CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
庞爱民, 王北海. 丁羟聚氨酯弹性体结构与力学性能的关系综述[J]. 推进技术, 1993, 14(5): 53-58.
PANGAi‑min,WANGBei‑hai. Relationship between the structure and the mechanical properties of HTPB[J]. Journal of Propulsion Technology, 1993, 14(5): 53-58.
参考文献 2
MillerM S, HolmesH E. Subatmospheric burning rates and critical diameters for AP/HTPB propellant[J]. Journal of Propulsion and Power, 1990, 6(5): 671-672.
参考文献 3
鲁念惠. 丁羟推进剂的应用与性能研究评述[J]. 宇航学报, 1981(4): 86-100.
LUNian‑hui. A review concerned to research and application of HTPB propellant[J]. Journal of Astronautics, 1981(4):86-100.
参考文献 4
贺南昌, 庞爱民. 不同氧化剂对丁羟(HTPB)推进剂老化性能影响的研究[J]. 推进技术, 1990(6): 40-45.
HENan‑chang,PANGAi‑min. Effect of different oxidizing agents on aging performance of HTPB propellants[J]. Journal of Propulsion Technology, 1990(6): 40-45.
参考文献 5
MuthiahR, KrishnamurthyV N, GuptaB R. Rheology of HTPB propellant: development of generalized correlation and evaluation of pot life[J]. Propellants Explosives Pyrotechnics, 2010, 21(4): 186-192.
参考文献 6
庞爱民, 黎小平. 固体推进剂技术的创新与发展规律[J]. 含能材料, 2015, 23(1): 3-6.
PANGAi‑min, LIXiao‑ping. Innovation and development of solid propellant technology[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(1): 3-6.
参考文献 7
GascoinN, GillardP, MangeotA, et al. Literature survey for a first choice of a fuel‑oxidiser couple for hybrid propulsion based on kinetic justifications[J]. Journal of Analytical & Applied Pyrolysis, 2012, 94(6): 1-9.
参考文献 8
GraetzJ, ReillyJ J. Thermodynamics of the α, β and ν polymorphs of AlH3[J]. Cheminform, 2010, 37(50): 262-265.
参考文献 9
KalmanJ, EsselJ. Cover picture: Influence of particle size on the combustion of CL‑20/HTPB propellants[J]. Propellants Explosives Pyrotechnics, 2017, 42(11): 1239-1239.
参考文献 10
JrC U P. Location of action of burning‑rate catalysts in composite propellant combustion[J]. AIAA Journal, 1969, 7(2):328-334.
参考文献 11
ZhouX, ZouM, HuangF, et al. Effect of organic fluoride on combustion agglomerates of aluminized HTPB solid propellant[J]. Propellants Explosives Pyrotechnics,2017,42(4):310-316.
参考文献 12
BinauldQ, LametJ M, TesséLionel, et al. Numerical simulation of radiation in high altitude solid propellant rocket plumes[J]. Acta Astronautica, 2018. DOI:10.1016/j.actaastro.2018.05.041.
参考文献 13
MurphyP, ReedR, COX D, et al. Measurement and analysis of laser transmission through solid‑propellant rocket motor exhaust plumes[C]//AIAA 28th Thermophysics Conference, Fluid Dynamics and Co‑located Conferences, 1993.
参考文献 14
ZhouL, BakerK R, NapelenokS L, et al. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport[J]. Science of The Total Environment, 2018, 627: 523-533.
参考文献 15
PanB, DangL, WangZ, et al. Preparation, crystal structure and solution‑mediated phase transformation of a novel solid‑state form of CL‑20[J]. Cryst Eng Comm, 2018, 20(11):1553-1563.
参考文献 16
AponyakinaS N, LapinaY T, ZolotukhinaI I. Hexanitrohexaazaisowurtzitanere modification in three‑component crystallization systems[J]. Russian Journal of Applied Chemistry, 2017, 90(9): 1397-1401.
参考文献 17
张杰, 邹彦文, 贺俊. 六硝基六氮杂异伍兹烷的性能及应用研究[J]. 飞航导弹, 2005(08): 56-61.
ZHANGJie, ZOUYan‑wen, HEJun. Study on the performance and application of hexanitrohexazide[J]. Winged Missiles Journal, 2005(08): 56-61.
参考文献 18
王旭朋, 罗运军, 郭凯,等. 含3,3′‑二硝基‑4,4′‑氧化偶氮呋咱推进剂的能量特性研究[J]. 含能材料, 2009, 17(1): 79-82.
WANGXu‑peng, LUOYun‑jun, GUOKai, et al. Energy characteristics computation of propellant containing 3,3′‑dinitro‑4,4′‑oxazafurazan[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(1): 79-82.
参考文献 19
罗阳, 高红旭, 赵凤起,等. 含3,4‑二硝基呋咱基氧化呋咱(DNTF)推进剂的能量特性[J]. 含能材料, 2005, 13(4):225-228.
LUOYang, GAOHong‑xu, ZHAOFeng‑qi, et al. Energy characteristics of propellant containing 3,4‑dinitrofurazanfuroxan (DNTF)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(4): 225-228.
参考文献 20
揭锦亮. 含高能量密度化合物固体推进剂的性能研究[D]. 长沙:国防科学技术大学, 2008.
Jin‑liangJIE. Study on the performance of solid propellant with HEDC[D]. Changsha: National University of Defense Technology, 2008.
参考文献 21
BowdenF P, YoffeY D. Initiation and growth of explosion in liquids and solids[M]. Cambridge University Press, Cambridge, 1952.
参考文献 22
吕春玲. 主体炸药粒度及粒度级配与炸药冲击波感度和能量输出的实验与理论研究[D]. 太原: 华北工学院, 2001.
LVChun‑ling. Experimental and theoretical study on particle size and size gradation of main explosives and shock wave sensitivity and energy output of explosives[D]. Taiyuan:North China Institute of technology, 2001.
参考文献 23
KhasainovB A, BorisovA A, ErmolaevB S, et al. Two‑phase visco‑plastic model of shock initiation of detonation in high density pressed explosives[C]//7th Symposium (International) on Detonation. 1981.
参考文献 24
宋琴, 顾健, 尹必文, 等. 降低固体推进剂高压压强指数的配方[P]. CN106336334, 2017.
SONGQin, GUJian, YINBi‑wen, et al. Formulation for lowering high pressure index of solid propellant[P]. CN106336334, 2017.
参考文献 25
GuoX, OuyangG, LiuJ, et al. Massive preparation of reduced‑sensitivity nano CL‑20 and its characterization[J]. Journal of Energetic Materials, 2015, 33(1): 24-33.
参考文献 26
欧阳刚, 郭效德, 席海军,等. 亚微米六硝基六氮杂异伍兹烷的制备及其性能研究[J]. 兵工学报, 2015, 36(1): 64-69.
OUYANGGang, GUOXiao‑de, XIHai‑jun, et al. Preparation and characterization of submicron hexanitrohexaazaisowurtzitane[J]. Acta Armamentarii, 2015, 36(1): 64-69.
参考文献 27
欧阳刚. 亚微米CL‑20的制备及其在固体推进剂中的应用研究[D]. 南京: 南京理工大学, 2015.
OUYANGGang. Preparation of submicron CL‑20 and its application in the solid propellant[D]. Nanjing: Nanjing University of Science and Technology, 2015.
参考文献 28
周晓杨, 唐根, 庞爱民. ADN推进剂国外研究进展[J]. 飞航导弹, 2017(2): 87-92.
ZHOUXiao‑yang, TANGGen, PANGAi‑min. Progress of ADN propellant research abroad[J]. Aerodynamic Missile Journal, 2017(2): 87-92.
参考文献 29
KorobeinichevO P, PaletskyA A. Flame structure of ADN/HTPB composite propellants[J]. Combustion & Flame, 2001, 127(3): 2059-2065.
参考文献 30
FlonJ D, AndreassonS, LiljedahlM, et al. Solid Propellants based on ADN and HTPB[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2013.
参考文献 31
Van der HeijdenA E D M, KeizersH L J, VeltmansW H M. HNF/HTPB based composite propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5(1-6): 587-596.
参考文献 32
Van der HeijdenA E D M. Ballistic properties of HNF/AL/HTPB based propellant[C]// CT Annual Conference, 2001.
参考文献 33
DelucaL T, MaggiF, DossiS, et al. High‑energy metal fuels for rocket propulsion:characterization and performance[J]. Chinese Journal of Explosives Propellants, 2013,36(6): 1-14.
参考文献 34
DeLucaL T, ShimadaT, SinditskiiV P, et al. Chemical rocket propulsion‑a comprehensive survey of energetic materials[M]. Springer International Publishing, 2017: 3-63.
参考文献 35
MaggiF, GarianiG, GalfettiL, et al. Theoretical analysis of hydrides in solid and hybrid rocket propulsion[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1760-1769.
参考文献 36
DelucaL T, RossettiniL, KappensteinC, et al. Ballistic characterization of AlH3‑based propellants for solid and hybrid rocket propulsion[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2013.
参考文献 37
BazynT, KrierH, GlumacN, et al. Decomposition of aluminum hydride under solid rocket motor conditions[J]. Journal of Propulsion & Power, 2012, 23(2): 457-464.
参考文献 38
MedaL, MarraG, GalfettiL, et al. Nano‑aluminum as energetic material for rocket propellants[J]. Materials Science and Engineering, 2007, 27: 1393-1396.
参考文献 39
BaschungB, GruneD, LichtH H, et al. Combustion phenomena of a solid propellant based on aluminum powder[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5(1-6): 219-225.
参考文献 40
TepperF, IvanovG V. 'Activated' aluminum as a stored energy source for propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 1997, 4(1-6): 636-645.
参考文献 41
OlivaniA, GalfettiL, SeveriniF, et al. Aluminum particle size influence on ignition and combustion of AP/HTPB/Al solid rocket propellants[J]. Advances in Rocket Propellant Performance, Life and Disposal for Improved System Performance and Reduced Costs, 2002, 31(6): 1-12.
参考文献 42
GalfettiL, DeLucaL T , SeveriniF., et al. Pre and post‑burning analysis of nano‑aluminized solid rocket propellants[J]. Aerospace Science and Technology, 2007, 11(1): 26-32.
参考文献 43
DelucaL T, MaggiF, DossiS, et al. Prospects of aluminum modifications as energetic fuels in chemical rocket propulsion[M]. Chemical Rocket Propulsion. Springer International Publishing, 2017: 191-235.
参考文献 44
DelucaL T, GalfettiL, ColomboG, et al. Microstructure effects in aluminized solid rocket propellants[J]. Journal of Propulsion & Power, 2010, 26(4): 724-733.
参考文献 45
SundaramD S, YangV, ZarkoV E. Combustion of nano aluminum particles (Review)[J]. Combustion Explosion & Shock Waves, 2015, 51(2): 173-196.
参考文献 46
ZhaoF, YaoE, XuS, et al. Laser ignition of different aluminum nanopowders for solid rocket propulsion[M]. Chemical Rocket Propulsion. Springer International Publishing, 2017: 271-297.
参考文献 47
GauravM, RamakrishnaP A. Effect of mechanical activation of high specific surface area aluminum with PTFE on composite solid propellant[J].Combustion & Flame,2016,166:203-215.
参考文献 48
SippelT R, SonS F, GrovenL J, et al. Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum[J]. Combustion & Flame, 2015, 162(3): 846-854.
参考文献 49
GlotovO G,YagodnikovD A, Vorob'evV S, et al. Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration[J]. Combustion Explosion & Shock Waves, 2007, 43(3): 320-333.
参考文献 50
GanyA, CavenyL H. Agglomeration and ignition mechanism of aluminum particles in solid propellants[J]. Symposium (International) on Combustion, 1979, 17(1):1453-1461.
参考文献 51
RosenbandV, GanyA. Agglomeration and ignition of aluminum particles coated by nickel[J]. International Journal of Energetic Materials and Chemical Propulsion, 2007, 6(2): 143-151.
参考文献 52
YavorY, GanyA. Effect of nickel coating on aluminum combustion and agglomeration in solid propellants[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2013.
参考文献 53
ListedN. Beryllium and beryllium compounds[J]. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 1993, 58(2): 41.
参考文献 54
M W JrChase. NIST‑JANAF thermochemical tables[M]. Fourth Edition: Journal of Physical Chemical Reference, Monograph 9, 1998: 1-1951.
参考文献 55
HaddadA, NatanB, ArieliR. The performance of a boron‑loaded gel‑fuel ramjet[J]. Eucass Proceedings, 2011, 2:499-518.
参考文献 56
SrivastavaR D, FarberM. Thermodynamic properties of Group 3 oxides[J]. Chemical Reviews, 2002,78(6):627-638.
参考文献 57
DelucaL T, MarchesiE, SpreaficoM A, et al. Aggregation versus agglomeration in metallized solid rocket propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9(1): 91-105.
参考文献 58
ChanM L, ParrT, Hanson‑ParrD, et al. Characterization of a boron containing propellant[C]//DeLucaL T, GalfettiL, RA (eds)Pesce‑Rodriguez, Novel energetic materials and applications, Proceedings of the IWCP, GraficheGSS, Bergamo, Italy, 2004, 9:07.
参考文献 59
DossiS, ReinaA, MaggiF, et al. Innovative metal fuels for solid rocket propulsion[J]. International Journal of Energetic Materials and Chemical Propulsion, 2012, 11(4): 299-322.
参考文献 60
MitaniT, IzumikawaM. Combustion efficiencies of aluminum and boron in solid propellants[J]. Journal of Spacecraft and Rockets, 1991, 28(1): 79-84.
参考文献 61
ShevchukV G, ZolotkoA N, PolishchukD I. Ignition of packed boron particles[J]. Combustion Explosion & Shock Waves, 1975, 11(2): 189-192.
参考文献 62
DelucaL T, GalfettiL, MaggiF, et al. Innovative metallized formulations for solid rocket propulsion[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2012,20(4): 465-474.
参考文献 63
VorozhtsovA B, ZhukovA S, ZiatdinovM K, et al. Novel micro‑ and nanofuels: production, characterization, and applications for high‑energy materials[M]. Chemical Rocket Propulsion. Springer International Publishing, 2017: 235-253.
目录 contents

