CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
刘运飞, 张伟, 谢五喜, 等. 高能固体推进剂的研究进展[J]. 飞航导弹, 2014, 44 (9):93-96.
LIUYun‑fei, ZHANGWei, XIEWu⁃xi, et al. Research progress of high energy solid propellant[J].Aerodynamic Missile Journal, 2014, 44 (9):93-96.
参考文献 2
李小换, 曹付齐. 固体推进剂用粘合剂研究进展[J]. 粘接, 2012, 33 (11):67-71.
LIXiao‑huan, CAOFu‑qi. Research progress of binders for solid propellants[J]. Adhesion, 2012, 33 (11):67-71.
参考文献 3
BadgujarD M, TalawarM B, AsthanaS N, et al. Advances in science and technology of modern energetic materials: An overview[J]. Journal of Hazardous Materials, 2008, 151(2-3):289-305.
参考文献 4
LIUJ X, WANGC D, PANH B, et al. Process in the research into energetic azide polymer binders[J]. Polymer Bulletin, 2014, 36 (9):10-18..
参考文献 5
邓 蕾, 张 炜, 鲍 桐, 等. PBT与含能增塑剂相互作用的分子动力学模拟[J]. 含能材料,2017, 25 (1):32-38.
DENGLei, ZHANGWei, BAOTong, et al. Molecular Dynamics Simulation of Interaction between PBT and Energetic Plasticizer[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25 (1):32-38.
参考文献 6
菅晓霞, 郑启龙, 胡义文, 等. PBT弹性体力学性能及低温脆性研究[J]. 固体火箭技术, 2017, 40 (2):59-63.
JIANXiao‑xia, ZHENGQi‑long, HUYi‑wen, et al. Mechanical properties and low temperature embrittleness of PBT elastomer[J]. Journal of Solid Rocket Technology, 2017, 40 (2):59-63.
参考文献 7
李洋, 马松, 李国平, 等. PBT/N100胶片的力学性能及交联网络的完整性[J]. 固体火箭技术, 2018, 41 (2):67-72.
LIYang, MASong, LIGuo‑ping, et al. Mechanical properties and network structure integrity of PBT/N100 binder system[J]. Journal of Solid Rocket Technology, 2018, 41 (2):67-72.
参考文献 8
翟进贤, 杨荣杰, 刘后浪, 等. 复合固化剂对PBT黏合剂力学性能的影响[J]. 火炸药学报, 2009, 32(6):31-34.
ZHAIJin‑xian, YANGRong‑jie, LIUHou‑lang, et al. Influences of complex curing reagents on mechanical propert ies of PBT matrix[J]. Chinese Journal of Explosives and Propellants, 2009, 32(6):31-34
参考文献 9
ZHAIJin‑xian, ZHANGNing, GUOXiao‑yan, et al. Study on bulk preparation and properties of click chemistry end-crosslinked copolyether elastomers[J]. European Polymer Journal, 2016, 52 (78):72-81.
参考文献 10
BlümichB, BlümlerP, EidmannG, et al. The NMR‑mouse: construction, excitation, and applications[J]. Magnetic Resonance Imaging, 1998, 16(5-6):479-484.
参考文献 11
TeymouriY, AdamsA, BlümichB. Compact low‑field NMR: Unmasking morphological changes from solvent‑induced crystallization in polyethylene[J]. European Polymer Journal, 2016, 52 (4):48-57.
参考文献 12
FeiB, ChenC, PengS, et al. FTIR study of poly (propylene carbonate)/bisphenol A blends[J]. Polymer International, 2004, 53(12):2092-2098.
参考文献 13
VernooijE A A M, BoschK V D, CrommelinD J A. Fourier transform infrared spectroscopic determination of the hydrolysis of poly (ethylene glycol) ‑phosphatidylethanolamine‑containing liposomes[J]. Langmuir, 2002, 18(9) :3466-3470.
参考文献 14
ColemanM M , LeeK H , SkrovanekD J , et al. Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane[J]. Macromolecules, 1986, 19(8):2149-2157.
参考文献 15
YılgörE, Yılgörİ, YurtseverE. Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds[J]. Polymer, 2002, 43(24):6551-6559.
参考文献 16
ShethJ P, AnejaA, WilkesG L, et al. Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective[J]. Polymer, 2004, 45(20):6919-6932.
目录 contents

