CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
BoltonO, MatzgerA J. Improved stability and smart⁃materialfunctionality realized in an energetic cocrystal[J].Angewandte Chemie Int Edit, 2011, 50(38): 8960-8963.
参考文献 2
ShenJP,DuanXH, LuoQP, et al. Preparation and characterization of a novel cocrystal Explosive[J]. Crystal Growth&Desigh, 2011, 11, 1759-1765.
参考文献 3
YangZ, LiH, ZhouX, et al. Characterization and properties of a novelenergetic–energetic cocrystal explosive composed of HNIW and BTF[J]. Crystal Growth & Design, 2012, 12(11): 5155-5158.
参考文献 4
ZhangH, GuoC, WangX, et al. Five energetic cocrystals of BTF by intermolecularhydrogen bond and π⁃stacking interactions[J]. Crystal Growth & Design, 2013, 13(2):679-687.
参考文献 5
YangZ W, LiH Z,HuangH, et al. Preparation and performance of a HNIW/TNT cocrystalexplosive[J]. Propellants Explos Pyrotech, 2013, 38: 495-501.
参考文献 6
VuppuluriVS, SamuelsP J, CaflinKC, et al. Detonation performance characterization of a novel CL⁃20 cocrystal using microwave interferometry[J].Propellants,Explos Pyrotech, 2017, 42: 1-11.
参考文献 7
陈杰,段晓惠,裴重华. HMX/AP共晶的制备与表征[J].含能材料,2013,21(4):409-413.
CHENJie,DUANXiao⁃hui,PEIChong⁃hua. Preparation and characterization of HMX/AP co⁃crystal[J]. Chinese Journal of Energetic Materials(HannengCailiao), 2013, 21(4):409-413.
参考文献 8
王灏静,马媛,李洪珍,等. ADN/18C6共晶制备与表征[J].含能材料,2018,26(6):545-548.
WANGHao⁃jing, MAYuan, LIHong⁃zhen, et al. Preparation and characterization of ADN/18C6 co⁃crystal[J]. Chinese Journal of Energetic Materials(HannengCailiao), 2018, 26(6):545-548.
参考文献 9
BoltonO,SimkeL R,PagoriaP F, alet, High powerexplosive with good sensitivity: A 2:1 cocrystal of CL⁃20:HMX[J]. Crystal Growth&Desigh, 2012,12(9): 4311-4314.
参考文献 10
曾贵玉,郁卫飞,聂福德,等.超细炸药粉体性能及其应用研究进展[J].含能材料,2005,13(5):349-352.
ZENGGui⁃yu, YUWei⁃fei, NIEFu⁃de, et al. Review on properties of ultrafine explosives powder and its application[J]. Chinese Journal of Energetic Material(Hanneng Cailiao), 2005, 13(5):349-352.
参考文献 11
刘志建.超细材料与超细炸药技术[J].火炸药学报,1995,17(4):37-40.
LIUZhi⁃jian. The ultrafine materials and the technology of ultrafine explosives[J].Chinese Journal of Explosive and Propellant,1995, 17(4): 37-40.
参考文献 12
曾贵玉,聂福德,杨志剑,等.微纳米含能材料[M].北京:国防工业出版社,2015.
ZENGGui⁃yu, NIEFu⁃de, YANGZhi⁃jian, et al. Micro⁃nano energetic materials[M]. Beijing: National Defense Industry Press, 2015.
参考文献 13
SpitzerD, RisseB, SchnellF, et al. Continuous engineering of nano⁃cocrystals for medical and energetic applications[J]. Scientific Reports, 2014, 4: 6575.
参考文献 14
GAOB, WANGD J, ZHANGJ, et al.Facile, continuous and large⁃scale synthesis of CL⁃20/HMX nano co⁃crystals with high⁃performance by ultrasonic spray⁃assisted electrostatic adsorption method[J]. Journal of Materials Chemistry A, 2014, 2(47): 19969-19974.
参考文献 15
QiuH, PatelR B, DamavarapuRS, et al. Nanoscale 2CL⁃20·HMX high explosive cocrystal synthesized by bead milling[J]. Cryst Eng Comm, 2015.17(22): 4080-4083.
参考文献 16
AnC W, LiHQ,YeB Y, et al. Nano⁃CL⁃20/HMX cocrystal explosive for significantly reduced mechanical sensitivity[J]. Journal of Nanomaterials, 2017, 1-7.
参考文献 17
陆志猛,王青松,孙涛,等.一种激振力调节装置[P].中国,ZL201610320658.X,2018⁃03⁃13.
LUZhi⁃meng, WANGQing⁃song, SUNTao,et al. A vibration force regulating device[P].China, ZL201610320658.X, 2018⁃03⁃13.
参考文献 18
陆志猛,孙涛,王青松,等.基于三自由度共振系统的声波混合装置[P].中国,ZL201610320677.2,2018⁃07⁃13.
LUZhi⁃meng, SUNTao, WANGQing⁃song, et al.Acoustic wave mixing device based on three⁃degree⁃of⁃freedom resonance system[P].China, ZL201610320677.2, 2018⁃07⁃13.
参考文献 19
陆志猛,孙涛,左军涛,等.混合机[P].中国,ZL201830434794.1,2019⁃01⁃04.
LUZhi⁃meng, SUNTao, ZUOJun⁃tao, et al.Mixer[P].China, ZL201830434794.1, 2019⁃01⁃04.
参考文献 20
NielsenA T, ChafinA P, ChristianS L,et al. Synthesis of polyazapolycyclic caged polynitramines[J]. Tetrahedron, 1998, 54: 11793-11812.
参考文献 21
SunS H, ZhangH B, LiuY, et al. Transitions from separately crystallized CL⁃20 and HMX to CL⁃20/HMX cocrystal based on solvent media[J].Crystal Growth&Desigh, 2018, 18: 77-84.
参考文献 22
周玉. 材料分析方法[M]. 第三版. 北京机械工业出版社,2011:49-50.
ZHOUYu. Analyses method of materials[M].The Third Edition. Beijing Machine Industry Press, 2011: 49-50.
参考文献 23
AndersonS R, am EndeDJ, SalanJS, et al. Preparationof an energetic⁃energetic cocrystal using resonant acousticmixing[J]. Propellants, Explos Pyrotech, 2014, 39: 637-640.
参考文献 24
刘子如. 含能材料热分析[M]. 北京: 国防工业出版社,2008.
LIUZi⁃ru. Thermal analyses for energetic materials[M].Beijing: National Defense Industry Press, 2008.
参考文献 25
张伟,刘运飞,谢五喜,等. 热分析法研究AlH3与固体推进剂组分的相容性[J].火炸药学报,2015,38(1):41-46.
ZHANGWei, LIUYun⁃fei, XIEWu⁃xi, et al.Study on compatibility of AlH3 with compositions of solid propellant by thermal analysis method[J].Chinese Journal of Explosive and Propellant,2015, 38(1): 41-46.
参考文献 26
严启龙. 浅谈固体推进剂燃烧催化剂的评判标准[J].含能材料,2019,27(4):266-269.
YANQi⁃long. A brief talk on the criteria of solid propellant combustion catalyst[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2019, 27(4):266-269.
目录 contents

