CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
DenisyukA P, ShepelevY G, YudaevS V, et al. Combustion of systems containing linear nitramines[J]. Combustion, Explosion, and Shock Waves, 2005, 41(2): 206-214.
参考文献 2
GertP,RudolfS. Burning behavior of nitramine gun propellants under the influence of pressure oscillations[J]. Propellants, Explosives, Pyrotechnics, 2010, 35: 284-291.
参考文献 3
LanglotzW,MuellerD. LTC gun propellants for use in machine gun ammunition[C]//21st International Symposium on Ballistics, Adelaide, Australia, 2004.
参考文献 4
LanglotzW, MuellerD. Advancedwork on increasing the performance of gun propellants[C]//Insensitive Munitions and Energetic Materials Technology Symposium, San Diego, USA, 2000.
参考文献 5
FarahaniB V, RajabiF H,HosseindoustB, et al. DSC study of solid‑liquid equilibria for energetic binary mixtures of methylnitramine with 2,4‑dinitro‑2,4‑diazapentane and 2,4‑dinitro‑2,4‑diazahexane[J].Section I: Basic and Applied Research, 2010, 31: 536-541.
参考文献 6
GudrunB, HeikeS, HorstK. Thermal analytical characterization of DNDA‑5, DNDA‑6 and DNDA‑7 and certain binary and ternary mixtures[C]//35th International Annual Conference of ICT, Karlsruhe, Germany2004.
参考文献 7
SpitzerD, SchäferM R. Investigation of the DNDA‑nitrocellulose interaction:determination of complexes by DSC and FT‑IR spectroscop[C]//35th International Annual Conference of ICT,Karlsruhe, Germany, 2004.
参考文献 8
MuellerD. LTC gun propellants for use in machine gun ammunition[C]//36th International Annual Conference of ICT &32nd International Pyrotechnics Seminar,Karlsruhe, Germany, 2005.
参考文献 9
AlmuthK, WolfgangS. Investigations concerning modifications of the properties of loaded DNDA propellant[C]//36th International Annual Conference of ICT & 32nd International Pyrotechnics Seminar,Karlsruhe, Germany, 2005.
参考文献 10
ManfredA, Bohn, MüllerDietmar. Insensitivity aspects of NC bonded and DNDA plasticizer containing gun propellants[C]//37th International Annual Conference of ICT,Karlsruhe, Germany, 2006.
参考文献 11
JuttaB M, MathiasH. Insights in the microstructure of gun propellants[C]//41st International Annual Conference of ICT, Karlsruhe, Germany, 2010.
参考文献 12
JuttaB M, MathiasH. Influence of the processing on the properties of DNDA propellants[C]//42nd International Annual Conference of ICT, Karlsruhe, Germany, 2010.
参考文献 13
KumariD, BalaksheR, BanerjeeS, et al. Energetic plasticizers for gun & propellants[J]. Review Journal of Chemistry, 2012, 2(3): 240-262.
参考文献 14
VijayalakshmiR, NaikN H, GoreG M,et al. Sikderlinear nitramine(DNDA‑57): synthesis, scale‑up,characterization, and quantitative estimation by GC/MS[J]. Journal of Energetic Materials, 2015, 33: 1-16.
参考文献 15
AntesJ, SchwarzerM, JanitschekW,et al. A novel approach to DNDA57 synthesis by microreaction technology[C]//41st International Annual Conference of ICT, Karlsruhe, Germany, 2010.
参考文献 16
AntesJ, JanitschekW,SchulzN, et al. Continuous flow synthesis of DNDA57 in a capillary microreactor[C]//43rd International Annual Conference of the Fraunhofer ICT, Karlsruhe, Germany, 2010.
参考文献 17
LanglotzW, MuellerD. Propellant Powder for Barrelled Weapons:PCT‑WO 34891[P],1998.
参考文献 18
MardueriteS C, FortW, RobertR O, et al. Systhesis of dimethyl‑methylene dinitramine: US4419212[P],1983.
参考文献 19
MardueriteS C, FortW, RobertR O, et al. Systhesis of dimethyl‑ methylene dinitramine: US4476322[P],1984.
参考文献 20
FroiopskiiKA, PetrosyanVA. Electrooxidation of primary nitramine anions on platinum in MeCN[J]. Russian Chemical Bulletin,1999,48(10): 1911-1915.
参考文献 21
RainerS, HeinzG E, LeonardL. Method for producing DNDA:US0191346[P], 2003.
参考文献 22
刘子如. 含能材料热分析[M]. 北京:国防工业出版社,2008: 22.
LIUZi‑ru. Thermal analyses for energetic materials[M]. Beijing: National Defense Industry Press,2008: 22.
参考文献 23
刘艳, 刘子如, 邱刚, 等. 静态与动态高压对含能材料热分解的影响[J]. 火炸药学报, 2001, 24(3): 26-29.
LIUYan, LIUZi‑ru, QIUGang, et al. The influence of high pressure of static and dynamic atmosphere on the thermal decomposition of energetic materials[J]. Chinese Journal of Explosives & Propellants, 2001, 24(3): 26-29.
目录 contents