    摘要

    丁羟复合固体推进剂是以端羟基聚丁二烯(HTPB)为粘合剂的一类固体推进剂。在其成熟的技术体系上,根据目前存在的燃烧羽焰不清洁和燃烧效率较低的问题,介绍了新型含能材料在丁羟复合推进剂中的应用情况。为了实现燃烧羽焰的清洁性,可以使用六硝基六氮杂异伍兹烷(CL‑20)、多氮化合物等高能化合物替代部分高氯酸铵(AP),而二硝酰胺铵(ADN)、硝仿肼(HNF)有希望完全替代丁羟推进剂中的AP;而为了提升铝(Al)粉的燃烧效率,可以使用三氢化铝(AlH3)、纳米Al和各种复合Al粉。总的来说,在丁羟推进剂中应用新型含能材料应当遵循问题导向,以实现燃烧羽焰清洁性和提高铝粉燃烧效率为目标,充分挖掘无氯类氧化剂和铝基复合材料等新型含能材料的特性价值,从而进一步拓展丁羟推进剂应用范围,为推动固体动力技术在军事和民用领域的全面发展做出贡献。

    Abstract

    In this paper, based on the mature technical system of hydroxyl terminated polybutadiene(HTPB) composite solid propellants, the new energetic material have been introduced for these formulations to obtain plume with less emission and higher combustion efficiency. According to the literature, in order to achieve the low emission of the combustion plume, high‑energy compounds such as hexanitrohexaazaisowurtzitane (CL‑20) and polynitrogen compounds can be used to partially replace some ammonium perchlorate (AP), whereas the dinitramide Ammonium (ADN) and nitrous oxide (HNF) are expected to completely replace AP in HTPB propellants. More importantly, in order to improve the combustion efficiency of aluminum (Al) powder, aluminum hydride (AlH3), nano‑Al or various composite Al powder could be used. In general, the development of new energetic ingredients for HTPB propellants should follow the problem‑oriented principle. As a result, it′s better to investigate the characteristics of such novel energetic ingredients, and thereby the practical applications of HTPB propellants could be extended, which may promote solid‑power technology in both military and civilian applications.

  • 1 引言

    在固体推进剂的发展历程中,以端羟基聚丁二烯(HTPB)为粘合剂的丁羟复合固体推进剂占有十分重要的地位。自20世纪70年代起,以HTPB、高氯酸铵(AP)、金属Al粉等为基础原材料的丁羟复合固体推进剂性能优良且低廉价格,同时兼具能量水平适中、危险等级低、力学性能[1]、燃速可调范围[2]、工艺性能优[3]、抗老[4,5]和成本低等特点。这使丁羟复合固体能够满足大部分通用战术导弹的要求,因此在众多导弹武器型号中得到应用,至今仍是复合固体推进剂装药的主[6]。进入21世纪后,随着先进导弹武器的发展,设计者们对复合固体推进剂提出了更高的要求,传统丁羟推进剂技术革新的紧迫性与日俱增。

    从根本上来讲,能量是固体推进剂发展的长期主线[7],贯穿于固体推进剂各项研究与应用内容之中。丁羟复合固体推进剂在发展中也重视自身能量水平的提升,然而受限于HTPB惰性粘合剂的性质,无法像高能固体推进剂(如NEPE推进剂)那样使用含能增塑剂作为能量提升的途径。因此,与其花费高昂代价去刻意追求丁羟推进剂的高能量水平,不如聚焦于丁羟推进剂综合性能良好的核心优势,借助于新型含能材料制备合成技术的快速发[8,9,10,11],来解决当前丁羟推进剂应用中的瓶颈问题。尽管传统丁羟推进剂并不是新型含能材料应用的主流方向,但是一旦新型含能材料在丁羟推进剂中突破了应用瓶颈,丁羟推进剂各种性能提升也就水到渠成。为此,本文以当前丁羟复合固体推进剂的“燃气洁净化”和“提高燃烧效率”两种应用需求为框架,在需求框架的背景下对六硝基六氮杂异伍兹烷(CL‑20)、多氮化合物、二硝酰胺铵(ADN)、硝仿肼(HNF)三氢化铝(AlH3)、纳米Al和各种复合Al粉等含能材料的应用进行综述。