    摘要

    通过加入微量溶剂,采用超高效混合技术,在70 g的加速度条件下反应30 min制备得到摩尔比为2∶1的超细六硝基六氮杂异伍兹烷与奥克托今(CL⁃20/HMX)共晶,通过X射线粉末衍射、差示扫描量热法鉴定了CL⁃20/HMX共晶的形成,并对其形貌、粒度、感度等进行了表征测试。结果表明:制备的超细CL⁃20/HMX共晶纯度为92.6%,共晶炸药呈规则块状、表面光滑、粒径小于1 μm、粒度分布均匀,其X射线衍射图在11.558°,13.264°,18.601°,24.474°,33.785°,36.269°处出现新的较强的衍射峰。超细CL⁃20/HMX共晶放热分解过程中只有一个放热分解峰,其放热峰温为248.3 ℃,其分解放热量(2192.1 J·g-1),显著高于相同摩尔比的物理混合物(1327.3 J·g-1)。按照GJB772A-1997《炸药试验方法》测得的摩擦感度比原料CL⁃20降低了16%,特性落高比原料CL⁃20提高28.6 cm,比原料HMX提高11.5 cm,形成共晶后安全性能更高。采用DSC法研究了超细CL⁃20/HMX共晶与推进剂常用组分均聚叠氮缩水甘油醚(HGAP)、硝化甘油/1,2,4⁃丁三醇三硝酸酯混合物(NG/BTTN)、缩二脲三异氰酸酯(N⁃100)、高氯酸铵(AP)、铝粉(Al)的相容性,发现超细CL⁃20/HMX共晶与NG/BTTN、AP、Al的相容性较好,与HGAP、N⁃100不相容。

    Abstract

    Ultrafine hexanitrohexaazaisowurtzitane/cyclotetramethylene tetranitramine(CL⁃20/HMX)cocrystal explosive was prepared by ultra⁃highly efficient mixing method. X⁃ray diffraction and differential scanning calorimetry were utilized to determine whether the cocrystal explosive was prepared. The crystal morphology, particle size, sensitivity of cocrystal explosive were characterized. The prepared samples were regular block⁃like ultrafine CL⁃20/HMX cocrystal explosives with uniform particle size of less than 1 μm, which appeared new stronger diffraction peaks at 11.558°, 13.264°, 18.601°, 24.474°, 33.785°, 36.269°. The purity of the CL⁃20/HMX cocrystal explosive was 92.6%. The thermal decomposition process of cocrystal explosives had only one exothermic decomposition stage with peak temperatures of 248.3 ℃. The enthalpy for the exothermic decomposition of the cocrystal (2912.1 J·g-1) was remarkable higher than that of the physical mixture of CL⁃20 and HMX (1327.3 J·g-1). According to GJB772A-1997《The explosive test method》, the friction sensitivity of CL⁃20/HMX cocrystal explosive was 84%, which was decreased by 16% compared with original CL⁃20, the characteristic height of the cocrystal was increased by 28.6 cm and 11.5 cm compared with original CL⁃20 and HMX, respectively. The compatibility of CL⁃20/HMX cocrystal with components of solid propellant, including hydroxyl⁃terminated glycidylazide polymer(HGAP), nitroglycerin/1,2,4⁃butanetriol trinitrate (NG/BTTN), triisocyanate(N⁃100), ammonium perchlorate(AP), aluminum powder(Al powder) were investigated by differential scanning calorimetry(DSC). The CL⁃20/HMX cocrystal was compatible with NG/BTTN, AP and Al powder, while incompatible with HGAP, N⁃100.

    Graphic Abstract

    图文摘要

    Ultrafine CL⁃20/HMX cocrystal explosive was prepared by ultra⁃highly efficient mixing method. X⁃ray diffraction and differential scanning calorimetry were utilized to determine whether the cocrystal explosive was prepared, and the crystal morphology, particle size, sensitivity of the cocrystal explosive were characterized.

  • 1 引 言

    含能共晶技术可以在分子层面上改变含能材料的内部组成和结晶结构,从本质上调控炸药结构性能,对构筑新型含能材料和拓展现有含能材料的应用范围具有重要意[1,2,3,4,5,6,7,8]。六硝基六氮杂异伍兹烷(CL⁃20)与环四亚甲基四硝胺(HMX)的共晶(摩尔比2∶1)于2012年由美国密歇根大学Matzger小组的Onas Bolton[9]采用缓慢蒸发溶剂法首次制备出。其在95 K下的密度为2.000 g·cm-3,常温下的密度为1.945 g·cm-3,氧平衡比β⁃HMX高7.97%,理论爆速比β⁃HMX高100 m·s-1,撞击感度与β⁃HMX相当,其有望成为CL⁃20的有效替代物。炸药经细化处理后,具有能量释放更完全、机械感度降低等优点,含能材料细化后对提升武器系统安全性、可靠性等具有重要意[10,11,12]。基于此,国内外研究者开展了一系列超细CL⁃20/HMX共晶的制备研究,Spitzer[13]利用喷雾闪蒸技术制备了纳米和亚微米CL⁃20/HMX共晶,实现了8 g·h-1的连续生产;高冰[14]采用超声喷雾辅助电子吸附法制备了纳米CL⁃20/HMX共晶,该方法减少了后处理时间并可有效降低纳米颗粒的团聚趋势;邱宏伟[15]采用悬浮液法结合机械研磨法制备了平均粒径小于200 nm的CL⁃20/HMX共晶;安崇伟[16]采用喷雾干燥法制备了纳米CL⁃20/HMX共晶,感度得到进一步降低(低于HMX)。