    摘要

    以1,3‑二乙基脲为原料,经硝化、水解、缩合等反应得到了中间体乙硝胺(ENA)及终产物3,5‑二硝基‑3,5‑二氮杂庚烷 (DNDA7),ENA收率为80.6%,纯度为99.3%,DNDA7收率为67.7%,纯度为99.0%,总收率为54.6%。采用红外光谱、核磁共振及元素分析表征了其结构。优化了硝化、水解和缩合反应条件,确定较佳硝化水解反应条件为:硝化剂为20%发烟硫酸和浓硝酸,硝化温度-5~0 ℃,水解温度20 ℃,水解时间30 min;较佳缩合反应条件为:乙硝胺/多聚甲醛摩尔比1∶0.5,反应温度23~25 ℃,反应时间30 min。利用差示扫描量热技术(DSC)研究了DNDA7热分解特性及与火炸药常用组分的相容性,结果表明,其熔点为77.3 ℃,热分解峰温为260.8 ℃,DNDA7与黑索今相容性较好,与奥克托今、硝基胍和聚叠氮缩水甘油醚基本相容,与硝化棉和1,1‑二氨基‑2,2‑二硝基乙烯的相容性较差;利用国军标GJB772A-1997方法测试其撞击感度H50>125.9 cm,摩擦感度为4%。

    Abstract

    The intermediate ethyl nitramine (ENA) and the final product 3,5‑dinitro‑3,5‑diazaheptane (DNDA7) were syntheized starting from 1,3‑diethylurea via the reactions of nitration, hydrolysis and condensation. The yield and purity of ENA is 80.6% and 99.3% while 67.7% and 99.0% for DNDA7, respectively, the overall yield is 54.6%. The structure of DNDA7 was characterized by IR, NMR and elemental analyses. Meanwhile, the reaction conditions for nitration, hydrolysis and condensation were optimized as follows: 20% fuming sulphuric acid and nitric acid were used as the nitrating agents, and the recation temperature was controlled between -5 ℃ to 0 ℃ for nitration reaction; while the hydrolysis reaction was finished in 30 min at 20 ℃; and the molar ratio of ENA and paraformaldehyde is 1∶0.5, the reaction mixture was stirred at 23-25 ℃ for 30 min for condensation reaction. The thermal decomposition properties of DNDA7 and its compatibility with normal energetic materials were studied by using differential scanning calorimetry(DSC). The melting point and thermal decomposition temperature of DNDA7 is determined to be 77.3 ℃ and 260.8 ℃, respectively. DNDA7 performs good compatibility with RDX, basic compatibility with HMX, NQ and GAP, and poor compatibility with NC and FOX‑7. Moreover, the mechanical sensitivities of DNDA7 were tested according to the national standard GJB772A-1997, and it isfound that the impact sensitivity is H50>125.9 cm and the friction sensitivity is 4%.

  • 1 引 言

    线状硝胺化合物具有密度高、玻璃化温度低、生成热高、燃烧产物平均相对分子质量小等优点,是高能固体推进剂和枪炮发射药的优良增塑剂。近年来,采用N,N′‑二烷基亚甲基二硝胺(DNDAs)系列化合物作为含能增塑剂,发现其与硝化棉相容性较好,其中俄罗斯研究发现将推进剂中10%的硝化甘油替换成DNDAs增塑剂,4 MPa下燃速从4.1 mm·s-1降低至3.1 mm·s-1,能量降低不[1];德国Langlotz和Mueller等发现发射药装药使用该类含能增塑剂,在-50~70 ℃内能够获得很好的低温感效果,可使武器弹道性能提高10%~20%。由于DNDAs系列增塑剂的优异性能,使其成为高能低燃速推进剂和低温度系数发射药研究的热[2,3,4,5,6,7,8,9,10,11,12]。其中,3,5‑二硝基‑3,5‑二氮杂庚烷(DNDA7)是新型特色线状硝胺增塑剂,具有结构对称性好、热稳定性优异(260.8 ℃)和能量较高(爆热5841 J·g-1)等特点。俄罗斯、德国、美国等国家相继开展了其合成研[13,14,15,16],开发了多种合成工艺,但存在合成过程复杂(涉及硝化、高温水解、低温缩合等多步反应,且中间体分离过程稳定性差,易发生爆炸)、原材料(乙基脲)易吸湿等问题。

    在DNDA7的多种合成方法中,二乙基脲法是最具有使用价值的合成方法,但仍存在水解收率低(49.8%[17]、后处理复杂(中间体需萃取分离[18,19]、缩合条件苛刻(-5~0 ℃[20,21]等问题,制约着DNDA7合成工艺的放大和推广应用。为此,本研究针对文献中存在的问题,从实验结果推测了1,3‑二乙基‑1,3‑二硝基脲(DEDU)水解机理,并设计了高效水解、乙硝胺与甲醛温和缩合工艺,优化了反应条件,获得了DNDA7样品,表征了结构并测试其热分解特性、相容性等性能。以期为其推广应用和工业化制造提供了必要的参考。

  • 2 实验部分

  • 2.1 仪器与试剂

    NEXUS870型傅里叶变换红外光谱仪,美国Nicolet公司;AV500型(500 MHz)超导核磁共振波谱仪,德国Bruker公司;GC‑2010型高效液相色谱仪,日本岛津;VARIO EL Ⅲ型元素分析仪,德国Elementar公司; DSC 204 HP型高压差示扫描量热仪,德国Netzsch公司。

    1,3‑二乙基脲,分析纯,阿拉丁试剂;硫酸,分析纯,西安福晨化学试剂有限公司;多聚甲醛、碳酸钠、硫酸镁,分析纯,成都科龙化工试剂厂;二氯甲烷,分析纯,广东光华科技股份有限公司;硝酸,工业品,兰州石化。