    摘要

    为了研究固化剂化学结构对3,3⁃双叠氮甲基氧丁环⁃四氢呋喃共聚醚(PBT)弹性体力学性能的影响,分别以六亚甲基二异氰酸酯(HDI)与水的加成产物N100、三羟甲基丙烷与HDI混合物(TMP/HDI)为固化剂,通过与PBT反应制备得到不同固化剂交联的PBT弹性体。采用力学、低场核磁、红外分析方法,考察了异氰酸酯固化剂结构对PBT弹性体力学性能的影响规律。结果表明:相同化学交联网络密度下,PBT⁃N100弹性体S0的断裂拉伸强度为(0.983±0.03)MPa,延伸率为(110±7)%,初始拉伸模量为(1.80±0.02)MPa;PBT⁃TMP/HDI弹性体S4的断裂拉伸强度为(1.43±0.08)MPa、延伸率为(336±6)%,初始拉伸模量为(1.26±0.01)MPa。PBT⁃N100弹性体S0网链物理交联强度高于S4。N100中脲羰基与氨基较强的氢键作用提高了PBT弹性体网链间的物理相互作用,使得弹性体S0拉伸模量高于S4、延伸率低于S4。

    Abstract

    To investigate the influence of chemical structure of curing agent on the mechanical property of 3, 3⁃diazidomethyloxetane⁃tetrahydrofuran copolyethers (PBT) elastomer, N100, the addition product of hexamethylene diisocyanate (HDI) and H2O, and the mixture of trimethylolpropane and HDI (TMP/HDI), were used as curing agent respectively to produce two type of cross⁃linked PBT elastomer. Results show that in the same chemical crosslinking network, the tensile strength, tensile strain at break and initial modulus of PBT⁃N100 elastomer S0 are (0.983±0.03) MPa, (110±7) % and (1.80±0.02) MPa, respectively, while the PBT⁃TMP/HDI elastomer S4 are (1.43±0.08) MPa, (336±6) % and (1.26±0.01) MPa, respectively. The tensile modulus of elastomer S0 is higher than that of elastomer S4, as its elongation at break and tensile strength poorer than that of S4. Low field NMR reveals that the physical crosslinking strength of PBT⁃N100 elastomer S0 network chains is higher than that of S4. The strong hydrogen bonding between urea carbonyl group and amidogen in N100 enhances the physical interaction among PBT elastomer network chains, resulting in the tensile modulus of elastomer S0 higher than that of S4, while its elongation at break lower than that of S4.

    Graphic Abstract

    图文摘要

    PBT elastomers with different curing agents but same chemical crosslinking network were designed to study the influence of the chemical structure of curing agent on the mechanical property.

  • 1 引 言

    粘合剂基体是固体火箭推进剂力学性能的核心载体,决定了固体推进剂的使用性能和范[1,2]。聚氨酯弹性体由于其特殊的软/硬段结构、优异的力学性能,广泛应用于各类固体推进[3]。以异氰酸酯为固化剂交联的端羟基3,3⁃双叠氮甲基氧丁环⁃四氢呋喃共聚醚(PBT)叠氮含能聚氨酯弹性体具有正生成热、能量高、低特征信号、低机械感度、热稳定性好等优点,引起研究者广泛关[4]。邓蕾[5]通过分子动力学模拟计算溶度参数、玻璃化转变温度等,研究了PBT与不同增塑剂间的相容性。菅晓霞[6]通过一步法制备了PBT弹性体,研究了PBT弹性体低温脆化参数与力学性能的变化规律。李洋[7]基于PBT共聚醚预聚物分子量大小、端羟基与固化剂反应摩尔比来调控弹性体化学交联网络密度,研究了PBT⁃N100固化弹性体力学性能与其化学交联网络的关系。本课题[8]也采用甲苯二异氰酸酯(TDI)、N100复合固化剂体系研究PBT弹性体的力学性能特性。目前研究PBT弹性体力学性能重点仍集中在弹性体化学交联网络结构方面,而对于PBT弹性体物理交联特性及其对力学性能影响研究还未见报道。

    为此,本研究通过配方设计,分别以六亚甲基二异氰酸酯(HDI)与水加成产物N100、三羟甲基丙烷/六亚甲基二异氰酸酯(TMP/HDI)为固化剂,制备了两种化学交联网络结构相同的PBT⁃N100、PBT⁃TMP/HDI弹性体。采用拉伸力学测试、低场核磁、红外分析方法研究了异氰酸酯固化剂结构对PBT弹性体力学性能的影响规律。

