CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
DavidC S. Ultrahigh burning rate propellants containing an organic perchlorate oxidizer: US 3986906[P],1976.
参考文献 2
庞爱民.法国的固体推进剂技术[J].飞航导弹,2000(4):38-42.
PANGAi⁃min. Solid propellant technology in France[J]. Aerodynamic Missile Journal, 2000(4):38-42.
参考文献 3
彦君.德国高燃速少烟推进剂研究[J].固体火箭技术,1999,22(4):60.
YANJun. Study on German propellant with high burning rate and minimum smoke[J]. Journal of Solid Rocket Technology, 1999, 22(4):60
参考文献 4
邹德荣,朱雄富,黄刘华,等.高燃速推进剂燃速控制研究[J].航天制造技术,2010(2):32-35.
ZOUDe⁃rong, ZHUXiong⁃fu, HUANGLiu⁃hua, et al. Study on control of burning rate for high burning rate propellant[J]. Aerospace Manufacturing Technology, 2010(2):32-35.
参考文献 5
OyumiG. Effect of iron compounds on pyrolysis characteristics of AP⁃HTPB solid propellant[J]. Journal of the Industrial Explosives Society, 1981, 42(3):144-150.
参考文献 6
KuwabaraT. Action mechanism of combustion rate catalyst (NBF) against ammonium perchlorate composite propellant[J]. Journal of the Industrial Explosives Society, 1986, 47(2):61-65.
参考文献 7
Bazaki NH.. Kubota. Friction sensitivity mechanism of ammonium perchlorate composite propellants[J]. Propellants, Explosives, Pyrotechnics,1991,16(1):43-47
参考文献 8
王永寿,戴耀松.二茂铁衍生物/极细高氯酸铵系高燃速复合固体推进剂的研究(1).飞航导弹,1995(3):40-45
WANGYong⁃shou, DAIYao⁃song. Study on ferrocene derivatices/ultra⁃fine ammonium perchlorate composite propellants with high burning rate[J]. Aerodynamic Missile Journal(Feihang Daodan), 1995, (3):40⁃45.
参考文献 9
袁桂芳,丁敦辉,崔瑞禧,等.高氯酸铵/硝胺丁羟复合推进剂热感度及机械感度研究[J].固体火箭技术,2002, 25( 4): 41-44.
YUANGui⁃fang, DINGDun⁃hui, CUIRui⁃xi, et al. Research on thermal and mechanical sensitivity of AP/ nitramine HTPB propellant[J]. Journal of Solid Rocket Technology(Guti Huojian Jishu), 2002, 25(4):41-44.
参考文献 10
彭培根.复合固体推进剂危险性分析[J].推进技术, 1981,2(1): 27-34.
PENGPei⁃gen. Hazard analysis of the composite solid propellant[J]. Journal of Propulsion Technology, 1981, 2(1):27-34.
参考文献 11
彭培根.固体复合推进剂燃烧转爆轰的临界直径的理论预测[J].火炸药学报,1980,3(5): 1-14.
PENGPei⁃gen. Theoretical prediction on critical diameter of deflagration⁃to⁃detonation transition in composite solid propellants[J]. Chinese Journal of Explosives & Propellants , 1980,3(5):1-14.
参考文献 12
廖林泉, 胥会祥,李勇宏,等. HTPB推进剂危险性实验研究[J].火炸药学报, 2010, 33(4): 28-31.
LIAOLin⁃quan, XUHui⁃xiang, LIYong⁃hong, et al. Experimental study on hazard of HTPB propellants[J]. Chinese Journal of Explosives & Propellants, 2010, 33(4):28-31.
参考文献 13
刘学、胡期伟.低危险性高燃速推进剂国内外技术发展动态及对未来发展的建议[C]//第二届固体推进剂安全技术研讨会暨固体推进剂安全生产协会的四届代表大会论文集. 2009:31-36.
LIUXue, HUQi⁃wei. Technical development trends of low hazard and high burning rate propellants domestic and foreign and suggestions for future development[C]// Second Seminar on Safety Technology of Solid Propellants and Fourth Congress of Solid Propellant Safety Association, 2009:31-36.
参考文献 14
CharlesU,PittmanJ R. Location of action of burning⁃rate catalysts in composite propellant combustion[J].AIAA Journal, 1969,7(2):328-334.
参考文献 15
王彩玲,赵省向.不同粒径AP的机械感度[J].火炸药学报, 2006, 29( 6): 27-29.
WANGCai⁃ling, ZHAOSheng⁃xiang. The mechanical sensitivity of AP with different granularity[J]. Chinese Journal of Explosives & Propellants, 2006, 29(6):25-28.
参考文献 16
刘子如,阴翠梅,孔杨辉,等.高氯酸铵的热分解[J].含能材料,2000,8(2):75-79.
LIUZi⁃ru, YINCui⁃mei, KONGYang⁃hui, et al. The thermal decomposition of ammonium perchlorate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2000, 8(2):75-79.
参考文献 17
彭网大,翁武军,曹传新,等.高氯酸铵比表面积对推进剂热稳定性的影响[J].火炸药,1996,19(4):6-8.
PENGWang⁃da, WENGWu⁃jun, CAOChuan⁃xin, et al. The effect of Ammonium perchlorate specific surface area on thermal stability of propellant[J]. Chinese Journal of Explosives & Propellants, 1996,19(4):6-8.
参考文献 18
彭培根,刘培谅,张仁,等.固体推进剂性能及原理[M].长沙:国防科技大学出版社,1987.
PENGPei⁃gen, LIUPei⁃liang, ZHANGRen, et al. Properties and Principles of Solid Propellants[M], Changsha: National University of Defense Technology Press, 1987.
参考文献 19
BowdenF P, GurtonO A. Initiation of solid explosives by impact and friction: the influence of grit[J]. Proceedings of the Royal Society A, 1949,198: 337.
参考文献 20
滕学峰,邓重清,胡铨,等.高氯酸铵(AP)基复合改性双基(AP/CMDB)推进剂燃速控制与降感研究[J].科学技术与工程, 2017,17(6):178-182.
TENGXue⁃feng, DENGChong⁃qing, HUQuan, et al. Research of burning rate controlling and sensitivity reducing of AP/CMDB propellant[J]. Science Technology and Engineering, 2017, 17(6):178-182.
参考文献 21
王晗,樊学忠,张伟,等.导电聚合物降低浇注高能AP/Al/CMDB推进剂感度研究[J].固体火箭技术,2011, 34( 1):97-100.
WANGHan, FANXue⁃zhong, ZHANGWei, et al. Effects of conductive polymers on sensitivities of cast high⁃energy AP/Al/CMDB propellant[J]. Journal of Solid Rocket Technology, 2011, 34(1):97-100.
目录 contents