    超高效混合技术是一种制备周期短、安全高效、工艺简单稳定的混合技术,通过对混合物料施加一定频率振动从而产生声波压力场,使混合物料内部产生多重微混合区域,进而使物料快速高效混合/反应。该方法没有机械转动部件与物料接触,可大大提高生产过程的本质安全性,且仅需要加入微量溶剂,反应时间短,是一种具有工业化潜力的方[17,18,19]。为此,本研究采用超高效混合技术制备超细CL⁃20/HMX共晶,利用超高效混合技术同时实现“共晶化”和“超细化”,对其是否形成共晶进行了鉴定,并采用热分析(DSC)法研究了超细CL⁃20/HMX共晶与推进剂常用组分的相容性,以期为CL⁃20共晶的研究提供参考。

  • 2 实验部分

  • 2.1 试剂及仪器

    ε⁃CL⁃20,自制;β⁃HMX,自制;乙腈、异丙醇,分析纯,国药集团化学试剂有限公司;均聚叠氮缩水甘油醚(HGAP),自制,Mn=3000~4000 g·mol-1;硝化甘油/1,2,4⁃丁三醇三硝酸酯混合物(NG/BTTN)(质量比1∶1),自制,阿贝尔实验>60 min;缩二脲三异氰酸酯(N⁃100),黎明化工研究院,纯度≥99.9%;高氯酸铵(AP),大连北方氯酸钾厂,纯度≥99.9%;铝粉(Al),鞍钢实业微细铝粉有限公司,活性铝含量>97.5%。

    超高效混合机,自制。电机最高转速4000 r·min-1,最大加速度100 g(加速度信号数据自动采集),共振频率60 Hz(频率可调)。

    德国Bruker公司Equinox55型傅里叶变换红外光谱仪; 日本电子公司JSM⁃6360LV型冷场发射扫描电子显微镜; Elementar公司Vario EL Ⅲ型元素分析仪; WJ⁃1型摆式摩擦感度仪; WL⁃1型机械撞击感度仪;德国Bruker Axs公司D8 ADVANCE型X射线衍射仪;日本理学8088型热分析仪。

  • 2.2 试验方法

    红外光谱分析(FT⁃IR),采用KBr压片法,在4000~400 cm-1内扫描,分辨率为4 cm-1

    扫描电镜分析测试条件:电压30 kV。元素分析测试条件:炉温950 ℃。

    摩擦感度,按照GJB772A-1997《炸药试验方法》方法602.1的规定,测定其爆炸百分数,药量约20 mg,摆锤质量为1.5 kg,压强2.5 MPa,摆角66°,环境温度21 ℃,相对湿度46%。

    撞击感度,按照GJB 772A-1997《炸药试验方法》方法601.2的规定测定其50%发火所需要的能量,药量约30 mg,锤重2 kg,温度23 ℃,相对湿度48%。

    X射线粉末衍射(XRD),扫描范围5°~50°,扫描速度6 °/min,步长0.02°,Cu靶,管压40 kV,管流40 mA。

    DSC分析,按照GJB772A-1997《炸药试验方法》方法502.1,气氛N2,升温速度10 ℃·min-1,气体流量40 mL·min-1,温度10~500 ℃,试样量约0.7 mg,置于敞口铝坩埚中测量。

  • 2.3 实验制备过程

    将4.38 g原料ε⁃CL⁃20和1.48 g原料β⁃HMX(CL⁃20与HMX的摩尔比为2∶1)加入特制不锈钢反应容器中,20%强度预混5 min,然后加入乙腈/异丙醇(体积比1∶1)的混合溶液2.0 mL,将反应容器在超高效混合条件下采用70 g的加速度、60 Hz的频率混合反应5,15,30,45,60 min。50 ℃真空干燥2 h,制备得到CL⁃20/HMX白色粉末状产品。

    注意:尽管本研究在制备该化合物过程中没有遇到任何问题,但在处理这种高能材料时,应确保设备接地良好,并使用标准安全预防措施(皮手套、面罩和耳塞)。

  • 3 结果与讨论

  • 3.1 X射线粉末衍射分析(XRD)

    采用X射线粉末衍射测试对原料ε⁃CL⁃20、原料β⁃HMX、不同超高效混合时间的CL⁃20/HMX样品,摩尔比2∶1的ε⁃CL⁃20、β⁃HMX物理混合物进行物相分析,并将超高效混合30 min制备的CL⁃20/HMX样品与由CL⁃20/HMX共晶的单晶衍射实验数据(CCDC:875458[9]计算出的XRD图谱进行对照,结果如图1所示。

    html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F002.png

    a. XRD patterns of original explosives and CL⁃20/HMX cocrystal

    html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F003.png

    b. XRD patterns of CL⁃20/HMX(2∶1) explosive samples with different mixing time

    html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F004.png

    c. comparision of experimental and predicted XRD patterns of CL⁃20/HMX cocrystal

    图1 炸药样品的XRD图谱

    Fig.1 XRD patterns of explosive samples

    图1a可以看出,原料ε⁃CL⁃20的主要特征峰的位置在10.736°,12.596°,12.831°,13.839°,15.701°,16.321°,25.811°,27.862°,28.487°,30.361°处等,原料β⁃HMX的主要特征峰的位置在14.766°,16.139°,18.380°,20.635°,22.252°,23.150°,26.245°,27.359°,28.120°,29.736°,31.978°,37.221°,41.337°处等,摩尔比2∶1的物理混合物的衍射图为两种原材料衍射峰的简单叠加。

    图1b可以发现,超高效混合技术制备的CL⁃20/HMX共晶的衍射峰明显区别于相同摩尔比的物理混合物的衍射峰。当超高效混合5 min时,CL⁃20/HMX样品的衍射图谱在2θ为11.558°,13.264°,18.601°,24.474°,33.785°,36.269°处出现新的衍射峰,这些新衍射峰的位置与文献[9]报道的CL⁃20/HMX共晶的衍射峰的位置一致,表明超高效混合5 min时原料即开始发生部分转化;此外样品的衍射图谱还在2θ为12.032°、24.972°处出现新的衍射峰,对应于α⁃CL⁃20的衍射峰(CCDC117776[20]。当混合15 min时,原料ε⁃CL⁃20在2θ为12.596°、13.839°处的较强衍射峰和原料β⁃HMX在2θ为20.635°、31.978°处的较强衍射峰相比于混合5 min时有所减弱,并且在混合30 min时完全消失; 此外α⁃CL⁃20在2θ为24.972°处的衍射峰在混合15 min时完全消失,在2θ为12.032°处的衍射峰在混合15 min时明显减弱,在混合30 min时完全消失。当混合时间到达30 min后,CL⁃20/HMX样品的衍射峰的位置基本没有变化,将超高效混合30 min制备的CL⁃20/HMX样品与通过CL⁃20/HMX共晶的单晶衍射实验数据(CCDC875458[9]计算出的XRD图谱进行对照(图1c),两个图谱基本吻合。表明超高效混合过程中,摩尔比2∶1的ε⁃CL⁃20、β⁃HMX混合物在机械能的作用下,部分ε⁃CL⁃20发生了ε⁃CL⁃20→α⁃CL⁃20相变,之后ε⁃CL⁃20、α⁃CL⁃20与β⁃HMX在30 min后全部转化为CL⁃20/HMX共晶,超高效混合30 min后共晶转化率即可达到最高。