  • 2.2 合成路线

    以1,3‑二乙基脲为原料,经硝化、水解、缩合等三步反应合成了DNDA7。反应路线如Scheme 1

    Scheme 1 Synthetic route of DNDA7

  • 2.3 合成过程

  • 2.3.1 乙硝胺(ENA)的合成

    将132 g (1.14 mol)1,3‑二乙基脲溶于200 mL二氯甲烷配制成溶液,缓慢加入到278 g质量浓度为98%的浓硝酸和233 g 20%发烟硫酸组成的混酸中进行硝化反应,反应温度-5~0 ℃,加料完毕后,反应混合物倒入400 g冰水中稀释。将稀释液升温至20 ℃,搅拌进行水解反应,水解时间30 min,反应终止后,水解液相分离,二氯甲烷相用无水硫酸镁干燥后,经浓缩得淡黄色固体165 g,收率为80.6%,纯度为99.3%(HPLC)。

    1H NMR(DMSO‑d6)δ:1.012(t,3H,—CH3),2.215(s,1H,—NH),3.243(m,2H,—CH2),13C NMR(DMSO‑d6): 11.787(—CH3),42.701(—CH2)。IR(KBr,ν/cm-1):2950,2898(—CH3),1574,1336,738(N—NO2),775(N—H),元素分析C2H6N2O2(%):理论值,C 15.79,H 5.263,N 36.84;实测值,C 16.16,H 5.312,N 37.28。

  • 2.3.2 DNDA7的合成

    将45 g(0.5 mol)乙硝胺和7.5 g(0.25 mol,以甲醛计)多聚甲醛加入反应瓶中,再加入120 mL二氯甲烷,搅拌下,在25 ℃时,滴加120 mL 75%硫酸溶液进行缩合反应,滴加完毕后,保温搅拌30 min,反应液用二氯甲烷萃取,萃取液用无水硫酸镁干燥后,经浓缩得白色固体32.5 g,收率为67.7%,纯度为99.0%(HPLC)。

    1H NMR(DMSO‑d6)δ:1.181(t,6H,—CH3),3.894(m, 4H,—CH2—),5.634(s,2H,—CH2—)13C NMR(DMSO‑d6)δ:11.857(—CH3),47.857(N—CH2—C),66.01(N—CH2—N)15NNMR(DMSO‑d6)δ: 190.424(—N—), 351.687(—NO2)。IR(KBr, ν/cm-1):3012,2983(—CH3);1539,1281,762 (N—NO2)。元素分析C5H12N4O4(%):理论值,C 31.25,H 6.250,N29.16;实测值,C 31.04,H 6.123,N 28.59。

  • 2.3.3 热分解试验

    采用美国TA910差示扫描量热仪(DSC),实验条件为静态氮气气氛,流速60 mL·min-1,压强为1.0 MPa;升温速率β为10 ℃·min-1;试样量0.5~1 mg;试样皿为铝盘。

  • 2.3.4 机械感度测试

    根据GJB772A-1997方法601.2,利用撞击感度仪测定了DNDA7的撞击感度(H50)。测试条件为:落锤质量2 kg;样品质量30 mg。

    根据GJB772A-1997方法602.1,利用摩擦感度仪测定了DNDA7的摩擦感度。测试条件为:摆锤质量1.5 kg;摆角66°;样品质量20 mg;表压2.45 MPa;测试温度15~25 ℃;相对湿度≤80%。

  • 3 结果与讨论

  • 3.1 水解反应

  • 3.1.1 水解机理

    利用硝基脲的水解条件进行DEDU水解时,该反应难以进行。从结构上分析,中间体DEDU是一种硝基尿素衍生物,其水解属于亲核取代反应,体系硫酸浓度和温度均是影响水解反应进程的重要因素。实验发现,增加体系中硫酸浓度或提高温度时,均可促进DEDU水解反应进行,使得水解的更为彻底,有利于提高ENA收率和产物纯度,并缩短反应时间。研究还发现,1,3‑二硝基脲、1,3‑二甲基‑1,3‑二硝基脲(DMDU)和1,3‑二乙基‑1,3‑二硝基脲(DEDU)的水解难度逐渐增加,与结构中N上的取代基团增大密切相关,随着取代基团由H、甲基、乙基逐渐增大,空间位阻效应增大,形成环状过渡态的难度也增加,水解效果下降,其机理见Scheme 2。因此,采用提高体系硫酸浓度和水解温度等手段,强化水解条件,加快水解速率并提高产物收率和纯度,实验结果也证实了这一点。

    Scheme 2 Hydrolysis Mechanism of DEDU

  • 3.1.2 体系硫酸浓度对ENA收率的影响

    水解体系的硫酸浓度与混酸组成用量及稀释冰水用量有关,当浓硝酸和冰水用量固定,此时混酸组成变化与硫酸浓度相关,选取水解反应温度20 ℃,加料完毕后保温时间30 min,考察了浓硫酸(质量浓度98%)、10%发烟硫酸(三氧化硫质量分数为10%)、20%发烟硫酸(三氧化硫质量分数为20%)、30%发烟硫酸(三氧化硫质量分数为30%)、40%发烟硫酸(三氧化硫质量分数为40%)对水解反应收率的影响。结果见表1

    表1 硫酸浓度对ENA收率的影响

    Table 1 The concentration effect of sulphuric acid on ENA yield

    sulphuric acid concentrationyield/%purity/%
    98%sulphuric acid65.782.8
    10%SO374.589.9
    20%SO380.699.3
    30% SO380.399.5
    40% SO380.599.2