    摘要

    为了降低丁羟高燃速推进剂机械感度,考察了液体二茂铁燃速催化剂(EMT)含量、氧化剂高氯酸铵(AP)粒径及配比等对丁羟高燃速推进剂机械感度的影响,并通过差示扫描⁃热重(DSC⁃TG)热分析研究了AP/EMT体系热分解特性与机械感度的相关性。结果表明,细AP含量增加或细AP粒径减小时,推进剂药浆的摩擦感度和撞击感度均呈增加趋势;EMT提高了AP的高温分解反应速率常数和分解热,是含EMT的高燃速推进剂机械感度升高的微观原因,降低EMT含量,可以降低推进剂的机械感度;胺盐类降感剂GZJ⁃01和导电态聚苯胺降感剂DBJ⁃01对降低丁羟高燃速推进剂的机械感度无协同效应;细AP包覆和采用铜盐燃速催化剂(GRCJ)取代EMT均可以降低丁羟高燃速推进剂的机械感度。

    Abstract

    To decrease the mechanical sensitivity of hydroxyl terminated polybutadiene(HTPB) propellant with high burning rate, the effects of liquid ferrocene combustion catalyst (EMT) content, particle size and ratio of oxidant AP on the mechanical sensitivity of HTPB propellant with high burning rate were studied. The correlation between thermal decomposition property and mechanical sensitivity of AP/EMT system was studied by means of DSC⁃TG thermal analysis and mechanical sensitivity test. The fraction and impact sensitivity of the propellant slurry increased with the increase of fine AP content or the decrease of fine AP particle size. The decomposition rate constant and heat of AP at high temperature was increased by EMT, which explained the increased mechanical sensitivity of the high burning rate propellants. The mechanical sensitivity of the propellant might be reduced by reducing content of EMT. Synergistic effect was not found between the amine salt desensitizer of GZJ⁃01 and electronic conductive polyaniline DBJ⁃01 on decreasing the mechanical sensitivity of high burning rate HTPB propellant. The mechanical sensitivity of the high burning rate propellants can be decreased by coating with fine AP and replacing EMT with GRCJ.

  • 1 引 言

    丁羟推进剂综合性能优良,是国内外研究最深入、应用最广泛的推进剂。随着导弹武器的发展,为了获得短时大推力,各国相继开展了丁羟高燃速推进剂应用研究,如美国SRAM近程攻击导弹推进剂13.7 MPa下燃速61.7 mm·s-1,美国陆军某反坦克火箭弹推进剂13.7 MPa下燃速144.8 mm·s-1 [1]。法国某地空导弹推进剂7 MPa下燃速40~45 mm·s-1 [2]。加拿大HEMI导弹采用高燃速推进剂,可在0.5 s内将导弹加速到6~7Mach.。德国某高加速战术弹采用少烟高燃速推进[3]。国内某助推器用丁羟高燃速推进剂,其6.86 MPa下燃速38 mm·s-1 [4]

    在推进剂中加入燃速催化剂,如二茂铁类燃速催化剂、氧化铁、氧化铜等是提高推进剂燃速最简单、有效的方法。二茂铁类衍生物作为一种常用、有效的燃速催化剂,其主要催化推进剂的固相和气相反应,降低推进剂的分解活化[5,6,7,8],从而加速推进剂热分解,提高推进剂的燃速,但其加入会导致推进剂机械感度增[9],容易发生安全事故。20世纪以来,在含有二茂铁类催化剂的高燃速推进剂研制、生产、使用、贮存过程中,国内外均发生了多次安全事故,仅20世纪80年代国外就发生了6起含二茂铁(或卡托辛)的推进剂着火、爆炸事故,国内近20年发生了8起含二茂铁的高燃速推进剂着火、爆炸事故。推进剂燃速越高,危险性越大,这已成为国内外高燃速推进剂研制人员的共识,高燃速推进剂危险性高的问题亟待解决。

    如何降低丁羟高燃速推进剂危险性的相关研究国内外公开报道较少。彭培[10,11]研究了丁羟四组元推进剂的安全性能,认为其燃速不宜过高,而且推进剂中的气孔和裂纹会导致危险性增加。

    袁桂芳[9]研究认为,丁羟四组元推进剂中的冲击感度、摩擦感度均高于中、低燃速丁羟三组元推进剂,但含有燃速催化剂卡托辛的高燃速丁羟三组元推进剂的摩擦感度显著高于丁羟四组元推进剂。廖林泉[12]对比研究了丁羟低燃速推进剂、丁羟高燃速推进剂和丁羟四组元推进剂危险性,结果表明高燃速复合推进剂对摩擦和撞击作用敏感,机械感度最大。刘学[13]的研究结果表明,液体二茂铁燃速催化剂的加入增加了丁羟高燃速推进剂的机械感度。

    提高丁羟高燃速推进剂的安全性能是丁羟高燃速推进剂工程应用的关键之一,针对丁羟高燃速推进剂机械感度高且增加机理不清楚的问题,本研究考察了液体二茂铁燃速催化剂(EMT)和细AP对推进剂机械感度的影响,通过AP/EMT间的相互作用及热点理论分析了丁羟高燃速推进剂危险性增加的微观原因,并在此基础上开展了氧化剂包覆、铜盐燃速催化剂GRCJ等对丁羟高燃速推进剂机械感度的影响。