    由于目前固体火箭推进剂均采用AP作为主氧化剂,其含量可高达70%以上,在其燃烧过程中产生一定量的氯化氢(HCl)气体,可与空气中的水结合形成可见烟,随着军用导弹武器低羽烟化和民用火箭低污染性的发展要[12],燃气中不含HCl的清洁固体推进剂将会成为一个重要发展方向,因此丁羟复合固体推进剂的一种应用需求是提升燃烧羽焰的清洁[13,14],针对于此,通过使用不含氯元素的氧化剂或高能物质来替代AP是实现推进剂清洁化的重要手[15,16,17,18,19,20]。丁羟复合固体推进剂的另一种应用需求是提升自身的燃烧效率,燃烧效率是推进剂能量得到充分发挥的重要保障,随着低燃速推进剂需求的不断增长,丁羟推进剂中铝粉燃烧问题获得了越来越多的关注,针对于此,通过使用各类铝基金属燃料来实现推进剂的高燃烧效率。

  • 2 燃气清洁化

    推进剂燃气中的可见烟会使导弹武器的生存能力和突防能力受到严重威胁。通常,战术导弹在发射及飞行时,喷焰中的烟雾会暴露导弹方位,也易被拦截;另一方面,制导信号(微波、电磁波和激光)穿越喷焰和烟雾区时还会衰减和被干扰,从而严重影响制导的精确[13,14]

    从民用领域分析,含AP固体推进剂燃烧产生的HCl气体质量约占燃气总质量的21%。美国、法国、日本等国家的环保人士在目睹固体火箭发射向空气中排放大量燃气烟雾时,对固体推进剂燃烧产物给环境带来的污染问题提出了一系列的质疑,并希望固体助推器研制部门对固体助推器的环保性给予论证。

    就新型含能材料应用而言,燃气清洁化最直接的手段就是尽可能替换含Cl元素的氧化剂AP。一旦固体推进剂中Cl元素含量降低,发动机羽焰中的污染问题就能得到改善,从而实现燃气清洁化的要求。而对于不含Cl元素的新型含能材料而沿,则需要重点考察使用该含能材料后对固体推进剂各方面性能的影响。

  • 2.1 使用高能化合物代替部分AP

    目前黑索今(RDX)和奥克托今(HMX)已经在丁羟推进剂中获得了广泛的应用,二者均改善了推进剂燃烧羽烟的问题。近年来,如CL‑20类的笼型和强张力环化合物是新型高能化合物的研究重[15,16]。这类化合物在爆炸作用中除了经典炸药爆炸产物所产生的膨胀功外,还增添了张力作用而释放出的张力功和爆炸后位能降低所释放的能量。CL‑20的主要优势在于张力环导致较高的生成热;拥有比RDX和HMX高的氧平衡;分子的笼型结构和密堆积使材料具有高密度。在这些因素的综合作用下,CL‑20的能量是HMX的1.2倍。因此,在丁羟推进剂中使用CL‑20不仅可以有效改善丁羟推进剂羽[17],还可以提升推进剂的能量水平。

    除了CL‑20以外,唑、嗪、呋咱等环上氢部分或全部被含能基团取代的高氮化合物是另一种可使用的含能材料。王旭朋[18]利用GJB/Z84-96方法在标准条件(pc/po=70/1)下,计算了含新型高能氧化剂3,3′‑二硝基‑4,4′‑氧化偶氮呋咱(DNOAF)推进剂的能量特性。计算发现用DNOAF取代丁羟复合固体推进剂中的AP后,比冲可提高120 N∙s∙kg-1

    罗阳[19]研究了含3,4‑二硝基呋咱基氧化呋咱(DNTF)推进剂的能量特性。具体方法为先保持AP含量不变,用DNTF逐步取代RDX,进而取代AP,当DNTF含量为55%~65%时,排气的平均分子量降至最低。当DNTF逐步取代RDX时,推进剂的氧平衡逐渐升高,但当DNTF开始取代AP后,氧平衡逐渐降低。当DNTF含量为45%~55%时,作为推进剂能量指标的比冲和火焰温度增至最大,而特征速度(C*)在DNTF含量为55%~65%时增至最大。

    揭锦[20]认为诸如CL‑20、TAGZT和DNOAF等高能化合物在部分替代AP之后,都会对AP的高温分解起到抑制作用,抑制效果依次是TAGZT>DNOAF>CL‑20;在与AP/HTPB组成的混合体系中,AP的热分解受到HTPB和高能化合物的共同抑制作用,其分解速率随着高能化合物含量的提高而不断降低。而在AP的低温分解阶段,只有CL‑20会对分解起到一定的促进作用。与基础配方固体推进剂燃速相比,添加TAGZT后推进剂燃速有一定程度的下降,而添加CL‑20、DNOAF却能使燃速得到提高;相同含量高能化合物固体推进剂的燃速顺序是:含CL‑20>含DNOAF>含TAGZT固体推进剂;对于同一类含高能化合物的固体推进剂来说,燃速随着高能化合物含量的提高而降低;在相同含量高能化合物的固体推进剂中,燃速压强指数的顺序是:基础配方>含CL‑20>含DNOAF>含TAGZT固体推进剂。而随着高能化合物的添加,推进剂体系的氧平衡和燃烧温度逐渐下降。配方的比冲(Isp)和C*均会呈现先增加后减小的趋势,因此含高能化合物的丁羟推进剂存在比冲最高的最佳配方。

    在使用高能化合物代替AP时,必须要考虑到安全性能的问题。传统的包覆处理不仅会使高能化合物生产工艺更复杂,而且容易降低高能化合物的有效含量。基于英国学者Bowden[21]于1952年提出热点理论,含能材料颗粒群在外界刺激作用下形成热点后,热点之间的相互作用会转变为爆轰等过[22,23]。由此可知,通过调节不同含能材料颗粒大小可以成为提升含能材料安全性的有效方式。

    [24]在研究中发现,微纳米含能材料可以显著改善固体推进剂的各项性能。在保证推进剂信号特征、能量、工艺与力学性能的同时,降低了高压压强指数。新近研究还表明,超细含能材料还可显著降低复合推进剂的感度、大幅度提高延伸率。

    Guo[25]经热分析发现,随着亚微米CL‑20含量的增加,CL‑20/HTPB复合推进剂的热分解温度及表观活化能均逐渐降低,但热分解温度降低的幅度随亚微米CL‑20含量的增加而减小;另外计算了CL‑20/HTPB复合推进剂的热爆炸临界温度(Tb),发现随着亚微米CL‑20含量的增加Tb逐渐降低,但是最大降幅只有7.75%,因此,亚微米CL‑20含量对复合推进剂的热安定性的影响不大。

    欧阳[26,27]采用非接触式红外测温仪测试了CL‑20/HTPB复合固体推进剂在大气压(0.1 MPa)下火焰温度与含量的关系,发现随着亚微米CL‑20含量的增加,CL‑20/HTPB复合推进剂的最高火焰温度逐渐升高,说明増加亚微米CL‑20的含量,有助于提高CL‑20/HTPB推进剂的能量;再根据燃烧时间计算了各个配方在大气压(0.1 MPa)下的燃速,发现CL‑20/HTPB复合推进剂的燃速随着配方中亚微米CL‑20含量的增加而升高。

  • 2.2 使用不含氯元素的新型氧化剂

    近年来,在新型含能材料研究领域,ADN和HNF正在成为可能替代AP的环保型氧化剂,从而极大消除推进剂燃烧后的羽烟。与AP相比,ADN和HNF虽然有相对较低的氧平衡,但是后者具有更高的生成焓导致其具有更高的Isp

    20世纪70年代俄罗斯泽林斯基研究所合成了ADN,然后EURENCO开始中试并规模化生产晶状球形化包覆的AND[28]。俄罗斯的研究者认为ADN是目前最好的氧化剂,但由于ADN的密度相对较低,其复合固体推进剂更适合应用于Ⅱ级、Ⅲ级固体火箭发动机。如SS‑24战略导弹第二、三级发动机用推进剂配方大致为HTPB/ADN/Al/HMX/二茂铁衍生物,某潜地导弹第三级、某空空导弹和洲际战略导弹的第三级发动机均采用ADN推进剂,但其详细情况尚属机密,未见公开资料报[28]。此外,ADN可改变推进剂的燃烧火焰结构。Korobeinichev[29]研究了HTPB含量为3%~20%的ADN/HTPB推进剂燃烧火焰结构。发现ADN推进剂燃烧与AP推进剂燃烧的情况不同,ADN推进剂火焰区远离推进剂燃面,这使得燃烧表面温度梯度较小,火焰区对推进剂燃速影响较弱。文章认为,在0.1 MPa条件下,凝聚相反应控制着ADN/HTPB推进剂燃烧反应。而HTPB的气相分解产物则会增加热释放,并加速ADN火焰区中的反应速率。欧美等国也十分关注ADN的应用,然而,美国等西方国家的研究显示ADN的实用化还面临一些挑战,如吸湿性、较低的熔点等。John de Flon[30]在典型丁羟推进剂配方中使用ADN替代等量的AP,使推进剂理论比冲从262 s上升至270 s。实验发现,ADN与HTPB有较好的化学相容性,在添加一定量防老剂的情况下,含ADN的丁羟推进剂可以达到较好储存性能。在固含量80%且不含任何燃烧调节剂的ADN/Al/HTPB配方中,6 MPa的燃速为12.8 mm∙s-1,压强指数为0.9。