    表1中可以看出,随着硫酸组分中SO3含量的增加,混酸体系中硫酸浓度也增加,ENA的收率和纯度也随之升高,当硫酸组分中SO3含量达到20%时,反应收率最高达到80.6%,此时纯度为99.3%。由水解机理可知硫酸浓度增加能够促进中间体DEDU的水解程度,有利于收率和纯度的提高。但是,当硫酸组分中SO3含量再增加,收率没有明显的变化。因此,从原材料成本角度考虑,采用20%发烟硫酸效果较佳。

  • 3.1.3 水解温度对ENA收率的影响

    由实验可知,当硝化液倒入冰水中稀释时,当温度为0 ℃,体系内产生气泡,说明DEDU已经开始水解,随着体系温度增加气泡量也随之增加,说明温度对DEDU水解有促进作用。选取浓硝酸和20%发烟硫酸组成混酸,加料完毕后保温时间30 min,考察了温度对水解反应收率的影响。结果见表2

    表2 水解温度对ENA收率的影响

    Table 2 The effect of hydrolysis temperature on ENA yield

    hydrolysis temperature/℃yield/%purity/%
    058.382.4
    564.186.1
    1070.591.8
    1576.995.7
    2080.699.3
    2580.598.9
    3080.299.2

    表2可以看出,随着温度的升高,反应收率和纯度也随之升高,当反应温度达到20 ℃时,反应收率最高达到80.6%,此时纯度为99.3%。但是,温度再升高,收率和纯度没有明显变化,说明此时达到了水解反应平衡,不能依靠提高温度来进一步促进收率提升。同时温度过高,会加速体系中二氯甲烷的挥发,水解完成后还需对水解液进行二次萃取,导致操作步骤增加。因此,较佳反应温度为20 ℃。

  • 3.1.4 水解时间对ENA收率的影响

    由于硝化液低温下用冰水稀释后立即开始水解,说明反应活性较高,在一定条件下可在较短时间内完成水解。选取浓硝酸和20%发烟硫酸组成混酸,水解反应温度20 ℃,考察了时间对水解反应收率的影响,结果见图1

    图1
                            水解时间对收率的影响

    图1 水解时间对收率的影响

    Fig.1 The effect of hydrolysis time on yield

    图1可以看出,随着反应时间增加反应收率也随之升高,当反应时间达到30 min时,反应收率最高达到80.6%,此时纯度为99.3%。但是,随着时间继续增加,收率基本没有明显变化,可能是该条件下DEDU已基本水解,达到反应平衡,延长时间对收率影响不大。因此,较佳反应时间为30 min。

  • 3.2 缩合反应

    乙硝胺与多聚甲醛缩合属于亲核取代反应历程。H+进攻甲醛羰基形成带正电的中间体,再与乙硝胺缩合形成半缩合物,再继续与乙硝胺缩合形成目标物。甲醛形成的带正电中间体活性较高,易于与乙硝胺形成亲核取代物,因此,反应酸性条件催化下易于进行,且反应时间相对较短。

  • 3.2.1 反应料比对DNDA7收率的影响

    选取反应温度为25 ℃,反应时间为30 min,考察了乙硝胺/多聚甲醛料比对缩合反应收率的影响,结果见表3

    表3 反应料比对DNDA7收率的影响

    Table 3 The effect of ratio of ENA to paraformaldehyde on DNDA7 yield

    n(ENA)∶n(HCHO)yield/%purity/%
    1∶0.350.299.2
    1∶0.467.199.3
    1∶0.567.899.4
    1∶0.665.999.1
    1∶0.746.399.3

    表3可以看出,随着多聚甲醛用量增加,反应收率随之升高,当乙硝胺/多聚甲醛摩尔比为1∶0.5时,反应收率最高达到78%,此时纯度为99.4%。但是,多聚甲醛用量继续增加时,收率开始下降,主要是多聚甲醛过量后与乙硝胺形成单缩合副产物,导致DNDA7收率下降,导致收率下降。因此,较佳料比为1∶0.5。

  • 3.2.2 反应温度对DNDA7收率的影响

    选取乙硝胺/多聚甲醛摩尔比为1∶0.5,反应时间为30 min,考察了温度对缩合反应收率的影响,结果见表4

    表4 反应温度对DNDA7收率的影响

    Table 4 The effect of reaction temperature on DNDA7 yield

    reaction temperature/℃yield/%purity/%
    051.999.2
    555.299.3
    1067.399.4
    1572.899.2
    2076.399.1
    2578.099.4
    3076.599.3
    3573.199.1

    表4可以看出,随着温度的升高,反应收率也随之升高,当反应温度达到25 ℃时,反应收率最高达到78%,此时纯度为99.4%。但是,温度再升高,收率略有下降,可能是反应平衡条件发生变化,导致收率下降。因此,较佳反应温度为25 ℃。

  • 3.2.3 反应时间对DNDA7收率的影响

    选取乙硝胺/多聚甲醛摩尔比为1∶0.5,反应温度为25 ℃,考察了时间对缩合反应收率的影响,结果见图2

    图2
                            反应时间对收率的影响

    图2 反应时间对收率的影响

    Fig.2 The effect of reaction time on yield

    图2可以看出,随着反应时间的增加,反应收率也随之升高,当反应时间达到30 min时,反应收率最高达到78%,此时纯度为99.4%。但是,时间再增加,收率缓慢下降,但收率整体变化不大,可能是在酸性条件下缩合是一个可逆过程,在其它条件不变的情况下,达到平衡后收率趋于稳定,随时间变化较小。因此,较佳反应时间为30 min。