  • 2 实验方法

  • 2.1 主要原材料

    铝粉:粒径d50为29 μm,鞍山钢铁集团有限公司;高氯酸铵:粒径d50分别为135~425 μm、3~14 μm和1~2 μm,分别购自大连高佳化工有限公司、自制和黎明化工研究设计院有限责任公司;端羟基聚丁二烯(HTPB):羟值为0.52 mmol/g,黎明化工研究院有限责任公司;异佛尔酮二异氰酸酯:工业级,德国拜耳集团;癸二酸二异辛酯:工业级,营口天元化工研究所股份有限公司;二茂铁类燃速催化剂:EMT,自制;Fe2O3:自制;BFN:烃类有机物,黎明化工研究设计院有限责任公司;GRCJ:铜盐燃速催化剂,自制;GZJ⁃01、GZJ⁃02:胺盐类工艺助剂,自制;DBJ⁃01、DBJ⁃02:导电态聚苯胺,酷尔化学科技有限公司,广州翁江化学试剂有限公司。

  • 2.2 样品制备

    AP/EMT:按质量比95:5分别称量好AP与EMT,然后手工混合均匀制得所需样品,其中AP(Ⅰ)、AP(Ⅱ)、AP(Ⅲ)和AP(Ⅳ)的粒径分别为425,245,135 μm和7 μm。

    包覆细AP制备:将包覆剂BFN溶入分析纯丙酮中制成溶液,然后在其中加入粒径7 μm的AP,搅拌均匀后经真空干燥去除丙酮,得到包覆细AP样品。

    丁羟高燃速推进剂配方基本组成:AP(135 μm和7 μm)、Al、EMT和HTPB胶等其他组分含量分别为69%、16%、3%和12%。按照常规复合固体推进剂制备方法,采用VKM⁃5L立式混合机进行推进剂混合,分别在加固化剂前和混合结束时取样测试推进剂药浆的机械感度;推进剂混合结束出料后通过真空喷淋浇注制成推进剂方坯,固化后用于推进剂性能和成品药机械感度测试。

  • 2.3 测试方法

    采用美国TA公司的SDTQ600热重⁃差热联用仪考察EMT对AP热性能的影响,升温速率为2,5,10,20 ℃·min-1

    推进剂药浆及成品药的机械感度按GJB 770B《火药试验方法》测试,其中推进剂药浆摩擦感度测试条件为摆角90°,压力4.0 MPa,成品药测试条件为摆角66°,压力2.45 MPa;推进剂药浆和成品药撞击感度测试锤重均为10 kg。

    推进剂燃速按GJB 770B《火药试验方法》中水下声发射法测试,水介质温度20 ℃,测试压强6.86 MPa。

  • 3 试验结果及分析

  • 3.1 燃速催化剂对丁羟推进剂机械感度的影响

    含铁化合物是含AP推进剂最常用的有效燃速催化剂,在丁羟高燃速推进剂中广泛应用。考察了液体EMT和固体Fe2O3催化剂对丁羟推进剂药浆及成品药机械感度的影响,结果见表1。由表1可知,在推进剂中加入燃速催化剂时,推进剂药浆和成品药的机械感度均增加,尤其是单独加入EMT或EMT与Fe2O3组合使用时,推进剂药浆和成品药机械感度显著增加。因此,EMT是导致高燃速推进剂安全性能恶化的主要因素之一,这与文献[9,12]的研究结果及国内外推进剂发生的事故大多与含二茂铁的高燃速推进剂有关是一致的。

    表1 EMT和Fe2O3对丁羟推进剂机械感度的影响

    Table 1 Effects of EMT and Fe2O3 on the mechanical sensitivity of HTPB propellant

    content of catalysts / %samplesI50/JPb / %
    EMTFe2O3
    00before adding curing agent22.420
    end of mixing17.412
    end of curing17.124
    01.0before adding curing agent9.840
    end of mixing19.920
    end of curing13.528
    3.00before adding curing agent11.852
    end of mixing11.248
    end of curing9.640
    3.01.0before adding curing agent12.388
    end of mixing10.572
    end of curing10.272

    NOTE: I50 isimpact sensitivity. Pb isfriction sensitivity.

    测试了不同EMT含量丁羟推进剂混合过程中药浆的撞击感度和摩擦感度,结果见表2。由表2数据可知,当推进剂中EMT含量较低时,推进剂混合过程中药浆的摩擦感度和撞击感度均较低,随着EMT含量逐渐增加,推进剂机械感度也逐渐升高。

    表2 EMT含量对丁羟推进剂药浆机械感度的影响

    Table 2 Effects of EMT content on the mechanical sensitivity of HTPB propellant slurry

    content of EMT / %I50 / JPb / %remarks
    before adding curing agentend of mixingbefore adding curing agentend of mixing
    0.524.017.43220first time
    1.014.812.64044
    3.014.110.07248
    0.525.111.54016second time
    1.012.67.567272
    3.09.67.608076

    在丁羟高燃速推进剂中,二茂铁衍生物的催化活性与其流动性及含量有[14],在AP含量相同的情况下,随着液体二茂铁类催化剂含量增加,其催化效率也逐渐增加。因此,在丁羟高燃速推进剂中,随着二茂铁类催化剂含量增加,其对AP的催化效果显著增强,导致推进剂在受到意外刺激时更容易被激发,故降低液体二茂铁类催化剂含量,实现推进剂燃速与机械感度之间的合理匹配,是降低丁羟高燃速推进剂机械感度的有效技术途径。

  • 3.2 氧化剂对丁羟推进剂机械感度的影响

    以含1.0%的EMT和1%的Fe2O3的丁羟高燃速推进剂配方为基础,考察了粗AP(135 μm)和细AP(7 μm)配比(AP总含量为69%)对丁羟推进剂机械感度的影响,结果见表3。由表3结果可知,推进剂中细AP含量由10%增加到40%时,药浆摩擦感度和撞击感度先减小再增大,而推进剂成品药机械感度随着配方中细AP含量增加而逐渐增大。