  • 2 实验部分

  • 2.1 试剂与仪器

    实验所用预聚物端羟基3,3⁃二叠氮甲基氧丁环⁃四氢呋喃无规共聚醚(PBT, 数均分子量Mn为4000 g·mol-1,羟值0.3575 mmol·g-1)、多官能度异氰酸酯化合物六次甲基二异氰酸酯与水无定形加成物N100(Mn为744 g·mol-1,—NCO含量5.43 mmol·g-1)由黎明化工研究院提供;三羟甲基丙烷(TMP, 纯度>98%)、六亚甲基二异氰酸酯(HDI,纯度>98%)、二月桂酸二丁基锡(T12, 纯度>98%)、分析纯甲苯等购于北京试剂公司。

  • 2.2 实验过程

    为避免异氰酸酯过量与氨基甲酸酯反应生成脲基干扰红外分析,PBT弹性体所有配方采用固化参数R=1.0(异氰酸酯和羟基摩尔比1.0)。依照表1所示弹性体组分质量配比,将各组分混合,充分搅拌均匀后,将混合物倒置于聚四氟乙烯模具中,真空除去气泡。然后于50oC恒温箱中固化至异氰酸酯红外吸收峰完全消失,得到反应完全的PBT弹性体样品。

    表1 PBT弹性体配方

    Table 1 Formulations of PBT elastomer

    samplemass /ghard segment content / %
    PBTN100TMPHDIT12
    S0201.317--0.0256.18
    S120-0.38331.32170.0257.86
    S220-0.43121.41170.0258.44
    S320-0.47911.50150.0259.01
    S420-0.50311.54670.0259.30
    S520-0.52701.59190.0259.58
    S620-0.57491.68190.02510.14
  • 2.3 测试与表征

    溶胀测试:室温下,称取约0.3 g样品(尺寸约为10 mm×5 mm×4 mm)浸泡于四氢呋喃中。每隔一段时间取出样品,称重,至质量变化小于0.001 g。依据质量加和性原[9]采用公式(1)可获得弹性体体积溶胀率(qv)。

    qv=1+ww0-1ρ2ρ1
    (1)

    式中,w为实时测量时样品的质量,g;w0为样品的初始质量,g;ρ2为样品的密度,g·cm-1;ρ1为溶剂的密度,g·cm-1

    拉伸力学性能测试:样品按照GB9865裁制成哑铃状拉样条,通过电子拉力试验机(CMT4104,MTS公司)在室温下进行测试,拉伸速率为20 mm·min­1

    低场核磁测试:通过Micro⁃MR⁃CL 低场核磁共振分析仪(上海纽迈电子科技有限公司)测试。测试参数设置为自旋回波序列(CPMG) ,接收机带宽(SW) 200 kHz,回波个数(NECH) 2000,累加次数为8次,模拟增益RG1设为20 dB,数字增益DRG1设为3。

    红外测试:通过Nicolet 6700 FT⁃IR红外光谱仪(美国)进行全反射测试,测量范围为4000~400 cm-1

  • 3 结果与讨论

  • 3.1 化学交联网络密度

    图1为弹性体S0~S6溶胀曲线。由图1可以看出,由于化学交联点密度随三官能度羟基化合物TMP含量增加而增加,PBT⁃TMP/HDI弹性体S1~S6平衡溶胀率随TMP含量增加而单调下降。值得注意的是,PBT⁃TMP/HDI弹性体S4与PBT⁃N100弹性体S0的溶胀平衡曲线相近,表明弹性体S0和S4具有相同的平衡溶胀率。鉴于弹性体S0和S4具有相近的化学组成(见表1),及与溶剂甲苯相近的Flory⁃Huggins作用参数,依据交联弹性体网络溶胀平衡理论,弹性体S0和S4具有相近的化学交联网络结构。

    图1
                            PBT弹性体S0~S6的溶胀曲线

    图1 PBT弹性体S0~S6的溶胀曲线

    Fig.1 Volume swelling curves of PBT elastomer S0⁃S6

  • 3.2 拉伸力学性能

    基于弹性体S0和S4具有相近的化学交联网络结构,室温下对弹性体S0和S4进行拉伸力学性能测试, 以进一步揭示两类不同固化剂对PBT弹性体力学性能的影响。固化剂N100交联弹性体S0和TMP/HDI交联弹性体S4拉伸力学性能测试平行实验4次,结果见表2图2。由表2可以看出,弹性体S4呈现出更高的断裂拉伸强度((1.43±0.08)MPa)和延伸率((336±6)%);尽管弹性体S0的硬段含量(6.18%)低于S4 (9.30%)(见表1),但弹性体S0呈现出更高的初始拉伸模量((1.80±0.02)MPa)。此外,由图2可看出,除初始拉伸模量外,弹性体S0任意应变下的拉伸模量也均高于相应应变下弹性体S4的模量。这表明,虽然弹性体S0和S4具有相同的化学交联网络结构,但具有截然不同的力学特性。