    另一种新型氧化剂HNF,其热稳定性差、摩擦感度与撞击感度高,实际应用非常困难。HNF在推进剂中应用的相关研究主要集中在荷兰,如研究机构TNO和生产商荷兰航天推进产品(APP)。TNO的PrinsMaurits实验[31,32]解决了HNF与HTPB的界面结合问题,成功制备了性能良好的含HNF的丁羟推进剂,并采用纯度明显改善的HNF开展了相关研究工作,改善了HNF固体推进剂压强指数高和感度高的不足。经过采用HNF/AP,其固体推进剂压强指数可以降低到0.7,但是离0.6的指标仍然有距离;采用5燃速调节剂与HNF压片,压强指数可以降低到0.5~0.6;通过机械球磨制备了平均粒径5~10 μm的细HNF,与含粗HNF的丁羟推进剂相比,含细HNF丁羟推进剂的压强指数从1.12降至0.78,摩擦感度与撞击感度降低,热稳定性降低。

  • 2.3 小 结

    从在丁羟推进剂中工程应用的角度而言,无论是高能化合物还是不含氯元素的新型氧化剂,首先要解决新型含能材料的安全性和稳定性问题,如需要评估CL‑20等高能化合物对丁羟固体推进剂安全性能的影响,在提高推进剂能量水平的同时仍然能使推进剂维持在1.3级的安全范围内,而对于ADN等新型氧化剂来说,则迫切需要解决其易吸湿性对丁羟推进剂装药工艺的影响。其次,还需要进一步降低新型含能材料的成本,使丁羟推进剂在提升性能的同时,仍然能保持较低的成本。

  • 3 提高燃烧效率

    金属Al粉是现代固体推进剂的重要组分之一,它燃烧热高、密度高、安全性好、价格低廉,可以显著提高推进剂的密度和能量。随着研究的不断深入,固体推进剂中Al燃烧不充分的问题日益引起了重视,具体表现为发动机燃烧残渣多,发动机飞行试验比冲明显低于地面试验比冲的天地差异性;发动机绝热结构烧蚀严重,使飞行试验中出现绝热层烧穿、绝热结构失效,飞行试验失利;发动机在高压工况中出现了不稳定燃烧。

    为了降低丁羟推进剂的残渣量,进一步提高发动机的能量释放效率和工作条件下的稳定性与安全性,可以从推进剂配方燃烧性能优化和新型含能材料应用探索这两方面来解决。就新型含能材料应用来说,可以从氢化Al粉、纳米Al粉、化学活化的Al粉、机械活化的Al粉、包覆Al粉、合金等几个方面对Al粉进行改性。根据实验分析,以上各种措施都可以通过降低单颗粒铝粉点火温度来降低Al粉在固体推进剂燃烧表面的团聚,从而降低使用常规Al粉带来的燃烧不充分问[33,34]。通过详细研究加入新型改性Al粉后推进剂的点火过程,燃面处凝聚产物的形成过程,新型改性Al粉的燃烧过程,以及这些过程对推进剂燃烧过程,两相流动损失和最终残渣形成的影响机理,国外研究人员已经建立了相对完善的理论知识体系,可以为我国的丁羟复合固体推进剂配方设计提供新思[34]

  • 3.1 AlH3

    从新型含能材料应用角度来看,AlH3是一种非常有前途的金属燃料,从目前文献调研情况来看,除了将AlH3用于高能推进剂研究以外,在混合推进剂中使用AlH3也在成为一种选[35,36]。而在丁羟复合固体推进剂领域,使用部分AlH3替代Al不仅可以提高铝粉燃烧效率,还可以进一步提高推进剂比冲。Tim Bazyn[37]研究了AlH3在固体火箭发动机条件下的分解特性。通过对AP/AlH3/HTPB的燃烧过程进行模拟推断,认为AlH3在离开推进剂燃面前就会发生分解,所产生的H可以参与推进剂初焰中的反应,因此会对化学反应计量比产生影响,从而进一步影响推进剂燃烧表面的分解特性。

    Deluca[36]研究了含AlH3丁羟推进剂性能,发现在使用AlH3替换Al后,随着AlH3含量增加,推进剂燃速增加,压强指数下降,推进剂点火延迟现象得到了明显改善,且能明显抑制铝粉团聚现象。

  • 3.2 纳米Al粉

    除了使用AlH3以外,纳米Al粉是另一种改善丁羟推进剂燃烧性能的技术途径。纳米Al粉具有高比表面积,单一颗粒所需的点火能远低于常规Al粉颗粒,这使得纳米Al颗粒更易于点火,其脱离燃面所需的时间也大大缩短,而且纳米Al粉氧化速率很高,有利于金属的充分燃烧,以下是纳米Al对推进剂中的应用研究。

    纳米铝粉推进剂燃烧性被深入研究,Meda[38]使用AP/Al/HTPB配方研究了纳米铝粉对推进剂配方燃烧的影响,发现当Al粒径从3 μm下降至30 nm时,Al的点火温度降低,燃烧时间缩短,而推进剂燃速增加明显。Baschung[39]和Tepper[40]等人表明,添加质量分数20%的纳米Al可以使基于HTPB固体推进剂的燃速提高70%,这再次证明含纳米Al的推进剂比含普通Al粉推进剂的燃速高。Olivani[41]研究了铝粉粒径对AP/Al/HTPB推进剂点火和燃烧的影响,发现增加纳米Al含量或者是减少纳米Al的粒径,可以增加推进剂燃速并降低压强指数。

    Galfetti[42]研究了纳米Al粉在推进剂中的应用,并与有相同含量普通Al粉的推进剂进行了比较,评估纳米Al粉在固体火箭应用中的实际利弊。对原始Al粉和冷凝燃烧产物进行了详细的表征和讨论,证实含纳米Al粉的推进剂有更高的燃速,压强指数没有显著变化,燃烧产物中的聚集/团聚现象较低。

    除了宏观研究,Deluca[43]在实验条件下对比纳米Al粉与普通铝粉Al粉的燃烧微观情况,发现含纳米Al颗粒的配方比含普通Al粉配方的燃速高;纳米Al配方与普通Al配方在燃烧表面附近的聚集非常不同,纳米Al团聚物(聚集薄片)具有珊瑚结构并且尺寸微小,而普通Al产生的液滴可能在燃面附近(或上方)大小达到几百微米;并在燃烧过程中观察到中空氧化帽,收集燃烧残渣发现尽管纳米Al粉的活性Al含量降低,但纳米Al粉燃烧效率并没有降低,这主要是因为纳米Al颗粒比表面积增加,使金属充分燃烧。通过快速减压、PDL法,发现含纳米Al的推进剂配方在燃烧表面有更强的热量传递,这是因为纳米Al粉增加了热反馈。Deluca[44]研究了不同种类的纳米Al粉在不同压力条件的燃烧稳定性能,发现对不同种类的纳米Al粉在不同压力条件下,燃烧稳定性变化不大;在相同压力下,降低纳米Al粉的粒度,即增加纳米Al粉比表面积,燃烧稳定性变化很大;对于极小的Al颗粒,虽然颗粒氧化速率非常快,但活性Al含量显著降低,阻碍了推进剂稳定燃速的进一步提高。测试Al粉的点火延迟发现,纳米Al粉比普通Al粉点火快,比没有铝粉的推进剂点火慢。

    Sundaram[45]从火焰结构和燃烧模式方面对纳米Al燃烧进行了全面的总结,发现纳米Al颗粒粒径大于一定的临界值时,燃烧由气相混合物的质量扩散来控制;当压力从0.1 MPa增加到10 MPa时,化学动力学为纳米Al燃烧的控制因素。

  • 3.3 复合Al粉

    除了上述方法,对Al颗粒表面进行包覆或者处理也可以达到降低推进剂铝粉团聚的目的,其基本原理包括通过改变金属颗粒表面性质来改善颗粒在药柱中的聚集状态,或者通过合金的方式增加金属燃料的焓释放,又或者通过燃烧催化作用改善金属点火特性。

  • (1) 包覆铝粉

    Zhao[46]制备了油酸(nAl@OA),全氟十四酸(nAl@PA)和乙酰丙酮镍(nAl@NA)包覆的纳米Al粉。采用激光点火系统研究了不同纳米Al粉的点火、燃烧特性,并制备固体推进剂,研究了含不同包覆材料推进剂的燃烧性能。结果表明,nAl@NA的点火延迟时间比nAl@PA和nAl@OA的短,因为乙酰丙酮镍有燃烧催化性。含有nAl@NA的推进剂燃速最高,在15 MPa下,燃速高达26.13 mm∙s-1,含有nAl@OA和nAl@PA的推进剂样品的燃速在不同压力下几乎相同,且在10~15 MPa的燃速高于普通纳米铝粉推进剂燃速。不同压力下不同推进剂的火焰强度不一样。此外,表面包覆的纳米铝粉推进剂的燃烧火焰温度、燃烧表面温度随着压力的增加而增加。