    表3 氧化剂级配对丁羟推进剂机械感度的影响

    Table 3 Effect of oxidant ratio of particle size on the mechanical sensitivity of HTPB propellant

    AP ratio(coarse/fine)samplesI50 / JPb / %
    59/10before adding curing agent11.024
    end of mixing9.624
    end of curing16.74
    41/28before adding curing agent22.420
    end of mixing17.416
    end of curing15.224
    29/40before adding curing agent13.572
    end of mixing10.260
    end of curing13.268

    保持细AP含量28%不变,考察了不同粒径细AP对丁羟推进剂药浆机械感度的影响,结果如表4所示。由表4结果可知,当推进剂中细AP粒径减小时,推进剂药浆的摩擦感度和撞击感度均呈增加趋势。

    表4 细AP粒径对丁羟推进剂药浆机械感度的影响

    Table 4 Effect of particle size of fine AP on the mechanical sensitivity of HTPB propellant slurry

    particle size of fine AP / µmI50 / JPb / %rheological properties
    before adding curing agentend of mixingbefore adding curing agentend of mixing
    12.815.012.1168good
    7.112.011.21216good
    3.914.812.64044general
    2.09.5610.06856bad

    AP粒径不同,其本身的热稳定性和感度也不相[15,16,17]。大粒径AP颗粒间的摩擦作用力小,其受到摩擦和撞击时发生破碎,可以吸收热量且热分解反应易发生猝灭,而小粒径AP易发生局部摩擦、塑性变形及粘滞流动,故随AP粒径的减小,AP的撞击感度和摩擦感度均呈升高趋势。

    因此,在丁羟高燃速推进剂研制中,选择合理的氧化剂粒径及其配比,可以降低推进剂的机械感度。

  • 3.3 丁羟高燃速推进剂机械感度增加机理

  • 3.3.1 AP/ EMT体系热分解特性与机械感度的相关性

    推进剂的安全性能与其热分解特性密切相关,对于丁羟高燃速推进剂,其热分解过程主要是AP的特征热分解过程,其常用的燃速催化剂是EMT,为此考察了AP/EMT体系在10 ℃·min-1升温速率下的热分解特性,结果如图1所示。

    图1
                            不同粒径AP的AP/ EMT体系的DSC曲线

    图1 不同粒径AP的AP/ EMT体系的DSC曲线

    Fig. 1 DSC curves of AP/EMT

    图1可知:(1)在EMT存在的条件下,AP粒径减小时,AP的低温分解峰温度逐渐升高,高温分解峰温度逐渐降低;(2)AP/EMT混合物在170 ℃左右出现了一个较小的放热峰。

    通常,纯AP在240 ℃左右吸热发生晶型转变,在290~320 ℃时开始发生低温分解,在350~450 ℃时开始发生高温分[18],因此AP/EMT混合物在170 ℃左右的放热峰为EMT的热分解导致。

    常压下,EMT在280 ℃左右才能发生放热分解,而AP的存在导致EMT在170 ℃左右便出现放热分解,故此放热峰可能为二茂铁基侧链断裂所致,也可能是二茂铁基夹心结构遭到破坏所致。

    根据AP和AP/EMT体系在2,5,10 ℃·min-1和20 ℃·min-1升温速率下DSC⁃TG分析结果,计算了AP和AP/EMT体系热分解参数,结果见表5,同时表5给出了AP以及AP/EMT的机械感度。

    表5 AP/EMT体系的热分解参数和机械感度

    Table 5 Thermal decomposition reaction parameters and mechanical sensitivity of AP/EMT system

    sampletemperature peak / ℃Q / J·g-1K / sI50 / JPb / %
    APTPL284.26550.6527.3452
    TPH355.10.26
    AP/EMTTPL289.316230.403.4960
    TPH352.20.41

    NOTE: TPL and TPH are the decomposition temperature peak at low temperature and high temperature respectively. The decomposition reaction rate constant(K) at low and high temperatures were calculated from 585 K and 635 K respectively. Q is decomposition heat.

    表5数据可知:(1)EMT的加入使AP的低温分解速率常数降低约38%,使AP的高温分解速率常数增加约58%,分解热增加968 J·g-1;(2)EMT加入导致AP的撞击感度和摩擦感度均显著升高。

  • 3.3.2 丁羟高燃速推进剂机械感度增加机理

    丁羟高燃速推进剂含有大量的AP颗粒,在外界刺激下其激发过程包括“热点”形成和“热点”发展两个阶段。对于一个球形“热点”,可导出如下平衡方程式。

    ρQdx/dt=λS/VdT/ds+ρCdT/dt
    (1)

    式中,ρ为密度,g·m-3Q为分解反应热,J·g-1;dx/dt为热分解反应速率,m·s-1;dT/dt为“热点”温度梯度,℃·m-1λ为导热系数,J/(m·s·℃);S为“热点”的表面积,m2V为“热点”的体积,m3C为比热,J·g-1

    当处于临界状态时dT/dt为0,“热点”处样品反应热与散失给周围的热相等,设此时“热点”的临界尺寸为d¯,则式(1)可化简为:

    ρQdx/dt=λ/δ6T-T0/d¯
    (2)

    式中,T为“热点”的温度,K;δ为“热点”放热作用距离,m。

    设化学反应速度为:

    dx/dt=1-x2K
    (3)

    式中,K为热分解反应速率常数。

    一般认为,“热点”反应时可忽略反应物消耗,则式(3)可简化为:

    dx/dt=K
    (4)

    合并式(2)和(4)得到:

    d¯=6λT-T0/δρQK
    (5)

    设临界“热点”的数目为N,则可发展为爆炸反应的临界“热点”的总能量为:

    E¯=36πλ3CNT-T04/δ2ρ2Q3K3
    (6)

    由式(6)可知,当试样受到外界刺激,发生剧烈反应的临界能量与样品的分解速率K和分解热Q有关,分解速度越快、分解热越大,则产生热点所需的能量越低,越易引起“热点”的成长。