    表2 PBT 弹性体S0和S4的拉伸力学性能参数

    Table 2 Tensile mechanical properties parameters of PBT elastomer S0 and S4

    entryS0S4
    σ / MPaε / %E / MPaσ / MPaε / %E / MPa
    11.001151.801.413331.26
    21.011141.781.503391.27
    30.941001.811.483281.25
    40.981111.811.323401.25
    average0.98±0.03110±71.80±0.021.43±0.08336±61.26±0.01

    NOTE: σ is tensile strength. ε is elongation at break. E is tensile modulus.

    图2
                            PBT弹性体S0和S4的应力应变曲线

    图2 PBT弹性体S0和S4的应力应变曲线

    Fig.2 Stress⁃stain curves of PBT elastomer S0 and S4

  • 3.3 物理交联

    弹性体力学性能不仅取决于其化学交联网络结构,还取决于分子链间的物理相互作用。溶胀法测试聚合物网络结构通常破坏了聚合物分子链间的物理相互作用,难以获得聚合物高分子链间的物理作用信息。低场核磁共振技术是一种非破坏性分析方法;测试聚合物氢原子的自旋⁃自旋弛豫时间T2可反映聚合物链段物理相互作用及其动力学特性。弛豫时间T2愈长则表明分子链间相互作用愈弱,链段活动能力较强,反之也 [10]。鉴于聚氨酯交联PBT弹性体中存在软、硬段结构,通过式(2)拟合可分别获得弹性体中软、硬链段的T2弛豫时[11],从而定量表征PBT弹性体链段间的物理相互作用。

    Mt=Aexp -tT21+Bexp -tT22+M0
    (2)

    式中,M(t)为样品的横向磁化强度随时间的变化值,t为时间,ms;T21为弹性体软段横向弛豫时间,ms;T22为硬段横向弛豫时间,ms;M0为常数。AB分别对应聚合物软、硬段指前系数。

    图3为低场核磁测试及拟合结果。从图3可以看出,拟合曲线与实验结果吻合性较好。表3是根据拟合结果所得软、硬段自旋⁃自旋弛豫时间T2值。从表3可以看出,PBT⁃N100弹性体S0软段横向弛豫时间T21为2.45 ms,硬段横向弛豫时间T22为0.32 ms;PBT⁃TMP/HDI弹性体S4软段弛豫时间T21为2.75 ms,硬段弛豫时间T22为0.40 ms。弹性体S0软、硬段横向弛豫时间T2均小于S4。由于弛豫时间越短链段活动能力越弱,故弹性体S0聚合物链段活动能力低于S4。鉴于弹性体S0和S4具有相同的化学交联网络结构(见 3.1节),这表明弹性体S0链段较低的活动能力源于其较强的分子链间相互作用;弹性体S0分子链间作用力强于弹性体S4。

    html/hncl/CJEM2019084/alternativeImage/38851a63-b8ec-4488-8952-39d93542b3d4-F004.png

    a. S0

    html/hncl/CJEM2019084/alternativeImage/38851a63-b8ec-4488-8952-39d93542b3d4-F005.png

    b. S4

    图3 PBT弹性体S0和S4的弛豫衰减测试和拟合曲线

    Fig.3 Relaxation attenuation test and fitting curves of PBT elastomer S0 and S4

    表3 PBT弹性体S0和S4的软、硬段自旋⁃自旋弛豫时间

    Table 3 Spin⁃spin relaxation time of the soft and hard segments for PBT elastomer S0 and S4

    sampleT21 / msT22 / ms
    S02.450.32
    S42.750.40

    NOTE: T21is relaxation time of soft segment. T22is relaxation time of hard segment.