    含氟化合物的包覆物降低推进剂团聚尺寸效果显著,Gaurav[47]在丁羟推进剂中使用了聚四氟乙烯(PTFE)处理的Al颗粒,研究发现使用处理颗粒后,推进剂燃速上升,压强指数下降,温度敏感系数下降,Al粉团聚物的质量明显降低。Sippel[48]在丁羟推进剂中使用了低密度聚乙烯修饰的Al颗粒,研究发现Al粉点火温度降低,Al粉燃面停留时间缩短。在6.9 MPa工况下,推进剂燃烧的平均团聚粒径从75.8 μm下降为29.0 μm。Glotov[49]在0.15 MPa和4.6 MPa的压力下,研究了含AP、HMX、含能粘合剂和含不同聚合物涂层的Al颗粒推进剂的燃烧特性,发现涂层会影响燃速、冷凝燃烧产物的粒度分布以及Al粉燃烧。结果表明,使用含氟涂层的Al可以减少团聚,当使用(CH2 CH─CH2─O)2Si[OCH2(CF2─CF2)2H]2的涂层时,氧化物颗粒尺寸降低。

    包覆物除了有机物也可以为金属,Gany[50]通过模型预测出镀镍Al颗粒团聚尺寸的比普通Al颗粒小。Rosenband[51]的研究表明镀镍Al颗粒在空气中点火温度和时间比Al粉要低得多。基于以上结果,Yavor[52]研究了镀镍Al颗粒对含铝丁羟推进剂燃烧团聚的影响,他们采用高速摄像技术,在燃烧器中进行了含普通Al粉与镀镍Al粉的推进剂药条的燃烧实验,收集Al颗粒燃烧残渣,发现镀镍Al颗粒燃烧残渣的尺寸显著减小。团聚粒径下降20%~50%,团聚质量下降87%。

  • (2) 合金

    铝、铍、硼、锂、镁、钠、锆、铁、铬等是航天动力领域中常用的元素,使用这些元素可以增加金属燃料的焓释放,改善燃料密度,催化金属燃烧反应。铍及其衍生物被IARC认为是致癌物[53],在推进剂中使用可能性低。镁很容易点燃和氧化,密度为1.74 g∙cm-3,但具有较低的燃烧热(24.7 kJ∙g-1、43.0 kJ∙cm-3[54],它被认为是铝的替代品。镁因容易点燃,也常用作其他金属助燃剂,如硼,硼是密度为2.34 g∙cm-3,硼氧化成B2O3,理论上能产生较高的燃烧热(58.86 kJ∙g-1、137.73 kJ∙cm-3),B2O3沸点2300 K,所以硼只有在确保氧化物冷凝的情况下,才能在推进剂中释放能[55],硼由于高能量、高密度特性,成为代替铝应用的候选金[56],在实际使用中,微粒不容易点火导致燃烧效率低,镁硼合金能够使粒子快速点火成提高效燃[57]。锆的密度为6.52 g∙cm-3,主要用于增加推进剂的密度,氧化成氧化锆只能提供12.03 kJ∙g-1的单位质量燃烧热,由于高密度,单位体积燃烧热很高为78.43 kJ∙cm-3[58]

    硼具有最高的理论燃烧热,几乎没有毒性,但是硼燃烧困难,在推进剂中使用硼代替Al会导致Is减少5 %[58],使得硼无法在固体火箭推进剂中直接使用。学者们用铝硼合金来改进上述不足。Deluca[59]改变Mg包覆量(质量百分比范围为10%~60% )和硼纯度(90%、95%)合成了几种MgxBy复合双金属粉,在实验室条件下表征了复合双金属粉。实验结果指出,加入MgxBy复合金属粉推进剂的燃速比纯Al和纯度为90%的硼推进剂燃速高,Mg包覆量从10%增加到25%,推进剂燃速几乎相同,Mg包覆量增加到60%时,燃速开始下降。加入Mg包覆量为25%,纯度为90%的硼复合双金属粉的推进剂,会降低团聚物尺寸。在0.1 MPa的条件测试金属粉点火温[59],纯[60]的点火温度约为1900 K,复合金[61]的点火温度则下降至1200 K。DeLuca[62]通过实验发现镁在降低MgxBy复合双金属点火温度至nAl的点火温度上有很大作用,同时对几种AP/金属粉/HTPB固体推进剂进行了实验分析,研究了金属(微米和纳米Al、B、Mg和各种二元金属)对推进剂性能的影响,并与普通微米铝(平均粒径为30 μm)进行了对比。研究表明,推进剂微观结构在控制燃烧表面之下和附近发生的临界聚集/聚集现象方面起着重要作用。

    Vorozhtsov[63]讨论了纳米铝和微米金属硼化物(包括铝、钛、镁)的生产和表征问题,描述了生产纳米金属的技术,即电爆炸法。为了保护纳米粒子的活性表面,采用氟橡胶和氟橡胶作为钝化剂包裹纳米铝粉,同时对它的化学稳定性和化学相容性问题进行了讨论。还描述了生产金属硼化物的技术,通过自蔓延高温合成(SHS)技术和机械后处理制备,制备得平均尺寸大约为5 μm的硼化物,分布尺寸呈尖锐曲线,纯度足以满足高能材料燃料的要求。

  • 3.4 小 结

    提高燃烧效率对丁羟推进剂工程化应用具有重要价值。AlH3能够显著提高推进剂比冲,是非常有前景的新型金属燃料,在具体应用中需要关注材料在推进剂制备和贮存过程中的安定性,以及生产与使用过程中的成材料和工艺成本。纳米Al和其它复合Al粉的安定性较好,且生产成本相对可控,是提高推进剂燃烧效率的可行途径。在具体的丁羟推进剂应用中,Al基材料提高推进剂整体燃烧效率的同时,还应当关注其对推进剂整体燃速水平的影响。由于推进剂燃速与燃烧效率具有显著的内生性,需要理清燃烧效率增益来自于Al基材料自身的作用,还是来自于Al基材料对推进剂燃速的增益作用,从而更加高效的在限定性能指标下完成推进剂配方设计工作。

  • 4 结论与展望

    丁羟推进剂经历了数十年的发展历程,已经具有了相当的研究积累,可以在此基础上进一步探索新型含能材料的技术应用。从整体上来考虑,虽然能量水平是固体推进剂的发展主线,但是追求更高的能量水平却并不是丁羟推进剂的真正优势。除此以外,还应当充分认识到固体推进剂是一个复杂体系,各种性能之间相互影响的因素很多,一种原材料组分的变化可能会引发事先无法预料的问题。因此,在丁羟推进剂中应用新型含能材料应当遵循以实际工程问题导向,在全面研究丁羟推进剂燃烧性能、力学性能、工艺性能、贮存性能等各项性能及其内在交互性的基础上,选择符合工程应用背景的高能化合物、无氯氧化剂、纳米铝粉、复合铝粉和金属合金来解决当前丁羟推进剂燃烧羽焰不清洁和铝粉燃烧效率较低的问题,从而进一步拓展丁羟推进剂应用范围,为推动固体动力技术在军事和民用领域的全面发展做出贡献。

    在实现丁羟推进剂燃气清洁化方面,六硝基六氮杂异伍兹烷(CL‑20)、多氮化合物、二硝酰胺铵(ADN)、硝仿肼(HNF)等都有希望替代高氯酸铵(AP)。未来需要进一步提升这些新型含能材料的安全性和稳定性,同时进一步降低材料的生产成本,以实现在丁羟推进剂中的大规模工程化应用。

    在提高燃烧效率方面,AlH3、纳米Al和复合Al粉等是提高丁羟推进剂燃烧效率的可行途径。未来除了提升AlH3等材料的安定性,将低其生产成本外,还需要进一步开展各类新型Al基材料的燃烧机理研究,从理论层面解析影响推进剂燃烧效率的主要因素和关键环节,切实服务于丁羟推进剂实用性能的提升。

    (责编:张 琪)

  • 参考文献

    • 1

      庞爱民, 王北海. 丁羟聚氨酯弹性体结构与力学性能的关系综述[J]. 推进技术, 1993, 14(5): 53-58.

      PANG Ai‑min,WANG Bei‑hai. Relationship between the structure and the mechanical properties of HTPB[J]. Journal of Propulsion Technology, 1993, 14(5): 53-58.

    • 2

      Miller M S, Holmes H E. Subatmospheric burning rates and critical diameters for AP/HTPB propellant[J]. Journal of Propulsion and Power, 1990, 6(5): 671-672.

    • 3

      鲁念惠. 丁羟推进剂的应用与性能研究评述[J]. 宇航学报, 1981(4): 86-100.

      LU Nian‑hui. A review concerned to research and application of HTPB propellant[J]. Journal of Astronautics, 1981(4):86-100.

    • 4

      贺南昌, 庞爱民. 不同氧化剂对丁羟(HTPB)推进剂老化性能影响的研究[J]. 推进技术, 1990(6): 40-45.

      HE Nan‑chang,PANG Ai‑min. Effect of different oxidizing agents on aging performance of HTPB propellants[J]. Journal of Propulsion Technology, 1990(6): 40-45.

    • 5

      Muthiah R, Krishnamurthy V N, Gupta B R. Rheology of HTPB propellant: development of generalized correlation and evaluation of pot life[J]. Propellants Explosives Pyrotechnics, 2010, 21(4): 186-192.

    • 6

      庞爱民, 黎小平. 固体推进剂技术的创新与发展规律[J]. 含能材料, 2015, 23(1): 3-6.

      PANG Ai‑min, LI Xiao‑ping. Innovation and development of solid propellant technology[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(1): 3-6.

    • 7

      Gascoin N, Gillard P, Mangeot A, et al. Literature survey for a first choice of a fuel‑oxidiser couple for hybrid propulsion based on kinetic justifications[J]. Journal of Analytical & Applied Pyrolysis, 2012, 94(6): 1-9.