    丁羟高燃速推进剂通常含有大量比表面积较大的细AP,由于细AP初始分解温度和高、低温分解活化能降低,分解反应速率常数增[17],EMT的加入进一步提高了AP的高温分解反应速率K和分解热Q,推进剂中可发生爆炸反应的“热点”的临界能量降低,当推进剂受到相同外界激发能量下更容易形成“热点”,从而导致推进剂的机械感度增大。

  • 3.4 降低丁羟高燃速推进剂机械感度研究

  • 3.4.1 包覆细AP的影响

    在丁羟高燃速推进剂中采用包覆细AP替代普通细AP(7 μm),考察推进剂药浆机械感度的变化,结果见表6。由表6可知,采用包覆细AP后,推进剂药浆的摩擦感度和撞击感度均降低,表明采用BFN包覆的细AP能够降低丁羟高燃速推进剂的机械感度。

    表6 包覆细AP对推进剂药浆机械感度的影响

    Table 6 Effect of coating of fine AP on the mechanical sensitivity of propellant slurry

    fine API50 / JPb / %
    before adding curing agentend of mixingbefore adding curing agentend of mixing
    general14.512.37664
    coated16.615.75248
  • 3.4.2 高效铜盐燃速催化剂GRCJ的影响

    丁羟高燃速推进剂中液体二茂铁含量过高是造成其机械感度过高的主要原因,因此,要降低高燃速推进剂的机械感度,二茂铁燃速催化剂的含量应控制在一定范围内,二茂铁含量的降低必将导致推进剂燃速降低,故应同时使用其他燃速催化剂提高燃速,以保证推进剂燃速满足指标要求。

    将推进剂中EMT含量由3.0%降低至1.5%,然后加入一种高效的铜盐燃速催化剂GRCJ,考察了GRCJ的含量对丁羟推进剂机械感度和燃速的影响,结果见表7。由表7可知,在推进剂中加入GRCJ后,推进剂药浆的机械感度无明显增加,成品药的机械感度随GRCJ含量增加先降低后增加,而推进剂燃速显著增加。

    表7 GRCJ含量对丁羟推进剂机械感度和燃速的影响

    Table 7 Effect of GRCJ content on the mechanical sensitivity and burning rate of HTPB propellant

    content of GRCJ / %sampling timeI50 / JPb / %

    r6.86 MPa

    / mm·s-1

    0before adding curing agent14.57226.10
    end of mixing12.364
    end of curing15.856
    2before adding curing agent14.86430.97
    end of mixing12.032
    end of curing16.344
    4before adding curing agent14.15636.29
    end of mixing12.148
    end of curing13.560
    6before adding curing agent13.45245.88
    end of mixing10.768
    end of curing11.380

    NOTE: r6.86 MPa are the burning rate of HTPB propellant under 6.86 MPa。

    因此,在推进剂中加入适量的GRCJ取代部分EMT,可以有效解决丁羟高燃速推进剂燃速越高、机械感度越高的问题。

  • 3.4.3 降感功能助剂的影响

    工艺助剂可以改善高燃速推进剂的工艺性能,性能优良的工艺助剂能在AP表面聚集形成润滑层,当推进剂受到外界撞击或摩擦时,可以有效降低氧化剂颗粒间的摩擦或撞击作用,减少热点的形成。此外,添加导热性能良好的材料有利于热点热量散[19,20],也可以降低推进剂的摩擦感度。

    含能物质在破裂时会产生外激电子,对于一种在撞击或摩擦时能够爆燃或爆轰的物质或混合物而言,这些外激电子有助于爆燃或爆轰的引发,而某些特殊结构的导电聚合[21]可以吸收外激电子,用它作为添加剂可以降低推进剂或炸药的机械感度。

    在丁羟高燃速推进剂中加入工艺助剂型降感助剂GZJ⁃01、GZJ⁃02和电子捕获剂型降感助剂DBJ⁃01、DBJ⁃02,考察了其对丁羟高燃速推进剂成品药机械感度的影响,结果见表8。由表8可知,在推进剂中单独加入GZJ⁃01和GZJ⁃02时,推进剂成品药的机械感度略有降低趋势;单独加入电子捕获剂型降感剂DBJ⁃01和DBJ⁃02时,推进剂撞击感度降低,但摩擦感度增加;两种类型的降感助剂GZJ⁃01和DBJ⁃01组合使用时无明显协同效应。

    表8 降感剂对推进剂成品药机械感度的影响

    Table 8 Effect of desensitizer on the mechanical sensitivity of cured propellant

    formula characteristicstype of desensitizerI50 / JPb / %
    Controlno desensitizer10.280
    GZJ⁃01process additive14.668
    GZJ⁃0210.776
    DBJ⁃01electron capturer12.688
    DBJ⁃0213.896
    GZJ⁃01+DBJ⁃01combination12.488
  • 4 结 论

    (1)细AP含量增加或细AP粒径减小时,推进剂药浆的摩擦感度和撞击感度均呈增加趋势,选择合适的氧化剂粒径及其配比,可以降低推进剂的机械感度。

    (2)液体二茂铁类催化剂EMT提高了AP的高温分解反应速率常数和分解热,使得推进剂中可发生爆炸反应的“热点”的临界能量降低,是含EMT的高燃速推进剂机械感度增大的微观原因,降低EMT含量,可以降低推进剂的机械感度。

    (3)采用烃类包覆剂BFN包覆的细AP取代常规细AP和采用铜盐催化剂GRCJ取代EMT均可以降低丁羟高燃速推进剂的机械感度。

    (4)胺盐类降感剂GZJ⁃01、GZJ⁃02有降低推进剂机械感度的趋势;导电态聚苯胺降感剂DBJ⁃01、DBJ⁃02可以降低推进剂撞击感度,但摩擦感度增加;两种类型降感剂组合使用时无协同效应。

    (责编: 王艳秀)

  • 参考文献

    • 1

      David C S. Ultrahigh burning rate propellants containing an organic perchlorate oxidizer: US 3986906[P],1976.