  • 3.4 氢键特性

    分析PBT弹性体氢键特性可揭示分子链间相互作用。鉴于聚氨酯体系中羰基和氨基分别为氢键受体和供体,羰基红外特征峰吸光系数大、灵敏高,故对弹性体S0和S4进行了红外光谱测试, 其分峰拟合结果见图4。由于N100为六次甲基二异氰酸酯与水无定形加成物,其分子结构中含有脲基;N100固化弹性体S0中除含氨基甲酸酯结构的酯羰基外还有脲羰基基团,因此弹性体S0和S4两者羰基红外吸收峰曲线差异很大(见图4)。

    html/hncl/CJEM2019084/alternativeImage/38851a63-b8ec-4488-8952-39d93542b3d4-F007.png

    a. S0 curves

    html/hncl/CJEM2019084/alternativeImage/38851a63-b8ec-4488-8952-39d93542b3d4-F008.png

    b. S4 curves

    图4 PBT弹性体S0 和 S4的FTIR分峰拟合曲线

    Fig.4 FTIR⁃peak⁃differentation⁃imitating analysis for PBT elastomer S0 and S4

    羰基与弹性体中氨基活泼氢存在双缔合氢键羰基(有序氢键)和单缔合氢键羰基(无序氢键)。由图4可见,在1669,1710,1725 cm-1出现双缔合氢键酯羰基、单缔合氢键酯羰基和游离酯羰基峰;1640,1684,1695 cm-1出现双缔合氢键脲羰基、单缔合氢键脲羰基和游离脲羰基[12,13]。基于朗伯⁃比尔定[14],分峰面积比等于各类型羰基摩尔比;依据式(3)可得弹性体中氢键化氨基的摩尔比RN-H…O/C=O

    RN-HO/C=O=2×RO-U/C=O+2×RO-C/C=O+RD-U/C=O+RD-C/C=O
    (3)

    式中,RO-U/C=O为有序氢键脲羰基摩尔分数;RO-C/C=O为有序氢键酯羰基摩尔分数;RD-U/C=O为无序氢键脲羰基摩尔分数;RD-C/C=O为无序氢键酯羰基摩尔分数。

    表4是弹性体S0和S4羰基峰拟合结果。从表4可以看出,弹性体S0中氢键化氨基与羰基摩尔比RN-H…O/C=O为0.91, S4为0.92,两者相近;这表明弹性体S0和S4中硬段间氨基与羰基的氢键缔合程度相似。与弹性体S4不同的是,弹性体S0中与脲羰基形成氢键的氨基占其全部氢键化氨基的58%((2RO-U/C=O+RD-U/C=O)/ RN-HO/C=O),而脲羰基与氨基氢键键能(63.1 kJ·mol-1)远高于酯羰基与氨基(29.7 kJ·mol-1) [15];这意味着弹性体S0中高分子链段被硬段间高键能的氢键紧紧束缚,不易产生分子链间滑移,物理交联作用强。因此N100固化的弹性体S0拥有较低的横向弛豫时间,较高的力学拉伸模量。弹性体S4分子链间酯羰基与氨基氢键键能低,物理作用弱,分子链段易滑动;因此链段横向弛豫时间长,弹性体拉伸模量低、断裂延伸率较[16]

    表4 PBT弹性体S0 和 S4的羰基峰拟合结果

    Table 4 carbonyl peak fitting results of PBT elastomer S0 and S4

    carbonyl typefrequency / cm-1

    S0

    mole fraction

    S4

    mole fraction

    order H⁃bonded urea C=O16400.190
    order H⁃bonded carbamate C=O16690.110.20
    disorder H⁃bonded urea C=O16840.150
    free urea C=O16950.190
    disorder H⁃bonded carbamate C=O17100.160.52
    free carbamate C=O17250.200.28
    RN⁃H…O/C=O0.910.92
  • 4 结 论

    (1) 通过调节TMP含量制得了与PBT⁃N100弹性体S0化学交联网络结构相同的PBT⁃TMP/HDI弹性体S4。

    (2) 相同化学交联网络密度条件下,弹性体S0中脲羰基与氨基较强的氢键作用增强了分子链间物理交联作用,抑制链段滑动能力,呈现较低横向弛豫时间和较高力学拉伸膜量;弹性体S4中酯羰基与氨基氢键键能低,高分子链段滑动能力高于弹性体S0,横向弛豫时间长,弹性体呈现较低拉伸模量和较高断裂延伸率。

    (3) N100、TMP/HDI固化交联剂化学结构差异使得弹性体分子链间物理交联作用不同,弹性体S0、S4呈现不同的力学特性。

    (责编: 姜 梅)

  • 参考文献

    • 1

      刘运飞, 张伟, 谢五喜, 等. 高能固体推进剂的研究进展[J]. 飞航导弹, 2014, 44 (9):93-96.

      LIU Yun‑fei, ZHANG Wei, XIE Wu⁃xi, et al. Research progress of high energy solid propellant[J].Aerodynamic Missile Journal, 2014, 44 (9):93-96.