  • 3.3 DNDA7性能研究

  • 3.3.1 DNDA7的热分解性能

    DNDA7是一种具有低温感效果的增塑剂,也是一种含能化合物,其使用安全性也是关注的焦点。利用差示扫描量热技术(DSC)研究DNDA7的热分解特性,结果见图3

    图3
                            DNDA7的DSC曲线

    图3 DNDA7的DSC曲线

    Fig.3 DSC curve of DNDA7

    图3可以看出,DNDA7从71.1 ℃开始融化,最大吸热峰温为77.3 ℃,其熔程为:71.1~80.0 ℃。随着温度的升高,温度在231 ℃开始放热,到280 ℃放热结束,说明231~280 ℃为DNDA7的热分解过程,在温度达到260.8 ℃时,出现最大放热峰。说明该化合物热稳定性较好。

  • 3.3.2 DNDA7的相容性

    混合体系与火炸药组分两者DSC的分解峰温Tp之差ΔTp为判据(标准)是评估相容性最常用的依据。混合体系中DNDA7与火炸药常用组分的质量比为1∶1[22]。当ΔTp为0~-2 ℃时,混合体系相容;-3~-5 ℃混合体系轻微敏感,可短期使用;-6~-15 ℃混合体系敏感,最好不用;<-15 ℃混合体系危险,禁止使用。

    选择了黑索今(RDX),奥克托今(HMX)、硝基胍(NQ)、聚叠氮缩水甘油醚(GAP)、硝化棉(NC)、1,1‑二氨基‑2,2‑二硝基乙烯(FOX‑7)等火炸药常用组分,研究其与DNDA7的相容性,结果见图4。称取100 mg DNDA7与各组分按1∶1混合,制成混合均匀的样品。试样质量约0.7 mg,普通铝池卷边,升温速率为10 ℃·min-1,压力1 MPa。充压气体为高纯氮气,动态气氛,氮气流量为50 mL·min-1

    html/hncl/CJEM2018289/alternativeImage/8a13ffd4-3164-463c-acc2-e28dff2e00a6-F007.png

    a. RDX and HMX

    html/hncl/CJEM2018289/alternativeImage/8a13ffd4-3164-463c-acc2-e28dff2e00a6-F008.png

    b. NQ and FOX‑7

    html/hncl/CJEM2018289/alternativeImage/8a13ffd4-3164-463c-acc2-e28dff2e00a6-F009.png

    c. NC and GAP

    图4 DNDA7与火炸药组分的相互作用DSC曲线

    Fig.4 DSC curves on the interaction of DNDA7 with various materials

    图4可知,DNDA7在77.3 ℃出现一明显的吸热峰,对应其固液熔融过程,在231~280 ℃出现强烈的放热峰,表明该阶段DNDA7发生相应分解,与之混合的HMX、RDX、FOX‑7、NQ、NC、GAP则分别在281.4,237,229.7,246.8,208,254.9 ℃出现了明显的分解放热峰;将上述组分与DNDA7等量混合后,可以看出DNDA7与RDX、HMX、NQ和GAP的二元混合物在其单体对应的吸/放热峰温附近出现了相应的峰,表明DNDA7与四种材料的相互作用较弱,混合后未显著影响各自的分解历程,而DNDA7与FOX‑7和NC的二元混合物的主要分解放热峰温也比这两种材料明显提前,说明它们与DNDA7间存在较强的相互作用。

    DNDA7/RDX混合体系与RDX的ΔTp为0.2 ℃,表明其相容性较好。DNDA7/HMX混合体系的分解峰温比DNDA7的分解峰温高3.2 ℃,表明加入HMX对DNDA7的热分解具有抑制作用,;DNDA7/NQ混合体系的分解峰温分别比DNDA7和NQ的分解峰温提高了2.6 ℃和16.6 ℃,表明两者混合后热稳定性增强、热分解峰温升高;DNDA7/GAP混合体系的分解峰温分别比DNDA7和GAP分解峰温提高了2.5 ℃和8.4 ℃,表明两者混合后热稳定性增强、热分解峰温升高;上述结果表明,DNDA7与HMX、NQ和GAP基本相容。DNDA7/NC混合体系的分解峰温比NC的分解峰温低6.1 ℃,表明DNDA7对NC的分解具有促进作用,使NC的分解温度提前,两者混合会明显加速含能材料的分解;DNDA7与FOX‑7的相容性较差,DNDA7/FOX‑7混合体系的分解峰温比FOX‑7的分解峰温低29.2 ℃,表明DNDA7对FOX‑7的分解具有促进作用,使FOX‑7的分解温度提前,两者混合会明显加速含能材料的分解;上述结果表明,DNDA7与NC、FOX‑7的相容性较差。

  • 3.3.3 DNDA7性能

    采用GJB772A-1997测试了DNDA7的相关性能,并与典型叠氮增塑剂1,5‑二叠氮基‑3‑硝基氮杂戊烷(DIANP)、典型硝酸酯硝化甘油(NG)和二缩三乙二醇二硝酸酯(TEGDN)进行了性能对比,结果见表5

    表5 DNDA7性能与典型化合物的对比

    Table 5 The properties of DNDA7 and other compound

    meterial

    molecular

    formula

    appearancenitrogen content/%

    density

    /g·cm-3

    Tp

    /℃(DSC)

    impact

    sensitivity/cm

    friction

    sensitivity/%

    calculation of

    explosion heat /J·g-1

    DNDA7C5H12N4O4light yellow solid29.171.384260.8>125.945841
    DIANPC4H8N8O2light yellow liquid55.991.337245.7>125.903549
    TEGDNC6H12N2O8light yellow liquid11.671.335215.410003140
    NGC3H5N3O8light yellow liquid18.501.601205.7[23]151006650