    • 8

      Graetz J, Reilly J J. Thermodynamics of the α, β and ν polymorphs of AlH3[J]. Cheminform, 2010, 37(50): 262-265.

    • 9

      Kalman J, Essel J. Cover picture: Influence of particle size on the combustion of CL‑20/HTPB propellants[J]. Propellants Explosives Pyrotechnics, 2017, 42(11): 1239-1239.

    • 10

      Jr C U P. Location of action of burning‑rate catalysts in composite propellant combustion[J]. AIAA Journal, 1969, 7(2):328-334.

    • 11

      Zhou X, Zou M, Huang F, et al. Effect of organic fluoride on combustion agglomerates of aluminized HTPB solid propellant[J]. Propellants Explosives Pyrotechnics,2017,42(4):310-316.

    • 12

      Binauld Q, Lamet J M, Lionel Tessé, et al. Numerical simulation of radiation in high altitude solid propellant rocket plumes[J]. Acta Astronautica, 2018. DOI:10.1016/j.actaastro.2018.05.041.

    • 13

      Murphy P, Reed R, COX D, et al. Measurement and analysis of laser transmission through solid‑propellant rocket motor exhaust plumes[C]//AIAA 28th Thermophysics Conference, Fluid Dynamics and Co‑located Conferences, 1993.

    • 14

      Zhou L, Baker K R, Napelenok S L, et al. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport[J]. Science of The Total Environment, 2018, 627: 523-533.

    • 15

      Pan B, Dang L, Wang Z, et al. Preparation, crystal structure and solution‑mediated phase transformation of a novel solid‑state form of CL‑20[J]. Cryst Eng Comm, 2018, 20(11):1553-1563.

    • 16

      Aponyakina S N, Lapina Y T, Zolotukhina I I. Hexanitrohexaazaisowurtzitanere modification in three‑component crystallization systems[J]. Russian Journal of Applied Chemistry, 2017, 90(9): 1397-1401.

    • 17

      张杰, 邹彦文, 贺俊. 六硝基六氮杂异伍兹烷的性能及应用研究[J]. 飞航导弹, 2005(08): 56-61.

      ZHANG Jie, ZOU Yan‑wen, HE Jun. Study on the performance and application of hexanitrohexazide[J]. Winged Missiles Journal, 2005(08): 56-61.

    • 18

      王旭朋, 罗运军, 郭凯,等. 含3,3′‑二硝基‑4,4′‑氧化偶氮呋咱推进剂的能量特性研究[J]. 含能材料, 2009, 17(1): 79-82.

      WANG Xu‑peng, LUO Yun‑jun, GUO Kai, et al. Energy characteristics computation of propellant containing 3,3′‑dinitro‑4,4′‑oxazafurazan[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(1): 79-82.

    • 19

      罗阳, 高红旭, 赵凤起,等. 含3,4‑二硝基呋咱基氧化呋咱(DNTF)推进剂的能量特性[J]. 含能材料, 2005, 13(4):225-228.

      LUO Yang, GAO Hong‑xu, ZHAO Feng‑qi, et al. Energy characteristics of propellant containing 3,4‑dinitrofurazanfuroxan (DNTF)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(4): 225-228.

    • 20

      揭锦亮. 含高能量密度化合物固体推进剂的性能研究[D]. 长沙:国防科学技术大学, 2008.

      JIE Jin‑liang. Study on the performance of solid propellant with HEDC[D]. Changsha: National University of Defense Technology, 2008.

    • 21

      Bowden F P, Yoffe Y D. Initiation and growth of explosion in liquids and solids[M]. Cambridge University Press, Cambridge, 1952.

    • 22

      吕春玲. 主体炸药粒度及粒度级配与炸药冲击波感度和能量输出的实验与理论研究[D]. 太原: 华北工学院, 2001.

      LV Chun‑ling. Experimental and theoretical study on particle size and size gradation of main explosives and shock wave sensitivity and energy output of explosives[D]. Taiyuan:North China Institute of technology, 2001.

    • 23

      Khasainov B A, Borisov A A, Ermolaev B S, et al. Two‑phase visco‑plastic model of shock initiation of detonation in high density pressed explosives[C]//7th Symposium (International) on Detonation. 1981.

    • 24

      宋琴, 顾健, 尹必文, 等. 降低固体推进剂高压压强指数的配方[P]. CN106336334, 2017.

      SONG Qin, GU Jian, YIN Bi‑wen, et al. Formulation for lowering high pressure index of solid propellant[P]. CN106336334, 2017.

    • 25

      Guo X, Ouyang G, Liu J, et al. Massive preparation of reduced‑sensitivity nano CL‑20 and its characterization[J]. Journal of Energetic Materials, 2015, 33(1): 24-33.

    • 26

      欧阳刚, 郭效德, 席海军,等. 亚微米六硝基六氮杂异伍兹烷的制备及其性能研究[J]. 兵工学报, 2015, 36(1): 64-69.

      OUYANG Gang, GUO Xiao‑de, XI Hai‑jun, et al. Preparation and characterization of submicron hexanitrohexaazaisowurtzitane[J]. Acta Armamentarii, 2015, 36(1): 64-69.

    • 27

      欧阳刚. 亚微米CL‑20的制备及其在固体推进剂中的应用研究[D]. 南京: 南京理工大学, 2015.

      OUYANG Gang. Preparation of submicron CL‑20 and its application in the solid propellant[D]. Nanjing: Nanjing University of Science and Technology, 2015.

    • 28

      周晓杨, 唐根, 庞爱民. ADN推进剂国外研究进展[J]. 飞航导弹, 2017(2): 87-92.

      ZHOU Xiao‑yang, TANG Gen, PANG Ai‑min. Progress of ADN propellant research abroad[J]. Aerodynamic Missile Journal, 2017(2): 87-92.

    • 29

      Korobeinichev O P, Paletsky A A. Flame structure of ADN/HTPB composite propellants[J]. Combustion & Flame, 2001, 127(3): 2059-2065.

    • 30

      Flon J D, Andreasson S, Liljedahl M, et al. Solid Propellants based on ADN and HTPB[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2013.

    • 31

      Van der Heijden A E D M, Keizers H L J, Veltmans W H M. HNF/HTPB based composite propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5(1-6): 587-596.

    • 32

      Van der Heijden A E D M. Ballistic properties of HNF/AL/HTPB based propellant[C]// CT Annual Conference, 2001.

    • 33

      Deluca L T, Maggi F, Dossi S, et al. High‑energy metal fuels for rocket propulsion:characterization and performance[J]. Chinese Journal of Explosives Propellants, 2013,36(6): 1-14.

    • 34

      DeLuca L T, Shimada T, Sinditskii V P, et al. Chemical rocket propulsion‑a comprehensive survey of energetic materials[M]. Springer International Publishing, 2017: 3-63.

    • 35

      Maggi F, Gariani G, Galfetti L, et al. Theoretical analysis of hydrides in solid and hybrid rocket propulsion[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1760-1769.

    • 36

      Deluca L T, Rossettini L, Kappenstein C, et al. Ballistic characterization of AlH3‑based propellants for solid and hybrid rocket propulsion[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2013.

    • 37

      Bazyn T, Krier H, Glumac N, et al. Decomposition of aluminum hydride under solid rocket motor conditions[J]. Journal of Propulsion & Power, 2012, 23(2): 457-464.

    • 38

      Meda L, Marra G, Galfetti L, et al. Nano‑aluminum as energetic material for rocket propellants[J]. Materials Science and Engineering, 2007, 27: 1393-1396.

    • 39

      Baschung B, Grune D, Licht H H, et al. Combustion phenomena of a solid propellant based on aluminum powder[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5(1-6): 219-225.

    • 40

      Tepper F, Ivanov G V. 'Activated' aluminum as a stored energy source for propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 1997, 4(1-6): 636-645.

    • 41

      Olivani A, Galfetti L, Severini F, et al. Aluminum particle size influence on ignition and combustion of AP/HTPB/Al solid rocket propellants[J]. Advances in Rocket Propellant Performance, Life and Disposal for Improved System Performance and Reduced Costs, 2002, 31(6): 1-12.

    • 42

      Galfetti L, DeLuca L T , F. Severini, et al. Pre and post‑burning analysis of nano‑aluminized solid rocket propellants[J]. Aerospace Science and Technology, 2007, 11(1): 26-32.

    • 43

      Deluca L T, Maggi F, Dossi S, et al. Prospects of aluminum modifications as energetic fuels in chemical rocket propulsion[M]. Chemical Rocket Propulsion. Springer International Publishing, 2017: 191-235.

    • 44

      Deluca L T, Galfetti L, Colombo G, et al. Microstructure effects in aluminized solid rocket propellants[J]. Journal of Propulsion & Power, 2010, 26(4): 724-733.

    • 45

      Sundaram D S, Yang V, Zarko V E. Combustion of nano aluminum particles (Review)[J]. Combustion Explosion & Shock Waves, 2015, 51(2): 173-196.

    • 46

      Zhao F, Yao E, Xu S, et al. Laser ignition of different aluminum nanopowders for solid rocket propulsion[M]. Chemical Rocket Propulsion. Springer International Publishing, 2017: 271-297.

    • 47

      Gaurav M, Ramakrishna P A. Effect of mechanical activation of high specific surface area aluminum with PTFE on composite solid propellant[J].Combustion & Flame,2016,166:203-215.

