high‑nitrogen energetic material[J]. Angewandte Chemie International Edition, 2000, 39(10): 1791-1793.

    • 9

      Li Y C, Qi C, Li S H, et al. 1,1′‑azobis‑1,2,3‑triazole: a high‑nitrogen compound with stable N8 structure and photochromism[J]. Journal of the American Chemical Society, 2010, 132(35): 12172-12173.

    • 10

      Bolotina N, Kirschbaum K, Pinkerton A A. Energetic materials: α‑NTO crystallizes as a four‑component triclinic twin[J]. Acta Crystallographica Section B, 2005, 61(5): 577-584.

    • 11

      Lee K Y, Chapman L B, Cobura M D. 3‑nitro‑1,2,4‑triazol‑5‑one, a less sensitive explosive[J]. Journal of Energetic Materials, 1987, 5(1): 27-33.

    • 12

      Boddu V M, Viswanath D S, Ghosh T K, et al. 2,4,6‑triamino‑1,3,5‑trinitrobenzene (TATB) and TATB‑based formulations‑a review[J]. Journal of Hazardous Materials, 2010, 181(1-3): 1-8.

    • 13

      肖建雄, 杜小利, 乔丽燕, 等. 4,4′‑偶氮‑1H‑1,2,4‑三唑‑5‑酮铵盐AZTO·H2O的制备及热化学性质[J]. 含能材料, 2005, 23(8): 741-745.

      XIAO Jian‑xiong,DU Xiao‑li,QIAO Li‑yan,et al. Preparation and thermal properties of 4,4′‑azo‑1H‑1,2,4‑triazol‑5‑one ammonium salt[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2005, 23(8): 741-745.

    • 14

      邓沐聪, 王毅, 张文全, 等. 5‑甲基‑4‑硝基‑1H‑吡唑‑3‑(2H)‑酮及其含能离子化合物的合成与性能[J]. 含能材料, 2017, 25(8): 646-650.

      DENG Mu‑cong,WANG Yi,ZHANG Wen‑quan,et al. Synthesis and properties of 5‑methyl‑4‑nitro‑1H‑pyrazol‑3‑(2H)‑one and its energetic ion compounds[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(8): 646-650.

    • 15

      Thottempudi V, Zhang J, He C, et al. Azo substituted 1,2,4‑oxadiazoles as insensitive energetic materials[J]. RSC Advances, 2014, 4(92): 50361-50364.

    • 16

      Xu Z, Cheng G, Yang H, et al. A facile and versatile synthesis of energetic furazan‑functionalized 5‑nitroimino‑1,2,4‑triazoles[J]. Angewandte Chemie International Edition, 2017, 56(21): 5877-5881.

    • 17

      罗义芬, 毕福强, 王伯周, 等. 1,1'‑二羟基‑3,3'‑二硝基‑5,5'‑联‑1,2,4‑三唑含能离子盐合成, 晶体结构及性能[J]. 含能材料, 2017, 25(10): 848-852.

      LUO Yi‑fen,BI Fu‑qiang,WANG Bo‑zhou,et al. Synthesis, crystal structure and performance of 3,3′‑dinitro‑5,5′‑bis‑1,2,4‑triazole‑1,1′‑diolate energetic ionic salts[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(10): 848-852.

    • 18

      张朝阳. 含能材料能量‑安全性间矛盾及低感高能材料发展策略[J]. 含能材料, 2018, 26(1): 2-10.

      ZHANG Chao‑yang. On the energy and safety contradiction of energetic materials and the strategy for developing low‑sensitive high‑energetic materials[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2018, 26(1): 2-10.

    • 19

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09 Revision D. 01, 2009[CP]. Gaussian Inc. Wallingford CT, 2009.

    • 20

      Sućeska M. Evaluation of detonation energy from EXPLO5 computer code results[J]. Propellants, Explosives, Pyrotechnics, 1999, 24(5): 280-285.