    根据XRD图谱,采用内标[21,22]对超高效混合30 min制备的CL⁃20/HMX共晶进行定量分析,超高效混合30 min制备的CL⁃20/HMX共晶的纯度为92.6%。表明超高效混合技术可安全、高效的制备高纯度CL⁃20/HMX共晶。

  • 3.2 晶体形貌和粒度分析

    对原料ε⁃CL⁃20、原料β⁃HMX及不同超高效混合时间的CL⁃20/HMX样品进行扫描电镜测试。结果见图2图3

    html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F006.png

    a. raw CL⁃20(800×)

    html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F007.png

    b. raw HMX(3000×)

    图2 炸药原料的扫描电镜照片

    Fig.2 SEM photographs of the original explosive samples

    html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F011.png

    a. 5 min(700×)

    html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F012.png

    b. 15 min(1500×)

    html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F013.png

    c. 30 min(3000×)

    html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F014.png

    d. 45 min(3000×)

    html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F015.png

    e. 60 min(6000×)

    图3 不同超高效混合时间CL⁃20/HMX样品的扫描电镜照片

    Fig.3 SEM photographs of CL⁃20/HMX explosive samples with different mixing time

    图2可知,原料ε⁃CL⁃20颗粒呈梭形,表面粗糙、棱角分明、颗粒大小不均、粒径为10~120 μm。原料β⁃HMX的形貌呈不规则块状,表面有裂纹、粒径为2~30 μm且颗粒大小不均。从图3可以看出,超高效混合5 min时,颗粒为大小不均、形貌不一的块状及棒状结构,表面不光滑,粒径为10~100 μm;随着混合时间的增加,颗粒粒径逐渐减小且趋于均匀化,混合15 min时,绝大多数为约10 μm的块状颗粒,棱角大部分被消除但表面仍然不光滑;混合30 min后,炸药的大小和形貌基本没有发生变化,为大小均匀,粒径小于1 μm的规则块状颗粒且表面光滑无毛刺。

  • 3.3 红外及元素分析

    对原料ε⁃CL⁃20、原料β⁃HMX、CL⁃20/HMX共晶(超高效混合30 min)进行红外测试,结果如图4所示。从图4可以看出,相对于原料ε⁃CL⁃20、原料β⁃HMX,CL⁃20/HMX共晶的红外吸收光谱相似,但大部分红外吸收峰位置都发生了偏移。如:原料β⁃HMX的C—H伸缩振动在3036.2 cm-1,在CL⁃20/HMX共晶的谱图中,该峰位置偏移至3032.6 cm-1;原料ε⁃CL⁃20的—NO2非对称伸缩振动在1632.3,1607.6,1589.4,1567.8 cm-1,在CL⁃20/HMX共晶的谱图中1632.3 cm-1处的吸收峰消失,其余分别偏移至1602.3,1577.8,1525.5 cm-1; 原料ε⁃CL⁃20的—NO2对称伸缩振动在1384.1,1329.5,1285.6 cm-1,在CL⁃20/HMX共晶的谱图中,这些峰分别偏移至1394.9,1333.9,1296.5 cm-1。红外吸收光谱图中吸收峰位置发生偏移的原因是由于CL⁃20的—NO2和HMX的⁃CH2⁃之间形成了C—H…O氢键。

    Fig.4 FT⁃IR spectra of explosive samples

    注:图4各样品的红外光谱图

    对超高效混合30 min制备的CL⁃20/HMX共晶进行元素分析,理论值:C(16.38%),H(1.71%),N(38.23%);实测值:C(16.98%),H(1.90%),N(38.26%);实测值与理论值具有较好的一致性,进一步证明了共晶中CL⁃20与HMX的摩尔比为2∶1。

  • 3.4 差示扫描量热分析(DSC)

    采用差示扫描量热仪对原料ε⁃CL⁃20、原料β⁃HMX、CL⁃20/HMX共晶(超高效混合30 min)和2∶1摩尔比的ε⁃CL⁃20、β⁃HMX物理混合物进行测试,结果如图5所示。

    图5
                            各样品的DSC曲线

    图5 各样品的DSC曲线

    Fig.5 DSC curves of explosive samples

    图5可以看出,CL⁃20/HMX共晶的DSC曲线明显区别于摩尔比2∶1的CL⁃20、HMX物理混合物,摩尔比2∶1的CL⁃20、HMX物理混合物的DSC曲线有两个放热分解峰(244.5 ℃和285.6 ℃),CL⁃20/HMX共晶的DSC曲线上HMX的熔点峰(278.4 ℃)消失,出现一个新的放热分解峰,其放热峰温为248.3 ℃,略高于CL⁃20的最大分解峰温(248.1 ℃),与HMX的最大分解峰温(283.4 ℃)完全不同,共晶在加热过程中没有发生相转变。CL⁃20/HMX共晶的起始分解温度(244.2 ℃)略高于2∶1摩尔比的CL⁃20、HMX物理混合物(242.3 ℃),并且共晶的分解放热量(2192.1 J·g-1)显著高于相同摩尔比的物理混合物(1327.3 J·g-1),该测试结果与文献[23]一致,这可能是因为共晶结构中CL⁃20与HMX之间存在强的非键作用(氢键和强的范德华力)导致[23]

  • 3.5 感度分析

    对原料ε⁃CL⁃20、原料β⁃HMX及采用超高效混合30 min制备的CL⁃20/HMX共晶分别进行了摩擦感度和撞击感度测试,平行测定两次。测试结果列于表1

    表1 炸药样品的机械感度

    Table1 The mechanical sensitivity of explosive samples

    samplesP / %H50 / cm
    ε⁃CL⁃2010019.3
    β⁃HMX2836.4
    ultra fineCL⁃20/HMX cocrystal8447.9

    NOTE: P is the explosion probability of friction. H50 is the drop height of impact.