    • 2

      李小换, 曹付齐. 固体推进剂用粘合剂研究进展[J]. 粘接, 2012, 33 (11):67-71.

      LI Xiao‑huan, CAO Fu‑qi. Research progress of binders for solid propellants[J]. Adhesion, 2012, 33 (11):67-71.

    • 3

      Badgujar D M, Talawar M B, Asthana S N, et al. Advances in science and technology of modern energetic materials: An overview[J]. Journal of Hazardous Materials, 2008, 151(2-3):289-305.

    • 4

      LIU J X, WANG C D, PAN H B, et al. Process in the research into energetic azide polymer binders[J]. Polymer Bulletin, 2014, 36 (9):10-18..

    • 5

      邓 蕾, 张 炜, 鲍 桐, 等. PBT与含能增塑剂相互作用的分子动力学模拟[J]. 含能材料,2017, 25 (1):32-38.

      DENG Lei, ZHANG Wei, BAO Tong, et al. Molecular Dynamics Simulation of Interaction between PBT and Energetic Plasticizer[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25 (1):32-38.

    • 6

      菅晓霞, 郑启龙, 胡义文, 等. PBT弹性体力学性能及低温脆性研究[J]. 固体火箭技术, 2017, 40 (2):59-63.

      JIAN Xiao‑xia, ZHENG Qi‑long, HU Yi‑wen, et al. Mechanical properties and low temperature embrittleness of PBT elastomer[J]. Journal of Solid Rocket Technology, 2017, 40 (2):59-63.

    • 7

      李洋, 马松, 李国平, 等. PBT/N100胶片的力学性能及交联网络的完整性[J]. 固体火箭技术, 2018, 41 (2):67-72.

      LI Yang, MA Song, LI Guo‑ping, et al. Mechanical properties and network structure integrity of PBT/N100 binder system[J]. Journal of Solid Rocket Technology, 2018, 41 (2):67-72.

    • 8

      翟进贤, 杨荣杰, 刘后浪, 等. 复合固化剂对PBT黏合剂力学性能的影响[J]. 火炸药学报, 2009, 32(6):31-34.

      ZHAI Jin‑xian, YANG Rong‑jie, LIU Hou‑lang, et al. Influences of complex curing reagents on mechanical propert ies of PBT matrix[J]. Chinese Journal of Explosives and Propellants, 2009, 32(6):31-34

    • 9

      ZHAI Jin‑xian, ZHANG Ning, GUO Xiao‑yan, et al. Study on bulk preparation and properties of click chemistry end-crosslinked copolyether elastomers[J]. European Polymer Journal, 2016, 52 (78):72-81.

    • 10

      Blümich B, Blümler P, Eidmann G, et al. The NMR‑mouse: construction, excitation, and applications[J]. Magnetic Resonance Imaging, 1998, 16(5-6):479-484.

    • 11

      Teymouri Y, Adams A, Blümich B. Compact low‑field NMR: Unmasking morphological changes from solvent‑induced crystallization in polyethylene[J]. European Polymer Journal, 2016, 52 (4):48-57.

    • 12

      Fei B, Chen C, Peng S, et al. FTIR study of poly (propylene carbonate)/bisphenol A blends[J]. Polymer International, 2004, 53(12):2092-2098.

    • 13

      Vernooij E A A M, Bosch K V D, Crommelin D J A. Fourier transform infrared spectroscopic determination of the hydrolysis of poly (ethylene glycol) ‑phosphatidylethanolamine‑containing liposomes[J]. Langmuir, 2002, 18(9) :3466-3470.

    • 14

      Coleman M M , Lee K H , Skrovanek D J , et al. Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane[J]. Macromolecules, 1986, 19(8):2149-2157.

    • 15

      Yılgör E, Yılgör İ, Yurtsever E. Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds[J]. Polymer, 2002, 43(24):6551-6559.

    • 16

      Sheth J P, Aneja A, Wilkes G L, et al. Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective[J]. Polymer, 2004, 45(20):6919-6932.