    表5可以看出,与常用增塑剂DIANP、TEGDN和NG相比,DNDA7的氮含量和密度适中;热分解峰温较高,具有良好的热稳定性;其摩擦感度、撞击感度与DIANP相当,远低于NG,赋予了其钝感含能增塑剂的特征;爆热略低于NG,远高于DIANP和TEGDN,能为高能低燃速推进剂和低温度系数发射药的发展提供技术支撑,因此,DNDA7是一种高能、钝感、热稳定性良好的新型特色线状硝胺增塑剂。

  • 4 结 论

    (1)经硝化、水解、缩合等反应合成了3,5‑二硝基‑3,5‑二氮杂戊烷(DNDA7),采用红外光谱、核磁共振和元素分析等表征了其结构。

    (2)研究了反应温度、时间、硫酸组成等对水解反应收率的影响,确定最佳反应条件为:20%发烟硫酸,反应温度20 ℃,反应时间30 min;研究了料比、反应温度、时间等对缩合反应收率的影响,确定最佳反应条件为:乙硝胺/多聚甲醛摩尔比1∶0.5,反应温度25 ℃,反应时间30 min,总收率为54.6%。

    (3)DNDA7的熔点为77.3 ℃,热分解峰温为260.8 ℃,DNDA7与RDX的相容性较好,DNDA7与HMX、NQ和GAP基本相容,DNDA7与NC和FOX‑7的相容性较差。

    (4)DNDA7的密度1.384 g·cm-3,摩擦感度为4%,撞击感度H50值大于125.9 cm,计算爆热5841 J·g-1,表明其密度适中、能量较高、钝感,具有较好的应用前景。

    (责编:张 琪)

  • 参考文献

    • 1

      Denisyuk A P, Shepelev Y G, Yudaev S V, et al. Combustion of systems containing linear nitramines[J]. Combustion, Explosion, and Shock Waves, 2005, 41(2): 206-214.

    • 2

      Gert P,Rudolf S. Burning behavior of nitramine gun propellants under the influence of pressure oscillations[J]. Propellants, Explosives, Pyrotechnics, 2010, 35: 284-291.

    • 3

      Langlotz W,Mueller D. LTC gun propellants for use in machine gun ammunition[C]//21st International Symposium on Ballistics, Adelaide, Australia, 2004.

    • 4

      Langlotz W, Mueller D. Advancedwork on increasing the performance of gun propellants[C]//Insensitive Munitions and Energetic Materials Technology Symposium, San Diego, USA, 2000.

    • 5

      Farahani B V, Rajabi F H,Hosseindoust B, et al. DSC study of solid‑liquid equilibria for energetic binary mixtures of methylnitramine with 2,4‑dinitro‑2,4‑diazapentane and 2,4‑dinitro‑2,4‑diazahexane[J].Section I: Basic and Applied Research, 2010, 31: 536-541.

    • 6

      Gudrun B, Heike S, Horst K. Thermal analytical characterization of DNDA‑5, DNDA‑6 and DNDA‑7 and certain binary and ternary mixtures[C]//35th International Annual Conference of ICT, Karlsruhe, Germany2004.

    • 7

      Spitzer D, Schäfer M R. Investigation of the DNDA‑nitrocellulose interaction:determination of complexes by DSC and FT‑IR spectroscop[C]//35th International Annual Conference of ICT,Karlsruhe, Germany, 2004.

    • 8

      Mueller D. LTC gun propellants for use in machine gun ammunition[C]//36th International Annual Conference of ICT &32nd International Pyrotechnics Seminar,Karlsruhe, Germany, 2005.

    • 9

      Almuth K, Wolfgang S. Investigations concerning modifications of the properties of loaded DNDA propellant[C]//36th International Annual Conference of ICT & 32nd International Pyrotechnics Seminar,Karlsruhe, Germany, 2005.

    • 10

      Manfred A, Bohn, Dietmar Müller. Insensitivity aspects of NC bonded and DNDA plasticizer containing gun propellants[C]//37th International Annual Conference of ICT,Karlsruhe, Germany, 2006.

    • 11

      Jutta B M, Mathias H. Insights in the microstructure of gun propellants[C]//41st International Annual Conference of ICT, Karlsruhe, Germany, 2010.

    • 12

      Jutta B M, Mathias H. Influence of the processing on the properties of DNDA propellants[C]//42nd International Annual Conference of ICT, Karlsruhe, Germany, 2010.

    • 13

      Kumari D, Balakshe R, Banerjee S, et al. Energetic plasticizers for gun & propellants[J]. Review Journal of Chemistry, 2012, 2(3): 240-262.

    • 14

      Vijayalakshmi R, Naik N H, Gore G M,et al. Sikderlinear nitramine(DNDA‑57): synthesis, scale‑up,characterization, and quantitative estimation by GC/MS[J]. Journal of Energetic Materials, 2015, 33: 1-16.

    • 15

      Antes J, Schwarzer M, Janitschek W,et al. A novel approach to DNDA57 synthesis by microreaction technology[C]//41st International Annual Conference of ICT, Karlsruhe, Germany, 2010.