    • 2

      庞爱民.法国的固体推进剂技术[J].飞航导弹,2000(4):38-42.

      PANG Ai⁃min. Solid propellant technology in France[J]. Aerodynamic Missile Journal, 2000(4):38-42.

    • 3

      彦君.德国高燃速少烟推进剂研究[J].固体火箭技术,1999,22(4):60.

      YAN Jun. Study on German propellant with high burning rate and minimum smoke[J]. Journal of Solid Rocket Technology, 1999, 22(4):60

    • 4

      邹德荣,朱雄富,黄刘华,等.高燃速推进剂燃速控制研究[J].航天制造技术,2010(2):32-35.

      ZOU De⁃rong, ZHU Xiong⁃fu, HUANG Liu⁃hua, et al. Study on control of burning rate for high burning rate propellant[J]. Aerospace Manufacturing Technology, 2010(2):32-35.

    • 5

      Oyumi G. Effect of iron compounds on pyrolysis characteristics of AP⁃HTPB solid propellant[J]. Journal of the Industrial Explosives Society, 1981, 42(3):144-150.

    • 6

      Kuwabara T. Action mechanism of combustion rate catalyst (NBF) against ammonium perchlorate composite propellant[J]. Journal of the Industrial Explosives Society, 1986, 47(2):61-65.

    • 7

      H. Bazaki N. Kubota. Friction sensitivity mechanism of ammonium perchlorate composite propellants[J]. Propellants, Explosives, Pyrotechnics,1991,16(1):43-47

    • 8

      王永寿,戴耀松.二茂铁衍生物/极细高氯酸铵系高燃速复合固体推进剂的研究(1).飞航导弹,1995(3):40-45

      WANG Yong⁃shou, DAI Yao⁃song. Study on ferrocene derivatices/ultra⁃fine ammonium perchlorate composite propellants with high burning rate[J]. Aerodynamic Missile Journal(Feihang Daodan), 1995, (3):40⁃45.

    • 9

      袁桂芳,丁敦辉,崔瑞禧,等.高氯酸铵/硝胺丁羟复合推进剂热感度及机械感度研究[J].固体火箭技术,2002, 25( 4): 41-44.

      YUAN Gui⁃fang, DING Dun⁃hui, CUI Rui⁃xi, et al. Research on thermal and mechanical sensitivity of AP/ nitramine HTPB propellant[J]. Journal of Solid Rocket Technology(Guti Huojian Jishu), 2002, 25(4):41-44.

    • 10

      彭培根.复合固体推进剂危险性分析[J].推进技术, 1981,2(1): 27-34.

      PENG Pei⁃gen. Hazard analysis of the composite solid propellant[J]. Journal of Propulsion Technology, 1981, 2(1):27-34.

    • 11

      彭培根.固体复合推进剂燃烧转爆轰的临界直径的理论预测[J].火炸药学报,1980,3(5): 1-14.

      PENG Pei⁃gen. Theoretical prediction on critical diameter of deflagration⁃to⁃detonation transition in composite solid propellants[J]. Chinese Journal of Explosives & Propellants , 1980,3(5):1-14.

    • 12

      廖林泉, 胥会祥,李勇宏,等. HTPB推进剂危险性实验研究[J].火炸药学报, 2010, 33(4): 28-31.

      LIAO Lin⁃quan, XU Hui⁃xiang, LI Yong⁃hong, et al. Experimental study on hazard of HTPB propellants[J]. Chinese Journal of Explosives & Propellants, 2010, 33(4):28-31.

    • 13

      刘学、胡期伟.低危险性高燃速推进剂国内外技术发展动态及对未来发展的建议[C]//第二届固体推进剂安全技术研讨会暨固体推进剂安全生产协会的四届代表大会论文集. 2009:31-36.

      LIU Xue, HU Qi⁃wei. Technical development trends of low hazard and high burning rate propellants domestic and foreign and suggestions for future development[C]// Second Seminar on Safety Technology of Solid Propellants and Fourth Congress of Solid Propellant Safety Association, 2009:31-36.

    • 14

      Charles U,Pittman J R. Location of action of burning⁃rate catalysts in composite propellant combustion[J].AIAA Journal, 1969,7(2):328-334.

    • 15

      王彩玲,赵省向.不同粒径AP的机械感度[J].火炸药学报, 2006, 29( 6): 27-29.

      WANG Cai⁃ling, ZHAO Sheng⁃xiang. The mechanical sensitivity of AP with different granularity[J]. Chinese Journal of Explosives & Propellants, 2006, 29(6):25-28.

    • 16

      刘子如,阴翠梅,孔杨辉,等.高氯酸铵的热分解[J].含能材料,2000,8(2):75-79.

      LIU Zi⁃ru, YIN Cui⁃mei, KONG Yang⁃hui, et al. The thermal decomposition of ammonium perchlorate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2000, 8(2):75-79.

    • 17

      彭网大,翁武军,曹传新,等.高氯酸铵比表面积对推进剂热稳定性的影响[J].火炸药,1996,19(4):6-8.

      PENG Wang⁃da, WENG Wu⁃jun, CAO Chuan⁃xin, et al. The effect of Ammonium perchlorate specific surface area on thermal stability of propellant[J]. Chinese Journal of Explosives & Propellants, 1996,19(4):6-8.

    • 18

      彭培根,刘培谅,张仁,等.固体推进剂性能及原理[M].长沙:国防科技大学出版社,1987.

      PENG Pei⁃gen, LIU Pei⁃liang, ZHANG Ren, et al. Properties and Principles of Solid Propellants[M], Changsha: National University of Defense Technology Press, 1987.

    • 19

      Bowden F P, Gurton O A. Initiation of solid explosives by impact and friction: the influence of grit[J]. Proceedings of the Royal Society A, 1949,198: 337.

    • 20

      滕学峰,邓重清,胡铨,等.高氯酸铵(AP)基复合改性双基(AP/CMDB)推进剂燃速控制与降感研究[J].科学技术与工程, 2017,17(6):178-182.