丁腾飞

机 构:北京理工大学材料学院,北京100081

Affiliation:School of materials science and engineering,Beijing Institute of Technology,Beijing 100081, China

邮 箱:tfding0411@163.com

作者简介:丁腾飞(1994-),男,硕士,主要从事PBT弹性体微观结构对性能的影响研究。e⁃mail:tfding0411@163.com

翟进贤

机 构:北京理工大学材料学院,北京100081

Affiliation:School of materials science and engineering,Beijing Institute of Technology,Beijing 100081, China

角 色:通讯作者

Role:Corresponding author

邮 箱:zhjx@bit.edu.cn

作者简介:翟进贤(1975-),男,副教授,主要从事高分子微观结构对性能的影响研究。e⁃mail:zhjx@bit.edu.cn

郭晓燕

机 构:北京理工大学材料学院,北京100081

Affiliation:School of materials science and engineering,Beijing Institute of Technology,Beijing 100081, China

耿泽

机 构:北京理工大学材料学院,北京100081

Affiliation:School of materials science and engineering,Beijing Institute of Technology,Beijing 100081, China

samplemass /ghard segment content / %
PBTN100TMPHDIT12
S0201.317--0.0256.18
S120-0.38331.32170.0257.86
S220-0.43121.41170.0258.44
S320-0.47911.50150.0259.01
S420-0.50311.54670.0259.30
S520-0.52701.59190.0259.58
S620-0.57491.68190.02510.14
html/hncl/CJEM2019084/alternativeImage/38851a63-b8ec-4488-8952-39d93542b3d4-F001.png
entryS0S4
σ / MPaε / %E / MPaσ / MPaε / %E / MPa
11.001151.801.413331.26
21.011141.781.503391.27
30.941001.811.483281.25
40.981111.811.323401.25
average0.98±0.03110±71.80±0.021.43±0.08336±61.26±0.01
html/hncl/CJEM2019084/alternativeImage/38851a63-b8ec-4488-8952-39d93542b3d4-F002.png
html/hncl/CJEM2019084/alternativeImage/38851a63-b8ec-4488-8952-39d93542b3d4-F004.png
html/hncl/CJEM2019084/alternativeImage/38851a63-b8ec-4488-8952-39d93542b3d4-F005.png
sampleT21 / msT22 / ms
S02.450.32
S42.750.40
html/hncl/CJEM2019084/alternativeImage/38851a63-b8ec-4488-8952-39d93542b3d4-F007.png
html/hncl/CJEM2019084/alternativeImage/38851a63-b8ec-4488-8952-39d93542b3d4-F008.png
carbonyl typefrequency / cm-1

S0

mole fraction

S4

mole fraction

order H⁃bonded urea C=O16400.190
order H⁃bonded carbamate C=O16690.110.20
disorder H⁃bonded urea C=O16840.150
free urea C=O16950.190
disorder H⁃bonded carbamate C=O17100.160.52
free carbamate C=O17250.200.28
RN⁃H…O/C=O0.910.92

表1 PBT弹性体配方

Table 1 Formulations of PBT elastomer

图1 PBT弹性体S0~S6的溶胀曲线

Fig.1 Volume swelling curves of PBT elastomer S0⁃S6

表2 PBT 弹性体S0和S4的拉伸力学性能参数

Table 2 Tensile mechanical properties parameters of PBT elastomer S0 and S4

图2 PBT弹性体S0和S4的应力应变曲线

Fig.2 Stress⁃stain curves of PBT elastomer S0 and S4

图3 PBT弹性体S0和S4的弛豫衰减测试和拟合曲线 -- a. S0

Fig.3 Relaxation attenuation test and fitting curves of PBT elastomer S0 and S4 -- a. S0

图3 PBT弹性体S0和S4的弛豫衰减测试和拟合曲线 -- b. S4

Fig.3 Relaxation attenuation test and fitting curves of PBT elastomer S0 and S4 -- b. S4

表3 PBT弹性体S0和S4的软、硬段自旋⁃自旋弛豫时间

Table 3 Spin⁃spin relaxation time of the soft and hard segments for PBT elastomer S0 and S4

图4 PBT弹性体S0 和 S4的FTIR分峰拟合曲线 -- a. S0 curves

Fig.4 FTIR⁃peak⁃differentation⁃imitating analysis for PBT elastomer S0 and S4 -- a. S0 curves

图4 PBT弹性体S0 和 S4的FTIR分峰拟合曲线 -- b. S4 curves

Fig.4 FTIR⁃peak⁃differentation⁃imitating analysis for PBT elastomer S0 and S4 -- b. S4 curves

表4 PBT弹性体S0 和 S4的羰基峰拟合结果

Table 4 carbonyl peak fitting results of PBT elastomer S0 and S4

image /

无注解

无注解

σ is tensile strength. ε is elongation at break. E is tensile modulus.