    • 16

      Antes J, Janitschek W,Schulz N, et al. Continuous flow synthesis of DNDA57 in a capillary microreactor[C]//43rd International Annual Conference of the Fraunhofer ICT, Karlsruhe, Germany, 2010.

    • 17

      Langlotz W, Mueller D. Propellant Powder for Barrelled Weapons:PCT‑WO 34891[P],1998.

    • 18

      Marduerite S C, Fort W, Robert R O, et al. Systhesis of dimethyl‑methylene dinitramine: US4419212[P],1983.

    • 19

      Marduerite S C, Fort W, Robert R O, et al. Systhesis of dimethyl‑ methylene dinitramine: US4476322[P],1984.

    • 20

      FroiopskiiK A, PetrosyanV A. Electrooxidation of primary nitramine anions on platinum in MeCN[J]. Russian Chemical Bulletin,1999,48(10): 1911-1915.

    • 21

      Rainer S, Heinz G E, Leonard L. Method for producing DNDA:US0191346[P], 2003.

    • 22

      刘子如. 含能材料热分析[M]. 北京:国防工业出版社,2008: 22.

      LIU Zi‑ru. Thermal analyses for energetic materials[M]. Beijing: National Defense Industry Press,2008: 22.

    • 23

      刘艳, 刘子如, 邱刚, 等. 静态与动态高压对含能材料热分解的影响[J]. 火炸药学报, 2001, 24(3): 26-29.

      LIU Yan, LIU Zi‑ru, QIU Gang, et al. The influence of high pressure of static and dynamic atmosphere on the thermal decomposition of energetic materials[J]. Chinese Journal of Explosives & Propellants, 2001, 24(3): 26-29.

陈斌

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

邮 箱:cb204s@163.com

作者简介:陈斌(1976-),男,博士,副研究员,从事含能材料合成及性能研究。e‑mail:cb204s@163.com

刘亚静

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

高福磊

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

汪营磊

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

角 色:通讯作者

Role:Corresponding author

邮 箱:wangyl204@163.com

作者简介:汪营磊(1983-),男,博士,副研究员,从事含能材料合成及性能研究。e‑mail:wangyl204@163.com

陆婷婷

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

html/hncl/CJEM2018289/alternativeImage/8a13ffd4-3164-463c-acc2-e28dff2e00a6-F001.png
html/hncl/CJEM2018289/alternativeImage/8a13ffd4-3164-463c-acc2-e28dff2e00a6-F002.png
sulphuric acid concentrationyield/%purity/%
98%sulphuric acid65.782.8
10%SO374.589.9
20%SO380.699.3
30% SO380.399.5
40% SO380.599.2
hydrolysis temperature/℃yield/%purity/%
058.382.4
564.186.1
1070.591.8
1576.995.7
2080.699.3
2580.598.9
3080.299.2
html/hncl/CJEM2018289/alternativeImage/8a13ffd4-3164-463c-acc2-e28dff2e00a6-F003.png
n(ENA)∶n(HCHO)yield/%purity/%
1∶0.350.299.2
1∶0.467.199.3
1∶0.567.899.4
1∶0.665.999.1
1∶0.746.399.3
reaction temperature/℃yield/%purity/%
051.999.2
555.299.3
1067.399.4
1572.899.2
2076.399.1
2578.099.4
3076.599.3
3573.199.1
html/hncl/CJEM2018289/alternativeImage/8a13ffd4-3164-463c-acc2-e28dff2e00a6-F004.png
html/hncl/CJEM2018289/alternativeImage/8a13ffd4-3164-463c-acc2-e28dff2e00a6-F005.png
html/hncl/CJEM2018289/alternativeImage/8a13ffd4-3164-463c-acc2-e28dff2e00a6-F007.png
html/hncl/CJEM2018289/alternativeImage/8a13ffd4-3164-463c-acc2-e28dff2e00a6-F008.png
html/hncl/CJEM2018289/alternativeImage/8a13ffd4-3164-463c-acc2-e28dff2e00a6-F009.png
meterial

molecular

formula

appearancenitrogen content/%

density

/g·cm-3

Tp

/℃(DSC)

impact

sensitivity/cm

friction

sensitivity/%

calculation of

explosion heat /J·g-1

DNDA7C5H12N4O4light yellow solid29.171.384260.8>125.945841
DIANPC4H8N8O2light yellow liquid55.991.337245.7>125.903549
TEGDNC6H12N2O8light yellow liquid11.671.335215.410003140
NGC3H5N3O8light yellow liquid18.501.601205.7[23]151006650

Scheme 1 Synthetic route of DNDA7

Scheme 2 Hydrolysis Mechanism of DEDU

表1 硫酸浓度对ENA收率的影响

Table 1 The concentration effect of sulphuric acid on ENA yield

表2 水解温度对ENA收率的影响

Table 2 The effect of hydrolysis temperature on ENA yield

图1 水解时间对收率的影响

Fig.1 The effect of hydrolysis time on yield

表3 反应料比对DNDA7收率的影响

Table 3 The effect of ratio of ENA to paraformaldehyde on DNDA7 yield

表4 反应温度对DNDA7收率的影响

Table 4 The effect of reaction temperature on DNDA7 yield

图2 反应时间对收率的影响

Fig.2 The effect of reaction time on yield

图3 DNDA7的DSC曲线

Fig.3 DSC curve of DNDA7

图4 DNDA7与火炸药组分的相互作用DSC曲线 -- a. RDX and HMX

Fig.4 DSC curves on the interaction of DNDA7 with various materials -- a. RDX and HMX

图4 DNDA7与火炸药组分的相互作用DSC曲线 -- b. NQ and FOX‑7

Fig.4 DSC curves on the interaction of DNDA7 with various materials -- b. NQ and FOX‑7

图4 DNDA7与火炸药组分的相互作用DSC曲线 -- c. NC and GAP

Fig.4 DSC curves on the interaction of DNDA7 with various materials -- c. NC and GAP

表5 DNDA7性能与典型化合物的对比

Table 5 The properties of DNDA7 and other compound

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Denisyuk A P, Shepelev Y G, Yudaev S V, et al. Combustion of systems containing linear nitramines[J]. Combustion, Explosion, and Shock Waves, 2005, 41(2): 206-214.