    • 48

      Sippel T R, Son S F, Groven L J, et al. Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum[J]. Combustion & Flame, 2015, 162(3): 846-854.

    • 49

      Glotov O G,Yagodnikov D A, Vorob'ev V S, et al. Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration[J]. Combustion Explosion & Shock Waves, 2007, 43(3): 320-333.

    • 50

      Gany A, Caveny L H. Agglomeration and ignition mechanism of aluminum particles in solid propellants[J]. Symposium (International) on Combustion, 1979, 17(1):1453-1461.

    • 51

      Rosenband V, Gany A. Agglomeration and ignition of aluminum particles coated by nickel[J]. International Journal of Energetic Materials and Chemical Propulsion, 2007, 6(2): 143-151.

    • 52

      Yavor Y, Gany A. Effect of nickel coating on aluminum combustion and agglomeration in solid propellants[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2013.

    • 53

      Listed N. Beryllium and beryllium compounds[J]. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 1993, 58(2): 41.

    • 54

      Chase M W Jr. NIST‑JANAF thermochemical tables[M]. Fourth Edition: Journal of Physical Chemical Reference, Monograph 9, 1998: 1-1951.

    • 55

      Haddad A, Natan B, Arieli R. The performance of a boron‑loaded gel‑fuel ramjet[J]. Eucass Proceedings, 2011, 2:499-518.

    • 56

      Srivastava R D, Farber M. Thermodynamic properties of Group 3 oxides[J]. Chemical Reviews, 2002,78(6):627-638.

    • 57

      Deluca L T, Marchesi E, Spreafico M A, et al. Aggregation versus agglomeration in metallized solid rocket propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9(1): 91-105.

    • 58

      Chan M L, Parr T, Hanson‑Parr D, et al. Characterization of a boron containing propellant[C]//DeLuca L T, Galfetti L, Pesce‑Rodriguez RA (eds), Novel energetic materials and applications, Proceedings of the IWCP, Grafiche GSS, Bergamo, Italy, 2004, 9:07.

    • 59

      Dossi S, Reina A, Maggi F, et al. Innovative metal fuels for solid rocket propulsion[J]. International Journal of Energetic Materials and Chemical Propulsion, 2012, 11(4): 299-322.

    • 60

      Mitani T, Izumikawa M. Combustion efficiencies of aluminum and boron in solid propellants[J]. Journal of Spacecraft and Rockets, 1991, 28(1): 79-84.

    • 61

      Shevchuk V G, Zolotko A N, Polishchuk D I. Ignition of packed boron particles[J]. Combustion Explosion & Shock Waves, 1975, 11(2): 189-192.

    • 62

      Deluca L T, Galfetti L, Maggi F, et al. Innovative metallized formulations for solid rocket propulsion[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2012,20(4): 465-474.

    • 63

      Vorozhtsov A B, Zhukov A S, Ziatdinov M K, et al. Novel micro‑ and nanofuels: production, characterization, and applications for high‑energy materials[M]. Chemical Rocket Propulsion. Springer International Publishing, 2017: 235-253.

吴世曦

机 构:

1. 航天化学动力技术重点实验室, 湖北 襄阳 441003

2. 湖北航天化学技术研究所, 湖北 襄阳 441003

Affiliation:

1. Science and Technology on Aerospace Chemical Power Laboratory, Xiangyang 441003,China

2. Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China

邮 箱:shixi_wu@outlook.com

作者简介:吴世曦(1984-),男,主要从事固体推进剂配方与性能研究。e‑mail:shixi_wu@outlook.com

张天福

机 构:

1. 航天化学动力技术重点实验室, 湖北 襄阳 441003

2. 湖北航天化学技术研究所, 湖北 襄阳 441003

Affiliation:

1. Science and Technology on Aerospace Chemical Power Laboratory, Xiangyang 441003,China

2. Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China

周重洋

机 构:

1. 航天化学动力技术重点实验室, 湖北 襄阳 441003

2. 湖北航天化学技术研究所, 湖北 襄阳 441003

Affiliation:

1. Science and Technology on Aerospace Chemical Power Laboratory, Xiangyang 441003,China

2. Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China

黎小平

机 构:湖北航天化学技术研究所, 湖北 襄阳 441003

Affiliation:Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China

胡期伟

机 构:湖北航天化学技术研究所, 湖北 襄阳 441003

Affiliation:Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China

image /
  • 参考文献

    • 1

      庞爱民, 王北海. 丁羟聚氨酯弹性体结构与力学性能的关系综述[J]. 推进技术, 1993, 14(5): 53-58.

      PANG Ai‑min,WANG Bei‑hai. Relationship between the structure and the mechanical properties of HTPB[J]. Journal of Propulsion Technology, 1993, 14(5): 53-58.

    • 2

      Miller M S, Holmes H E. Subatmospheric burning rates and critical diameters for AP/HTPB propellant[J]. Journal of Propulsion and Power, 1990, 6(5): 671-672.

    • 3

      鲁念惠. 丁羟推进剂的应用与性能研究评述[J]. 宇航学报, 1981(4): 86-100.

      LU Nian‑hui. A review concerned to research and application of HTPB propellant[J]. Journal of Astronautics, 1981(4):86-100.

    • 4

      贺南昌, 庞爱民. 不同氧化剂对丁羟(HTPB)推进剂老化性能影响的研究[J]. 推进技术, 1990(6): 40-45.

      HE Nan‑chang,PANG Ai‑min. Effect of different oxidizing agents on aging performance of HTPB propellants[J]. Journal of Propulsion Technology, 1990(6): 40-45.

    • 5

      Muthiah R, Krishnamurthy V N, Gupta B R. Rheology of HTPB propellant: development of generalized correlation and evaluation of pot life[J]. Propellants Explosives Pyrotechnics, 2010, 21(4): 186-192.

    • 6

      庞爱民, 黎小平. 固体推进剂技术的创新与发展规律[J]. 含能材料, 2015, 23(1): 3-6.

      PANG Ai‑min, LI Xiao‑ping. Innovation and development of solid propellant technology[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(1): 3-6.

    • 7

      Gascoin N, Gillard P, Mangeot A, et al. Literature survey for a first choice of a fuel‑oxidiser couple for hybrid propulsion based on kinetic justifications[J]. Journal of Analytical & Applied Pyrolysis, 2012, 94(6): 1-9.

    • 8

      Graetz J, Reilly J J. Thermodynamics of the α, β and ν polymorphs of AlH3[J]. Cheminform, 2010, 37(50): 262-265.

    • 9

      Kalman J, Essel J. Cover picture: Influence of particle size on the combustion of CL‑20/HTPB propellants[J]. Propellants Explosives Pyrotechnics, 2017, 42(11): 1239-1239.

    • 10

      Jr C U P. Location of action of burning‑rate catalysts in composite propellant combustion[J]. AIAA Journal, 1969, 7(2):328-334.

    • 11

      Zhou X, Zou M, Huang F, et al. Effect of organic fluoride on combustion agglomerates of aluminized HTPB solid propellant[J]. Propellants Explosives Pyrotechnics,2017,42(4):310-316.

    • 12

      Binauld Q, Lamet J M, Lionel Tessé, et al. Numerical simulation of radiation in high altitude solid propellant rocket plumes[J]. Acta Astronautica, 2018. DOI:10.1016/j.actaastro.2018.05.041.

    • 13

      Murphy P, Reed R, COX D, et al. Measurement and analysis of laser transmission through solid‑propellant rocket motor exhaust plumes[C]//AIAA 28th Thermophysics Conference, Fluid Dynamics and Co‑located Conferences, 1993.

    • 14

      Zhou L, Baker K R, Napelenok S L, et al. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport[J]. Science of The Total Environment, 2018, 627: 523-533.

    • 15

      Pan B, Dang L, Wang Z, et al. Preparation, crystal structure and solution‑mediated phase transformation of a novel solid‑state form of CL‑20[J]. Cryst Eng Comm, 2018, 20(11):1553-1563.

    • 16

      Aponyakina S N, Lapina Y T, Zolotukhina I I. Hexanitrohexaazaisowurtzitanere modification in three‑component crystallization systems[J]. Russian Journal of Applied Chemistry, 2017, 90(9): 1397-1401.

    • 17

      张杰, 邹彦文, 贺俊. 六硝基六氮杂异伍兹烷的性能及应用研究[J]. 飞航导弹, 2005(08): 56-61.

      ZHANG Jie, ZOU Yan‑wen, HE Jun. Study on the performance and application of hexanitrohexazide[J]. Winged Missiles Journal, 2005(08): 56-61.

    • 18

      王旭朋, 罗运军, 郭凯,等. 含3,3′‑二硝基‑4,4′‑氧化偶氮呋咱推进剂的能量特性研究[J]. 含能材料, 2009, 17(1): 79-82.

      WANG Xu‑peng, LUO Yun‑jun, GUO Kai, et al. Energy characteristics computation of propellant containing 3,3′‑dinitro‑4,4′‑oxazafurazan[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(1): 79-82.

    • 19

      罗阳, 高红旭, 赵凤起,等. 含3,4‑二硝基呋咱基氧化呋咱(DNTF)推进剂的能量特性[J]. 含能材料, 2005, 13(4):225-228.