无注解

无注解

无注解

T21is relaxation time of soft segment. T22is relaxation time of hard segment.

无注解

无注解

无注解

  • 参考文献

    • 1

      刘运飞, 张伟, 谢五喜, 等. 高能固体推进剂的研究进展[J]. 飞航导弹, 2014, 44 (9):93-96.

      LIU Yun‑fei, ZHANG Wei, XIE Wu⁃xi, et al. Research progress of high energy solid propellant[J].Aerodynamic Missile Journal, 2014, 44 (9):93-96.

    • 2

      李小换, 曹付齐. 固体推进剂用粘合剂研究进展[J]. 粘接, 2012, 33 (11):67-71.

      LI Xiao‑huan, CAO Fu‑qi. Research progress of binders for solid propellants[J]. Adhesion, 2012, 33 (11):67-71.

    • 3

      Badgujar D M, Talawar M B, Asthana S N, et al. Advances in science and technology of modern energetic materials: An overview[J]. Journal of Hazardous Materials, 2008, 151(2-3):289-305.

    • 4

      LIU J X, WANG C D, PAN H B, et al. Process in the research into energetic azide polymer binders[J]. Polymer Bulletin, 2014, 36 (9):10-18..

    • 5

      邓 蕾, 张 炜, 鲍 桐, 等. PBT与含能增塑剂相互作用的分子动力学模拟[J]. 含能材料,2017, 25 (1):32-38.

      DENG Lei, ZHANG Wei, BAO Tong, et al. Molecular Dynamics Simulation of Interaction between PBT and Energetic Plasticizer[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25 (1):32-38.

    • 6

      菅晓霞, 郑启龙, 胡义文, 等. PBT弹性体力学性能及低温脆性研究[J]. 固体火箭技术, 2017, 40 (2):59-63.

      JIAN Xiao‑xia, ZHENG Qi‑long, HU Yi‑wen, et al. Mechanical properties and low temperature embrittleness of PBT elastomer[J]. Journal of Solid Rocket Technology, 2017, 40 (2):59-63.

    • 7

      李洋, 马松, 李国平, 等. PBT/N100胶片的力学性能及交联网络的完整性[J]. 固体火箭技术, 2018, 41 (2):67-72.

      LI Yang, MA Song, LI Guo‑ping, et al. Mechanical properties and network structure integrity of PBT/N100 binder system[J]. Journal of Solid Rocket Technology, 2018, 41 (2):67-72.

    • 8

      翟进贤, 杨荣杰, 刘后浪, 等. 复合固化剂对PBT黏合剂力学性能的影响[J]. 火炸药学报, 2009, 32(6):31-34.

      ZHAI Jin‑xian, YANG Rong‑jie, LIU Hou‑lang, et al. Influences of complex curing reagents on mechanical propert ies of PBT matrix[J]. Chinese Journal of Explosives and Propellants, 2009, 32(6):31-34

    • 9

      ZHAI Jin‑xian, ZHANG Ning, GUO Xiao‑yan, et al. Study on bulk preparation and properties of click chemistry end-crosslinked copolyether elastomers[J]. European Polymer Journal, 2016, 52 (78):72-81.

    • 10

      Blümich B, Blümler P, Eidmann G, et al. The NMR‑mouse: construction, excitation, and applications[J]. Magnetic Resonance Imaging, 1998, 16(5-6):479-484.

    • 11

      Teymouri Y, Adams A, Blümich B. Compact low‑field NMR: Unmasking morphological changes from solvent‑induced crystallization in polyethylene[J]. European Polymer Journal, 2016, 52 (4):48-57.

    • 12

      Fei B, Chen C, Peng S, et al. FTIR study of poly (propylene carbonate)/bisphenol A blends[J]. Polymer International, 2004, 53(12):2092-2098.

    • 13

      Vernooij E A A M, Bosch K V D, Crommelin D J A. Fourier transform infrared spectroscopic determination of the hydrolysis of poly (ethylene glycol) ‑phosphatidylethanolamine‑containing liposomes[J]. Langmuir, 2002, 18(9) :3466-3470.

    • 14

      Coleman M M , Lee K H , Skrovanek D J , et al. Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane[J]. Macromolecules, 1986, 19(8):2149-2157.

    • 15

      Yılgör E, Yılgör İ, Yurtsever E. Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds[J]. Polymer, 2002, 43(24):6551-6559.

    • 16

      Sheth J P, Aneja A, Wilkes G L, et al. Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective[J]. Polymer, 2004, 45(20):6919-6932.