      TENG Xue⁃feng, DENG Chong⁃qing, HU Quan, et al. Research of burning rate controlling and sensitivity reducing of AP/CMDB propellant[J]. Science Technology and Engineering, 2017, 17(6):178-182.

    • 21

      王晗,樊学忠,张伟,等.导电聚合物降低浇注高能AP/Al/CMDB推进剂感度研究[J].固体火箭技术,2011, 34( 1):97-100.

      WANG Han, FAN Xue⁃zhong, ZHANG Wei, et al. Effects of conductive polymers on sensitivities of cast high⁃energy AP/Al/CMDB propellant[J]. Journal of Solid Rocket Technology, 2011, 34(1):97-100.

庞爱民

机 构:航天化学动力技术重点实验室,湖北航天化学技术研究所,湖北 襄阳 441003

Affiliation:Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003,China

作者简介:庞爱民(1967-),男,博士,研究员,从事固体推进剂配方和性能研究。

刘学

机 构:航天化学动力技术重点实验室,湖北航天化学技术研究所,湖北 襄阳 441003

Affiliation:Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003,China

content of catalysts / %samplesI50/JPb / %
EMTFe2O3
00before adding curing agent22.420
end of mixing17.412
end of curing17.124
01.0before adding curing agent9.840
end of mixing19.920
end of curing13.528
3.00before adding curing agent11.852
end of mixing11.248
end of curing9.640
3.01.0before adding curing agent12.388
end of mixing10.572
end of curing10.272
content of EMT / %I50 / JPb / %remarks
before adding curing agentend of mixingbefore adding curing agentend of mixing
0.524.017.43220first time
1.014.812.64044
3.014.110.07248
0.525.111.54016second time
1.012.67.567272
3.09.67.608076
AP ratio(coarse/fine)samplesI50 / JPb / %
59/10before adding curing agent11.024
end of mixing9.624
end of curing16.74
41/28before adding curing agent22.420
end of mixing17.416
end of curing15.224
29/40before adding curing agent13.572
end of mixing10.260
end of curing13.268
particle size of fine AP / µmI50 / JPb / %rheological properties
before adding curing agentend of mixingbefore adding curing agentend of mixing
12.815.012.1168good
7.112.011.21216good
3.914.812.64044general
2.09.5610.06856bad
html/hncl/CJEM2019169/alternativeImage/bc394251-8f90-448a-ae67-455292218e8d-F001.png
sampletemperature peak / ℃Q / J·g-1K / sI50 / JPb / %
APTPL284.26550.6527.3452
TPH355.10.26
AP/EMTTPL289.316230.403.4960
TPH352.20.41
fine API50 / JPb / %
before adding curing agentend of mixingbefore adding curing agentend of mixing
general14.512.37664
coated16.615.75248
content of GRCJ / %sampling timeI50 / JPb / %

r6.86 MPa

/ mm·s-1

0before adding curing agent14.57226.10
end of mixing12.364
end of curing15.856
2before adding curing agent14.86430.97
end of mixing12.032
end of curing16.344
4before adding curing agent14.15636.29
end of mixing12.148
end of curing13.560
6before adding curing agent13.45245.88
end of mixing10.768
end of curing11.380
formula characteristicstype of desensitizerI50 / JPb / %
Controlno desensitizer10.280
GZJ⁃01process additive14.668
GZJ⁃0210.776
DBJ⁃01electron capturer12.688
DBJ⁃0213.896
GZJ⁃01+DBJ⁃01combination12.488

表1 EMT和Fe2O3对丁羟推进剂机械感度的影响

Table 1 Effects of EMT and Fe2O3 on the mechanical sensitivity of HTPB propellant

表2 EMT含量对丁羟推进剂药浆机械感度的影响

Table 2 Effects of EMT content on the mechanical sensitivity of HTPB propellant slurry

表3 氧化剂级配对丁羟推进剂机械感度的影响

Table 3 Effect of oxidant ratio of particle size on the mechanical sensitivity of HTPB propellant

表4 细AP粒径对丁羟推进剂药浆机械感度的影响

Table 4 Effect of particle size of fine AP on the mechanical sensitivity of HTPB propellant slurry

图1 不同粒径AP的AP/ EMT体系的DSC曲线

Fig. 1 DSC curves of AP/EMT

表5 AP/EMT体系的热分解参数和机械感度

Table 5 Thermal decomposition reaction parameters and mechanical sensitivity of AP/EMT system

表6 包覆细AP对推进剂药浆机械感度的影响

Table 6 Effect of coating of fine AP on the mechanical sensitivity of propellant slurry

表7 GRCJ含量对丁羟推进剂机械感度和燃速的影响

Table 7 Effect of GRCJ content on the mechanical sensitivity and burning rate of HTPB propellant

表8 降感剂对推进剂成品药机械感度的影响

Table 8 Effect of desensitizer on the mechanical sensitivity of cured propellant

image /

I50 isimpact sensitivity. Pb isfriction sensitivity.

无注解

无注解

无注解

无注解

TPL and TPH are the decomposition temperature peak at low temperature and high temperature respectively. The decomposition reaction rate constant(K) at low and high temperatures were calculated from 585 K and 635 K respectively. Q is decomposition heat.

无注解

r6.86 MPa are the burning rate of HTPB propellant under 6.86 MPa。

无注解

  • 参考文献

    • 1

      David C S. Ultrahigh burning rate propellants containing an organic perchlorate oxidizer: US 3986906[P],1976.

    • 2

      庞爱民.法国的固体推进剂技术[J].飞航导弹,2000(4):38-42.

      PANG Ai⁃min. Solid propellant technology in France[J]. Aerodynamic Missile Journal, 2000(4):38-42.

    • 3

      彦君.德国高燃速少烟推进剂研究[J].固体火箭技术,1999,22(4):60.

      YAN Jun. Study on German propellant with high burning rate and minimum smoke[J]. Journal of Solid Rocket Technology, 1999, 22(4):60

    • 4

      邹德荣,朱雄富,黄刘华,等.高燃速推进剂燃速控制研究[J].航天制造技术,2010(2):32-35.