    表1可知,采用超高效混合技术制备的CL⁃20/HMX共晶的摩擦感度略低于CL⁃20,爆炸百分数比原料CL⁃20降低了16%。CL⁃20/HMX共晶的特性落高比原料CL⁃20高了28.6 cm,比原料HMX高了11.5 cm。这是因为CL⁃20与HMX通过非共价键作用形成共晶,共晶结构中短的氢键能有效降低感度。

    炸药晶体的粒度和表面形貌对其撞击感度和摩擦感度均有一定的影响,采用超高效混合技术制备的CL⁃20/HMX共晶粒径较小(小于1 μm),晶体形貌规则且表面圆滑无明显尖锐棱角,分布均匀(图3),这些都是感度降低的内在原因。

  • 3.6 相容性分析

    采用差示扫描量热法(DSC)研究超细CL⁃20/HMX共晶与推进剂常用组分均聚叠氮缩水甘油醚(HGAP)、硝化甘油/1,2,4⁃丁三醇三硝酸酯混合物(NG/BTTN)、缩二脲三异氰酸酯(N⁃100)、高氯酸铵(AP)、铝粉(Al)的相容性,CL⁃20/HMX共晶与推进剂各组分质量比为1:1,混合均匀后进行DSC测试,各样品的DSC曲线如图6所示。

    根据DSC方法评估相容性的判据,通过CL⁃20/HMX共晶和各组分混合体系与CL⁃20/HMX共晶的分解峰温的改变量ΔTpTp2-Tp1)为判据(以峰温降低值计):ΔTp=-2~0 ℃,混合体系相容;ΔTp=-5~-3 ℃,混合体系轻微敏感,可短期使用;ΔTp=-15~-6 ℃,混合体系敏感,最好不用;ΔTp<-15 ℃,混合体系危险,禁止使[24,25]

    表2可知,CL⁃20/HMX共晶与NG/BTTN、AP、Al的相容性较好,CL⁃20/HMX共晶与HGAP、N⁃100的相容性差。其中,CL⁃20/HMX共晶与NG/BTTN混合体系的分解峰温比CL⁃20/HMX共晶分解峰温提高了2.3 ℃,CL⁃20/HMX共晶与AP混合体系、CL⁃20/HMX共晶与Al混合体系的分解峰温分别比CL⁃20/HMX共晶分解峰温降低了0.5 ℃和1.9 ℃。但CL⁃20/HMX共晶与HGAP混合体系、CL⁃20/HMX共晶与N⁃100混合体系的分解峰温分别比CL⁃20/HMX共晶的分解峰温低了26.2 ℃和36.5 ℃,表明HGAP、N⁃100对CL⁃20/HMX共晶的分解具有促进作用,使其分解温度提前。

    表2 混合体系的DSC测试结果

    Table2 Parameters of DSC curves for various mixtures

    mixed systemsTp1/℃Tp2/℃ΔTp / ℃compatibility
    CL⁃20/HMXcocrystalother component
    CL⁃20/HMX248.3
    HGAP256.5
    (CL⁃20/HMX)/HGAP222.1/254.2-26.2-2.3incompatible
    NG/BTTN204.4
    (CL⁃20/HMX)/(NG/BTTN)223.1/250.62.318.7compatible
    N⁃100293.5
    (CL⁃20/HMX)/N⁃100211.8/234.6-36.5-58.9incompatible
    AP298.9, 374.2, 424.2
    (CL⁃20/HMXcocrystal)/AP247.8/313.0, 357.9, 365.9-0.514.1compatible
    Al660.0
    (CL⁃20/HMX)/Al246.4/660.0-1.90.0compatible

    NOTE: Tp1 denotes the peak temperature of single system.Tp2 denotes the peak temperature of mixed system, ΔTp=Tp2Tp1.

    需要注意的是,热分析法判断材料的相容性具有速度快、时间短的优点,常用作快速筛选试验。但该方法实验温度较高,太偏离实际使用温度和贮存温度。因此判断混合体系不相容时,需进一步采用其他方法进行综合评[26]

  • 4 结 论

    (1) 采用超高效混合技术混合30 min制备出纯度为92.6%的超细CL⁃20/HMX共晶,产品形状较规则,主要呈块状,表面光滑无毛刺,粒径小于1 μm且粒度分布均匀。

    (2) XRD测试结果表明,采用超高效混合技术混合30 min制备的超细CL⁃20/HMX共晶的衍射谱图与通过其单晶衍射实验数据计算出的XRD图谱基本吻合,证实了该方法可高效制备高纯度CL⁃20/HMX共晶。DSC测试结果表明CL⁃20/HMX共晶的DSC曲线上只有一个放热分解峰,其放热峰温为248.3 ℃。并且共晶的分解放热量(2192.1 J·g-1)显著高于相同摩尔比的物理混合物(1327.3 J·g-1)。共晶的形成赋予了CL⁃20/HMX共晶新的热分解特性。红外测试结果表明CL⁃20/HMX共晶中存在—NO2(CL⁃20)和—CH2—(HMX)相互作用形成的分子间氢键C—H···O。

    (3) 制备的超细CL⁃20/HMX共晶的摩擦感度略低于CL⁃20,爆炸百分数比原料CL⁃20降低了16%。特性落高比原料CL⁃20高了28.6 cm,比原料HMX高了11.5 cm。CL⁃20与HMX形成超细共晶后安全性能更高。

    (4) 采用DSC法研究超细CL⁃20/HMX共晶与推进剂常用组分的相容性发现,超细CL⁃20/HMX共晶与NG/BTTN、AP、Al的相容性较好,与HGAP、N⁃100不相容。

    (责编: 张 琪)

  • 参考文献

    • 1

      Bolton O, Matzger A J. Improved stability and smart⁃materialfunctionality realized in an energetic cocrystal[J].Angewandte Chemie Int Edit, 2011, 50(38): 8960-8963.

    • 2

      ShenJ P,DuanX H, LuoQ P, et al. Preparation and characterization of a novel cocrystal Explosive[J]. Crystal Growth&Desigh, 2011, 11, 1759-1765.

    • 3

      Yang Z, Li H, Zhou X, et al. Characterization and properties of a novelenergetic–energetic cocrystal explosive composed of HNIW and BTF[J]. Crystal Growth & Design, 2012, 12(11): 5155-5158.

    • 4

      Zhang H, Guo C, Wang X, et al. Five energetic cocrystals of BTF by intermolecularhydrogen bond and π⁃stacking interactions[J]. Crystal Growth & Design, 2013, 13(2):679-687.