      LUO Yang, GAO Hong‑xu, ZHAO Feng‑qi, et al. Energy characteristics of propellant containing 3,4‑dinitrofurazanfuroxan (DNTF)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(4): 225-228.

    • 20

      揭锦亮. 含高能量密度化合物固体推进剂的性能研究[D]. 长沙:国防科学技术大学, 2008.

      JIE Jin‑liang. Study on the performance of solid propellant with HEDC[D]. Changsha: National University of Defense Technology, 2008.

    • 21

      Bowden F P, Yoffe Y D. Initiation and growth of explosion in liquids and solids[M]. Cambridge University Press, Cambridge, 1952.

    • 22

      吕春玲. 主体炸药粒度及粒度级配与炸药冲击波感度和能量输出的实验与理论研究[D]. 太原: 华北工学院, 2001.

      LV Chun‑ling. Experimental and theoretical study on particle size and size gradation of main explosives and shock wave sensitivity and energy output of explosives[D]. Taiyuan:North China Institute of technology, 2001.

    • 23

      Khasainov B A, Borisov A A, Ermolaev B S, et al. Two‑phase visco‑plastic model of shock initiation of detonation in high density pressed explosives[C]//7th Symposium (International) on Detonation. 1981.

    • 24

      宋琴, 顾健, 尹必文, 等. 降低固体推进剂高压压强指数的配方[P]. CN106336334, 2017.

      SONG Qin, GU Jian, YIN Bi‑wen, et al. Formulation for lowering high pressure index of solid propellant[P]. CN106336334, 2017.

    • 25

      Guo X, Ouyang G, Liu J, et al. Massive preparation of reduced‑sensitivity nano CL‑20 and its characterization[J]. Journal of Energetic Materials, 2015, 33(1): 24-33.

    • 26

      欧阳刚, 郭效德, 席海军,等. 亚微米六硝基六氮杂异伍兹烷的制备及其性能研究[J]. 兵工学报, 2015, 36(1): 64-69.

      OUYANG Gang, GUO Xiao‑de, XI Hai‑jun, et al. Preparation and characterization of submicron hexanitrohexaazaisowurtzitane[J]. Acta Armamentarii, 2015, 36(1): 64-69.

    • 27

      欧阳刚. 亚微米CL‑20的制备及其在固体推进剂中的应用研究[D]. 南京: 南京理工大学, 2015.

      OUYANG Gang. Preparation of submicron CL‑20 and its application in the solid propellant[D]. Nanjing: Nanjing University of Science and Technology, 2015.

    • 28

      周晓杨, 唐根, 庞爱民. ADN推进剂国外研究进展[J]. 飞航导弹, 2017(2): 87-92.

      ZHOU Xiao‑yang, TANG Gen, PANG Ai‑min. Progress of ADN propellant research abroad[J]. Aerodynamic Missile Journal, 2017(2): 87-92.

    • 29

      Korobeinichev O P, Paletsky A A. Flame structure of ADN/HTPB composite propellants[J]. Combustion & Flame, 2001, 127(3): 2059-2065.

    • 30

      Flon J D, Andreasson S, Liljedahl M, et al. Solid Propellants based on ADN and HTPB[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2013.

    • 31

      Van der Heijden A E D M, Keizers H L J, Veltmans W H M. HNF/HTPB based composite propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5(1-6): 587-596.

    • 32

      Van der Heijden A E D M. Ballistic properties of HNF/AL/HTPB based propellant[C]// CT Annual Conference, 2001.

    • 33

      Deluca L T, Maggi F, Dossi S, et al. High‑energy metal fuels for rocket propulsion:characterization and performance[J]. Chinese Journal of Explosives Propellants, 2013,36(6): 1-14.

    • 34

      DeLuca L T, Shimada T, Sinditskii V P, et al. Chemical rocket propulsion‑a comprehensive survey of energetic materials[M]. Springer International Publishing, 2017: 3-63.

    • 35

      Maggi F, Gariani G, Galfetti L, et al. Theoretical analysis of hydrides in solid and hybrid rocket propulsion[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1760-1769.

    • 36

      Deluca L T, Rossettini L, Kappenstein C, et al. Ballistic characterization of AlH3‑based propellants for solid and hybrid rocket propulsion[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2013.

    • 37

      Bazyn T, Krier H, Glumac N, et al. Decomposition of aluminum hydride under solid rocket motor conditions[J]. Journal of Propulsion & Power, 2012, 23(2): 457-464.

    • 38

      Meda L, Marra G, Galfetti L, et al. Nano‑aluminum as energetic material for rocket propellants[J]. Materials Science and Engineering, 2007, 27: 1393-1396.

    • 39

      Baschung B, Grune D, Licht H H, et al. Combustion phenomena of a solid propellant based on aluminum powder[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5(1-6): 219-225.

    • 40

      Tepper F, Ivanov G V. 'Activated' aluminum as a stored energy source for propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 1997, 4(1-6): 636-645.

    • 41

      Olivani A, Galfetti L, Severini F, et al. Aluminum particle size influence on ignition and combustion of AP/HTPB/Al solid rocket propellants[J]. Advances in Rocket Propellant Performance, Life and Disposal for Improved System Performance and Reduced Costs, 2002, 31(6): 1-12.

    • 42

      Galfetti L, DeLuca L T , F. Severini, et al. Pre and post‑burning analysis of nano‑aluminized solid rocket propellants[J]. Aerospace Science and Technology, 2007, 11(1): 26-32.

    • 43

      Deluca L T, Maggi F, Dossi S, et al. Prospects of aluminum modifications as energetic fuels in chemical rocket propulsion[M]. Chemical Rocket Propulsion. Springer International Publishing, 2017: 191-235.

    • 44

      Deluca L T, Galfetti L, Colombo G, et al. Microstructure effects in aluminized solid rocket propellants[J]. Journal of Propulsion & Power, 2010, 26(4): 724-733.

    • 45

      Sundaram D S, Yang V, Zarko V E. Combustion of nano aluminum particles (Review)[J]. Combustion Explosion & Shock Waves, 2015, 51(2): 173-196.

    • 46

      Zhao F, Yao E, Xu S, et al. Laser ignition of different aluminum nanopowders for solid rocket propulsion[M]. Chemical Rocket Propulsion. Springer International Publishing, 2017: 271-297.

    • 47

      Gaurav M, Ramakrishna P A. Effect of mechanical activation of high specific surface area aluminum with PTFE on composite solid propellant[J].Combustion & Flame,2016,166:203-215.

    • 48

      Sippel T R, Son S F, Groven L J, et al. Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum[J]. Combustion & Flame, 2015, 162(3): 846-854.

    • 49

      Glotov O G,Yagodnikov D A, Vorob'ev V S, et al. Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration[J]. Combustion Explosion & Shock Waves, 2007, 43(3): 320-333.

    • 50

      Gany A, Caveny L H. Agglomeration and ignition mechanism of aluminum particles in solid propellants[J]. Symposium (International) on Combustion, 1979, 17(1):1453-1461.

    • 51

      Rosenband V, Gany A. Agglomeration and ignition of aluminum particles coated by nickel[J]. International Journal of Energetic Materials and Chemical Propulsion, 2007, 6(2): 143-151.

    • 52

      Yavor Y, Gany A. Effect of nickel coating on aluminum combustion and agglomeration in solid propellants[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2013.

    • 53

      Listed N. Beryllium and beryllium compounds[J]. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 1993, 58(2): 41.

    • 54

      Chase M W Jr. NIST‑JANAF thermochemical tables[M]. Fourth Edition: Journal of Physical Chemical Reference, Monograph 9, 1998: 1-1951.

    • 55

      Haddad A, Natan B, Arieli R. The performance of a boron‑loaded gel‑fuel ramjet[J]. Eucass Proceedings, 2011, 2:499-518.

    • 56

      Srivastava R D, Farber M. Thermodynamic properties of Group 3 oxides[J]. Chemical Reviews, 2002,78(6):627-638.

    • 57

      Deluca L T, Marchesi E, Spreafico M A, et al. Aggregation versus agglomeration in metallized solid rocket propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9(1): 91-105.

    • 58

      Chan M L, Parr T, Hanson‑Parr D, et al. Characterization of a boron containing propellant[C]//DeLuca L T, Galfetti L, Pesce‑Rodriguez RA (eds), Novel energetic materials and applications, Proceedings of the IWCP, Grafiche GSS, Bergamo, Italy, 2004, 9:07.

    • 59

      Dossi S, Reina A, Maggi F, et al. Innovative metal fuels for solid rocket propulsion[J]. International Journal of Energetic Materials and Chemical Propulsion, 2012, 11(4): 299-322.

    • 60

      Mitani T, Izumikawa M. Combustion efficiencies of aluminum and boron in solid propellants[J]. Journal of Spacecraft and Rockets, 1991, 28(1): 79-84.

    • 61

      Shevchuk V G, Zolotko A N, Polishchuk D I. Ignition of packed boron particles[J]. Combustion Explosion & Shock Waves, 1975, 11(2): 189-192.

    • 62

      Deluca L T, Galfetti L, Maggi F, et al. Innovative metallized formulations for solid rocket propulsion[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2012,20(4): 465-474.

    • 63

      Vorozhtsov A B, Zhukov A S, Ziatdinov M K, et al. Novel micro‑ and nanofuels: production, characterization, and applications for high‑energy materials[M]. Chemical Rocket Propulsion. Springer International Publishing, 2017: 235-253.