      ZOU De⁃rong, ZHU Xiong⁃fu, HUANG Liu⁃hua, et al. Study on control of burning rate for high burning rate propellant[J]. Aerospace Manufacturing Technology, 2010(2):32-35.

    • 5

      Oyumi G. Effect of iron compounds on pyrolysis characteristics of AP⁃HTPB solid propellant[J]. Journal of the Industrial Explosives Society, 1981, 42(3):144-150.

    • 6

      Kuwabara T. Action mechanism of combustion rate catalyst (NBF) against ammonium perchlorate composite propellant[J]. Journal of the Industrial Explosives Society, 1986, 47(2):61-65.

    • 7

      H. Bazaki N. Kubota. Friction sensitivity mechanism of ammonium perchlorate composite propellants[J]. Propellants, Explosives, Pyrotechnics,1991,16(1):43-47

    • 8

      王永寿,戴耀松.二茂铁衍生物/极细高氯酸铵系高燃速复合固体推进剂的研究(1).飞航导弹,1995(3):40-45

      WANG Yong⁃shou, DAI Yao⁃song. Study on ferrocene derivatices/ultra⁃fine ammonium perchlorate composite propellants with high burning rate[J]. Aerodynamic Missile Journal(Feihang Daodan), 1995, (3):40⁃45.

    • 9

      袁桂芳,丁敦辉,崔瑞禧,等.高氯酸铵/硝胺丁羟复合推进剂热感度及机械感度研究[J].固体火箭技术,2002, 25( 4): 41-44.

      YUAN Gui⁃fang, DING Dun⁃hui, CUI Rui⁃xi, et al. Research on thermal and mechanical sensitivity of AP/ nitramine HTPB propellant[J]. Journal of Solid Rocket Technology(Guti Huojian Jishu), 2002, 25(4):41-44.

    • 10

      彭培根.复合固体推进剂危险性分析[J].推进技术, 1981,2(1): 27-34.

      PENG Pei⁃gen. Hazard analysis of the composite solid propellant[J]. Journal of Propulsion Technology, 1981, 2(1):27-34.

    • 11

      彭培根.固体复合推进剂燃烧转爆轰的临界直径的理论预测[J].火炸药学报,1980,3(5): 1-14.

      PENG Pei⁃gen. Theoretical prediction on critical diameter of deflagration⁃to⁃detonation transition in composite solid propellants[J]. Chinese Journal of Explosives & Propellants , 1980,3(5):1-14.

    • 12

      廖林泉, 胥会祥,李勇宏,等. HTPB推进剂危险性实验研究[J].火炸药学报, 2010, 33(4): 28-31.

      LIAO Lin⁃quan, XU Hui⁃xiang, LI Yong⁃hong, et al. Experimental study on hazard of HTPB propellants[J]. Chinese Journal of Explosives & Propellants, 2010, 33(4):28-31.

    • 13

      刘学、胡期伟.低危险性高燃速推进剂国内外技术发展动态及对未来发展的建议[C]//第二届固体推进剂安全技术研讨会暨固体推进剂安全生产协会的四届代表大会论文集. 2009:31-36.

      LIU Xue, HU Qi⁃wei. Technical development trends of low hazard and high burning rate propellants domestic and foreign and suggestions for future development[C]// Second Seminar on Safety Technology of Solid Propellants and Fourth Congress of Solid Propellant Safety Association, 2009:31-36.

    • 14

      Charles U,Pittman J R. Location of action of burning⁃rate catalysts in composite propellant combustion[J].AIAA Journal, 1969,7(2):328-334.

    • 15

      王彩玲,赵省向.不同粒径AP的机械感度[J].火炸药学报, 2006, 29( 6): 27-29.

      WANG Cai⁃ling, ZHAO Sheng⁃xiang. The mechanical sensitivity of AP with different granularity[J]. Chinese Journal of Explosives & Propellants, 2006, 29(6):25-28.

    • 16

      刘子如,阴翠梅,孔杨辉,等.高氯酸铵的热分解[J].含能材料,2000,8(2):75-79.

      LIU Zi⁃ru, YIN Cui⁃mei, KONG Yang⁃hui, et al. The thermal decomposition of ammonium perchlorate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2000, 8(2):75-79.

    • 17

      彭网大,翁武军,曹传新,等.高氯酸铵比表面积对推进剂热稳定性的影响[J].火炸药,1996,19(4):6-8.

      PENG Wang⁃da, WENG Wu⁃jun, CAO Chuan⁃xin, et al. The effect of Ammonium perchlorate specific surface area on thermal stability of propellant[J]. Chinese Journal of Explosives & Propellants, 1996,19(4):6-8.

    • 18

      彭培根,刘培谅,张仁,等.固体推进剂性能及原理[M].长沙:国防科技大学出版社,1987.

      PENG Pei⁃gen, LIU Pei⁃liang, ZHANG Ren, et al. Properties and Principles of Solid Propellants[M], Changsha: National University of Defense Technology Press, 1987.

    • 19

      Bowden F P, Gurton O A. Initiation of solid explosives by impact and friction: the influence of grit[J]. Proceedings of the Royal Society A, 1949,198: 337.

    • 20

      滕学峰,邓重清,胡铨,等.高氯酸铵(AP)基复合改性双基(AP/CMDB)推进剂燃速控制与降感研究[J].科学技术与工程, 2017,17(6):178-182.

      TENG Xue⁃feng, DENG Chong⁃qing, HU Quan, et al. Research of burning rate controlling and sensitivity reducing of AP/CMDB propellant[J]. Science Technology and Engineering, 2017, 17(6):178-182.

    • 21

      王晗,樊学忠,张伟,等.导电聚合物降低浇注高能AP/Al/CMDB推进剂感度研究[J].固体火箭技术,2011, 34( 1):97-100.

      WANG Han, FAN Xue⁃zhong, ZHANG Wei, et al. Effects of conductive polymers on sensitivities of cast high⁃energy AP/Al/CMDB propellant[J]. Journal of Solid Rocket Technology, 2011, 34(1):97-100.