    • 5

      Yang Z W, Li H Z,Huang H, et al. Preparation and performance of a HNIW/TNT cocrystalexplosive[J]. Propellants Explos Pyrotech, 2013, 38: 495-501.

    • 6

      VuppuluriVS, Samuels P J, CaflinK C, et al. Detonation performance characterization of a novel CL⁃20 cocrystal using microwave interferometry[J].Propellants,Explos Pyrotech, 2017, 42: 1-11.

    • 7

      陈杰,段晓惠,裴重华. HMX/AP共晶的制备与表征[J].含能材料,2013,21(4):409-413.

      CHEN Jie,DUAN Xiao⁃hui,PEI Chong⁃hua. Preparation and characterization of HMX/AP co⁃crystal[J]. Chinese Journal of Energetic Materials(HannengCailiao), 2013, 21(4):409-413.

    • 8

      王灏静,马媛,李洪珍,等. ADN/18C6共晶制备与表征[J].含能材料,2018,26(6):545-548.

      WANG Hao⁃jing, MA Yuan, LI Hong⁃zhen, et al. Preparation and characterization of ADN/18C6 co⁃crystal[J]. Chinese Journal of Energetic Materials(HannengCailiao), 2018, 26(6):545-548.

    • 9

      Bolton O,Simke L R,Pagoria P F, et al, High powerexplosive with good sensitivity: A 2:1 cocrystal of CL⁃20:HMX[J]. Crystal Growth&Desigh, 2012,12(9): 4311-4314.

    • 10

      曾贵玉,郁卫飞,聂福德,等.超细炸药粉体性能及其应用研究进展[J].含能材料,2005,13(5):349-352.

      ZENG Gui⁃yu, YU Wei⁃fei, NIE Fu⁃de, et al. Review on properties of ultrafine explosives powder and its application[J]. Chinese Journal of Energetic Material(Hanneng Cailiao), 2005, 13(5):349-352.

    • 11

      刘志建.超细材料与超细炸药技术[J].火炸药学报,1995,17(4):37-40.

      LIU Zhi⁃jian. The ultrafine materials and the technology of ultrafine explosives[J].Chinese Journal of Explosive and Propellant,1995, 17(4): 37-40.

    • 12

      曾贵玉,聂福德,杨志剑,等.微纳米含能材料[M].北京:国防工业出版社,2015.

      ZENG Gui⁃yu, NIE Fu⁃de, YANG Zhi⁃jian, et al. Micro⁃nano energetic materials[M]. Beijing: National Defense Industry Press, 2015.

    • 13

      Spitzer D, RisseB, Schnell F, et al. Continuous engineering of nano⁃cocrystals for medical and energetic applications[J]. Scientific Reports, 2014, 4: 6575.

    • 14

      GAO B, WANG D J, ZHANG J, et al.Facile, continuous and large⁃scale synthesis of CL⁃20/HMX nano co⁃crystals with high⁃performance by ultrasonic spray⁃assisted electrostatic adsorption method[J]. Journal of Materials Chemistry A, 2014, 2(47): 19969-19974.

    • 15

      QiuH, Patel R B, DamavarapuR S, et al. Nanoscale 2CL⁃20·HMX high explosive cocrystal synthesized by bead milling[J]. Cryst Eng Comm, 2015.17(22): 4080-4083.

    • 16

      An C W, LiH Q,Ye B Y, et al. Nano⁃CL⁃20/HMX cocrystal explosive for significantly reduced mechanical sensitivity[J]. Journal of Nanomaterials, 2017, 1-7.

    • 17

      陆志猛,王青松,孙涛,等.一种激振力调节装置[P].中国,ZL201610320658.X,2018⁃03⁃13.

      LU Zhi⁃meng, WANG Qing⁃song, SUN Tao,et al. A vibration force regulating device[P].China, ZL201610320658.X, 2018⁃03⁃13.

    • 18

      陆志猛,孙涛,王青松,等.基于三自由度共振系统的声波混合装置[P].中国,ZL201610320677.2,2018⁃07⁃13.

      LU Zhi⁃meng, SUN Tao, WANG Qing⁃song, et al.Acoustic wave mixing device based on three⁃degree⁃of⁃freedom resonance system[P].China, ZL201610320677.2, 2018⁃07⁃13.

    • 19

      陆志猛,孙涛,左军涛,等.混合机[P].中国,ZL201830434794.1,2019⁃01⁃04.

      LU Zhi⁃meng, SUN Tao, ZUO Jun⁃tao, et al.Mixer[P].China, ZL201830434794.1, 2019⁃01⁃04.

    • 20

      Nielsen A T, Chafin A P, Christian S L,et al. Synthesis of polyazapolycyclic caged polynitramines[J]. Tetrahedron, 1998, 54: 11793-11812.

    • 21

      Sun S H, Zhang H B, Liu Y, et al. Transitions from separately crystallized CL⁃20 and HMX to CL⁃20/HMX cocrystal based on solvent media[J].Crystal Growth&Desigh, 2018, 18: 77-84.

    • 22

      周玉. 材料分析方法[M]. 第三版. 北京机械工业出版社,2011:49-50.

      ZHOU Yu. Analyses method of materials[M].The Third Edition. Beijing Machine Industry Press, 2011: 49-50.

    • 23

      Anderson S R, am EndeD J, SalanJ S, et al. Preparationof an energetic⁃energetic cocrystal using resonant acousticmixing[J]. Propellants, Explos Pyrotech, 2014, 39: 637-640.

    • 24

      刘子如. 含能材料热分析[M]. 北京: 国防工业出版社,2008.

      LIU Zi⁃ru. Thermal analyses for energetic materials[M].Beijing: National Defense Industry Press, 2008.

    • 25

      张伟,刘运飞,谢五喜,等. 热分析法研究AlH3与固体推进剂组分的相容性[J].火炸药学报,2015,38(1):41-46.

      ZHANG Wei, LIU Yun⁃fei, XIE Wu⁃xi, et al.Study on compatibility of AlH3 with compositions of solid propellant by thermal analysis method[J].Chinese Journal of Explosive and Propellant,2015, 38(1): 41-46.

    • 26

      严启龙. 浅谈固体推进剂燃烧催化剂的评判标准[J].含能材料,2019,27(4):266-269.

      YAN Qi⁃long. A brief talk on the criteria of solid propellant combustion catalyst[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2019, 27(4):266-269.