    • 2

      Gert P,Rudolf S. Burning behavior of nitramine gun propellants under the influence of pressure oscillations[J]. Propellants, Explosives, Pyrotechnics, 2010, 35: 284-291.

    • 3

      Langlotz W,Mueller D. LTC gun propellants for use in machine gun ammunition[C]//21st International Symposium on Ballistics, Adelaide, Australia, 2004.

    • 4

      Langlotz W, Mueller D. Advancedwork on increasing the performance of gun propellants[C]//Insensitive Munitions and Energetic Materials Technology Symposium, San Diego, USA, 2000.

    • 5

      Farahani B V, Rajabi F H,Hosseindoust B, et al. DSC study of solid‑liquid equilibria for energetic binary mixtures of methylnitramine with 2,4‑dinitro‑2,4‑diazapentane and 2,4‑dinitro‑2,4‑diazahexane[J].Section I: Basic and Applied Research, 2010, 31: 536-541.

    • 6

      Gudrun B, Heike S, Horst K. Thermal analytical characterization of DNDA‑5, DNDA‑6 and DNDA‑7 and certain binary and ternary mixtures[C]//35th International Annual Conference of ICT, Karlsruhe, Germany2004.

    • 7

      Spitzer D, Schäfer M R. Investigation of the DNDA‑nitrocellulose interaction:determination of complexes by DSC and FT‑IR spectroscop[C]//35th International Annual Conference of ICT,Karlsruhe, Germany, 2004.

    • 8

      Mueller D. LTC gun propellants for use in machine gun ammunition[C]//36th International Annual Conference of ICT &32nd International Pyrotechnics Seminar,Karlsruhe, Germany, 2005.

    • 9

      Almuth K, Wolfgang S. Investigations concerning modifications of the properties of loaded DNDA propellant[C]//36th International Annual Conference of ICT & 32nd International Pyrotechnics Seminar,Karlsruhe, Germany, 2005.

    • 10

      Manfred A, Bohn, Dietmar Müller. Insensitivity aspects of NC bonded and DNDA plasticizer containing gun propellants[C]//37th International Annual Conference of ICT,Karlsruhe, Germany, 2006.

    • 11

      Jutta B M, Mathias H. Insights in the microstructure of gun propellants[C]//41st International Annual Conference of ICT, Karlsruhe, Germany, 2010.

    • 12

      Jutta B M, Mathias H. Influence of the processing on the properties of DNDA propellants[C]//42nd International Annual Conference of ICT, Karlsruhe, Germany, 2010.

    • 13

      Kumari D, Balakshe R, Banerjee S, et al. Energetic plasticizers for gun & propellants[J]. Review Journal of Chemistry, 2012, 2(3): 240-262.

    • 14

      Vijayalakshmi R, Naik N H, Gore G M,et al. Sikderlinear nitramine(DNDA‑57): synthesis, scale‑up,characterization, and quantitative estimation by GC/MS[J]. Journal of Energetic Materials, 2015, 33: 1-16.

    • 15

      Antes J, Schwarzer M, Janitschek W,et al. A novel approach to DNDA57 synthesis by microreaction technology[C]//41st International Annual Conference of ICT, Karlsruhe, Germany, 2010.

    • 16

      Antes J, Janitschek W,Schulz N, et al. Continuous flow synthesis of DNDA57 in a capillary microreactor[C]//43rd International Annual Conference of the Fraunhofer ICT, Karlsruhe, Germany, 2010.

    • 17

      Langlotz W, Mueller D. Propellant Powder for Barrelled Weapons:PCT‑WO 34891[P],1998.

    • 18

      Marduerite S C, Fort W, Robert R O, et al. Systhesis of dimethyl‑methylene dinitramine: US4419212[P],1983.

    • 19

      Marduerite S C, Fort W, Robert R O, et al. Systhesis of dimethyl‑ methylene dinitramine: US4476322[P],1984.

    • 20

      FroiopskiiK A, PetrosyanV A. Electrooxidation of primary nitramine anions on platinum in MeCN[J]. Russian Chemical Bulletin,1999,48(10): 1911-1915.

    • 21

      Rainer S, Heinz G E, Leonard L. Method for producing DNDA:US0191346[P], 2003.

    • 22

      刘子如. 含能材料热分析[M]. 北京:国防工业出版社,2008: 22.

      LIU Zi‑ru. Thermal analyses for energetic materials[M]. Beijing: National Defense Industry Press,2008: 22.

    • 23

      刘艳, 刘子如, 邱刚, 等. 静态与动态高压对含能材料热分解的影响[J]. 火炸药学报, 2001, 24(3): 26-29.

      LIU Yan, LIU Zi‑ru, QIU Gang, et al. The influence of high pressure of static and dynamic atmosphere on the thermal decomposition of energetic materials[J]. Chinese Journal of Explosives & Propellants, 2001, 24(3): 26-29.