任晓婷

机 构:

1. 航天化学动力技术重点实验室,湖北 襄阳441003

2. 湖北航天化学技术研究所,湖北 襄阳 441003

Affiliation:

1. Science and Technology on Aerospace Chemical Power Laboratory,Xiangyang 441003, China

2. Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003,China

邮 箱:xiaot_ren@126.com

作者简介:任晓婷(1984-),女,硕士,高级工程师,研究方向为含能材料制备及应用。e⁃mail:xiaot_ren@126.com

卢艳华

机 构:

1. 航天化学动力技术重点实验室,湖北 襄阳441003

2. 湖北航天化学技术研究所,湖北 襄阳 441003

Affiliation:

1. Science and Technology on Aerospace Chemical Power Laboratory,Xiangyang 441003, China

2. Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003,China

角 色:通讯作者

Role:Corresponding author

邮 箱:yanhualu2000@163.com

作者简介:卢艳华(1971-),男,博士,高级工程师,从事含能材料合成与性能研究。e⁃mail:yanhualu2000@163.com

陆志猛

机 构:湖北航鹏化学动力科技有限责任公司,湖北 襄阳 441003

Affiliation:Hubei Hangpeng Chemical Power Techonology Co., Ltd, Xiangyang 441003,China

王青松

机 构:湖北航鹏化学动力科技有限责任公司,湖北 襄阳 441003

Affiliation:Hubei Hangpeng Chemical Power Techonology Co., Ltd, Xiangyang 441003,China

何金选

机 构:

1. 航天化学动力技术重点实验室,湖北 襄阳441003

2. 湖北航天化学技术研究所,湖北 襄阳 441003

Affiliation:

1. Science and Technology on Aerospace Chemical Power Laboratory,Xiangyang 441003, China

2. Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003,China

丁宁

机 构:湖北航天化学技术研究所,湖北 襄阳 441003

Affiliation:Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003,China

html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F002.png
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F003.png
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F004.png
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F006.png
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F007.png
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F011.png
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F012.png
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F013.png
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F014.png
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F015.png
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F008.png
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F009.png
samplesP / %H50 / cm
ε⁃CL⁃2010019.3
β⁃HMX2836.4
ultra fineCL⁃20/HMX cocrystal8447.9
mixed systemsTp1/℃Tp2/℃ΔTp / ℃compatibility
CL⁃20/HMXcocrystalother component
CL⁃20/HMX248.3
HGAP256.5
(CL⁃20/HMX)/HGAP222.1/254.2-26.2-2.3incompatible
NG/BTTN204.4
(CL⁃20/HMX)/(NG/BTTN)223.1/250.62.318.7compatible
N⁃100293.5
(CL⁃20/HMX)/N⁃100211.8/234.6-36.5-58.9incompatible
AP298.9, 374.2, 424.2
(CL⁃20/HMXcocrystal)/AP247.8/313.0, 357.9, 365.9-0.514.1compatible
Al660.0
(CL⁃20/HMX)/Al246.4/660.0-1.90.0compatible
html/hncl/CJEM2019127/alternativeImage/93da157c-acb3-4523-815e-aad8ab2ce761-F016.jpg

图1 炸药样品的XRD图谱 -- a. XRD patterns of original explosives and CL⁃20/HMX cocrystal

Fig.1 XRD patterns of explosive samples -- a. XRD patterns of original explosives and CL⁃20/HMX cocrystal

图1 炸药样品的XRD图谱 -- b. XRD patterns of CL⁃20/HMX(2∶1) explosive samples with different mixing time

Fig.1 XRD patterns of explosive samples -- b. XRD patterns of CL⁃20/HMX(2∶1) explosive samples with different mixing time

图1 炸药样品的XRD图谱 -- c. comparision of experimental and predicted XRD patterns of CL⁃20/HMX cocrystal

Fig.1 XRD patterns of explosive samples -- c. comparision of experimental and predicted XRD patterns of CL⁃20/HMX cocrystal

图2 炸药原料的扫描电镜照片 -- a. raw CL⁃20(800×)

Fig.2 SEM photographs of the original explosive samples -- a. raw CL⁃20(800×)

图2 炸药原料的扫描电镜照片 -- b. raw HMX(3000×)

Fig.2 SEM photographs of the original explosive samples -- b. raw HMX(3000×)

图3 不同超高效混合时间CL⁃20/HMX样品的扫描电镜照片 -- a. 5 min(700×)

Fig.3 SEM photographs of CL⁃20/HMX explosive samples with different mixing time -- a. 5 min(700×)

图3 不同超高效混合时间CL⁃20/HMX样品的扫描电镜照片 -- b. 15 min(1500×)

Fig.3 SEM photographs of CL⁃20/HMX explosive samples with different mixing time -- b. 15 min(1500×)

图3 不同超高效混合时间CL⁃20/HMX样品的扫描电镜照片 -- c. 30 min(3000×)

Fig.3 SEM photographs of CL⁃20/HMX explosive samples with different mixing time -- c. 30 min(3000×)

图3 不同超高效混合时间CL⁃20/HMX样品的扫描电镜照片 -- d. 45 min(3000×)

Fig.3 SEM photographs of CL⁃20/HMX explosive samples with different mixing time -- d. 45 min(3000×)

图3 不同超高效混合时间CL⁃20/HMX样品的扫描电镜照片 -- e. 60 min(6000×)

Fig.3 SEM photographs of CL⁃20/HMX explosive samples with different mixing time -- e. 60 min(6000×)

Fig.4 FT⁃IR spectra of explosive samples

图5 各样品的DSC曲线

Fig.5 DSC curves of explosive samples

表1 炸药样品的机械感度

Table1 The mechanical sensitivity of explosive samples

表2 混合体系的DSC测试结果

Table2 Parameters of DSC curves for various mixtures

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

图4各样品的红外光谱图

无注解

P is the explosion probability of friction. H50 is the drop height of impact.

Tp1 denotes the peak temperature of single system.Tp2 denotes the peak temperature of mixed system, ΔTp=Tp2Tp1.

无注解

  • 参考文献

    • 1

      Bolton O, Matzger A J. Improved stability and smart⁃materialfunctionality realized in an energetic cocrystal[J].Angewandte Chemie Int Edit, 2011, 50(38): 8960-8963.

    • 2

      ShenJ P,DuanX H, LuoQ P, et al. Preparation and characterization of a novel cocrystal Explosive[J]. Crystal Growth&Desigh, 2011, 11, 1759-1765.

    • 3

      Yang Z, Li H, Zhou X, et al. Characterization and properties of a novelenergetic–energetic cocrystal explosive composed of HNIW and BTF[J]. Crystal Growth & Design, 2012, 12(11): 5155-5158.

    • 4

      Zhang H, Guo C, Wang X, et al. Five energetic cocrystals of BTF by intermolecularhydrogen bond and π⁃stacking interactions[J]. Crystal Growth & Design, 2013, 13(2):679-687.

    • 5

      Yang Z W, Li H Z,Huang H, et al. Preparation and performance of a HNIW/TNT cocrystalexplosive[J]. Propellants Explos Pyrotech, 2013, 38: 495-501.

    • 6

      VuppuluriVS, Samuels P J, CaflinK C, et al. Detonation performance characterization of a novel CL⁃20 cocrystal using microwave interferometry[J].Propellants,Explos Pyrotech, 2017, 42: 1-11.

    • 7

      陈杰,段晓惠,裴重华. HMX/AP共晶的制备与表征[J].含能材料,2013,21(4):409-413.

      CHEN Jie,DUAN Xiao⁃hui,PEI Chong⁃hua. Preparation and characterization of HMX/AP co⁃crystal[J]. Chinese Journal of Energetic Materials(HannengCailiao), 2013, 21(4):409-413.

    • 8

      王灏静,马媛,李洪珍,等. ADN/18C6共晶制备与表征[J].含能材料,2018,26(6):545-548.

      WANG Hao⁃jing, MA Yuan, LI Hong⁃zhen, et al. Preparation and characterization of ADN/18C6 co⁃crystal[J]. Chinese Journal of Energetic Materials(HannengCailiao), 2018, 26(6):545-548.

    • 9

      Bolton O,Simke L R,Pagoria P F, et al, High powerexplosive with good sensitivity: A 2:1 cocrystal of CL⁃20:HMX[J]. Crystal Growth&Desigh, 2012,12(9): 4311-4314.

    • 10

      曾贵玉,郁卫飞,聂福德,等.超细炸药粉体性能及其应用研究进展[J].含能材料,2005,13(5):349-352.

      ZENG Gui⁃yu, YU Wei⁃fei, NIE Fu⁃de, et al. Review on properties of ultrafine explosives powder and its application[J]. Chinese Journal of Energetic Material(Hanneng Cailiao), 2005, 13(5):349-352.

    • 11

      刘志建.超细材料与超细炸药技术[J].火炸药学报,1995,17(4):37-40.

      LIU Zhi⁃jian. The ultrafine materials and the technology of ultrafine explosives[J].Chinese Journal of Explosive and Propellant,1995, 17(4): 37-40.

    • 12

      曾贵玉,聂福德,杨志剑,等.微纳米含能材料[M].北京:国防工业出版社,2015.

      ZENG Gui⁃yu, NIE Fu⁃de, YANG Zhi⁃jian, et al. Micro⁃nano energetic materials[M]. Beijing: National Defense Industry Press, 2015.

    • 13

      Spitzer D, RisseB, Schnell F, et al. Continuous engineering of nano⁃cocrystals for medical and energetic applications[J]. Scientific Reports, 2014, 4: 6575.

    • 14

      GAO B, WANG D J, ZHANG J, et al.Facile, continuous and large⁃scale synthesis of CL⁃20/HMX nano co⁃crystals with high⁃performance by ultrasonic spray⁃assisted electrostatic adsorption method[J]. Journal of Materials Chemistry A, 2014, 2(47): 19969-19974.

    • 15

      QiuH, Patel R B, DamavarapuR S, et al. Nanoscale 2CL⁃20·HMX high explosive cocrystal synthesized by bead milling[J]. Cryst Eng Comm, 2015.17(22): 4080-4083.

    • 16

      An C W, LiH Q,Ye B Y, et al. Nano⁃CL⁃20/HMX cocrystal explosive for significantly reduced mechanical sensitivity[J]. Journal of Nanomaterials, 2017, 1-7.

    • 17

      陆志猛,王青松,孙涛,等.一种激振力调节装置[P].中国,ZL201610320658.X,2018⁃03⁃13.

      LU Zhi⁃meng, WANG Qing⁃song, SUN Tao,et al. A vibration force regulating device[P].China, ZL201610320658.X, 2018⁃03⁃13.

    • 18

      陆志猛,孙涛,王青松,等.基于三自由度共振系统的声波混合装置[P].中国,ZL201610320677.2,2018⁃07⁃13.

      LU Zhi⁃meng, SUN Tao, WANG Qing⁃song, et al.Acoustic wave mixing device based on three⁃degree⁃of⁃freedom resonance system[P].China, ZL201610320677.2, 2018⁃07⁃13.

    • 19

      陆志猛,孙涛,左军涛,等.混合机[P].中国,ZL201830434794.1,2019⁃01⁃04.

      LU Zhi⁃meng, SUN Tao, ZUO Jun⁃tao, et al.Mixer[P].China, ZL201830434794.1, 2019⁃01⁃04.

    • 20

      Nielsen A T, Chafin A P, Christian S L,et al. Synthesis of polyazapolycyclic caged polynitramines[J]. Tetrahedron, 1998, 54: 11793-11812.

    • 21

      Sun S H, Zhang H B, Liu Y, et al. Transitions from separately crystallized CL⁃20 and HMX to CL⁃20/HMX cocrystal based on solvent media[J].Crystal Growth&Desigh, 2018, 18: 77-84.

    • 22

      周玉. 材料分析方法[M]. 第三版. 北京机械工业出版社,2011:49-50.

      ZHOU Yu. Analyses method of materials[M].The Third Edition. Beijing Machine Industry Press, 2011: 49-50.

    • 23

      Anderson S R, am EndeD J, SalanJ S, et al. Preparationof an energetic⁃energetic cocrystal using resonant acousticmixing[J]. Propellants, Explos Pyrotech, 2014, 39: 637-640.

    • 24

      刘子如. 含能材料热分析[M]. 北京: 国防工业出版社,2008.

      LIU Zi⁃ru. Thermal analyses for energetic materials[M].Beijing: National Defense Industry Press, 2008.

    • 25

      张伟,刘运飞,谢五喜,等. 热分析法研究AlH3与固体推进剂组分的相容性[J].火炸药学报,2015,38(1):41-46.

      ZHANG Wei, LIU Yun⁃fei, XIE Wu⁃xi, et al.Study on compatibility of AlH3 with compositions of solid propellant by thermal analysis method[J].Chinese Journal of Explosive and Propellant,2015, 38(1): 41-46.

    • 26

      严启龙. 浅谈固体推进剂燃烧催化剂的评判标准[J].含能材料,2019,27(4):266-269.

      YAN Qi⁃long. A brief talk on the criteria of solid propellant combustion catalyst[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2019, 27(4):266-269.