CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
  • 2021年第29卷第7期文章目次
    全 选
    显示方式: |
    • >含能快递
    • 含能快递--2021No7

      2021, 29(7):579-580.

      摘要 (256) HTML (183) PDF 1.30 M (4006) 评论 (0) 收藏

      摘要:

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
    • >观点
    • 水中兵器爆炸威力增强技术的发展思考

      2021, 29(7):581-583. DOI: 10.11943/CJEM2021020

      摘要 (413) HTML (511) PDF 491.71 K (5900) 评论 (0) 收藏

      摘要:

      • 0+1
      • 1+1
      • 2+1
      • 3+1
    • >推进与发射
    • 一种燃速可调的光控固体推进剂燃烧特性

      2021, 29(7):584-591. DOI: 10.11943/CJEM2021060

      摘要 (665) HTML (349) PDF 8.54 M (3604) 评论 (0) 收藏

      摘要:为了研究光控固体推进剂在激光辐照下的可控燃烧特性以及推力性能,采用高速摄影、高精度压力传感器、R型热电偶以及微推力测试平台等装置分别获取了不同激光功率密度下,光控固体推进剂的燃速、点火延迟时间、燃烧室压强、燃烧火焰温度以及微推力等性能参数。结果表明:光控固体推进剂的燃速与燃烧室压强均随激光功率密度的增加而线性升高,与之相反,其点火延迟时间随激光功率密度的增加呈下降趋势。结合热电偶测温曲线,发现光控固体推进剂的燃烧过程主要分为五个区域:预热区、凝聚相区、三相区、气相区以及火焰区,与此同时,在1.343 W·mm-2的激光功率密度下,推进剂的燃烧火焰温度为1202.3 ℃。光控固体推进剂燃烧状态对于激光功率密度的依赖性对于实现推力的精确控制具有重要意义,通过改变激光功率密度的大小,成功实现了光控固体推进剂的推力控制;随着激光功率密度由0.344 W·mm-2增加到1.343 W·mm-2,光控固体推进剂的推力由1.58 mN上升至2.28 mN。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
    • 动态加载下HTPB复合固体推进剂双轴压缩试验件设计

      2021, 29(7):592-598. DOI: 10.11943/CJEM2020324

      摘要 (390) HTML (227) PDF 2.70 M (2614) 评论 (0) 收藏

      摘要:为研究固体推进剂的动态双轴压缩力学性能,需确定与试验机、试验夹具相适配且满足双轴变形特性要求的推进剂试验件最优构型。基于有限元数值仿真计算,获得了双轴压缩加载下八种不同构型的三组元端羟基聚丁二烯(HTPB)复合固体推进剂试验件变形的应力云图,并通过开展动态加载下对应推进剂试验件的力学性能试验对最优构型进行了验证。结果表明:小变形条件下(应变10%以内)所有试验件的应力云图均呈现整体均匀分布的特性,但长宽比大于1的试验件变形时不再满足平面应力状态的要求。选取平面应力平均值、平面应力离散度、整体应力稳定系数和应力集中系数作为推进剂试验件构型优化指标,对比分析得出边长为25 mm的正方体推进剂试验件为最优构型。最后,通过分析动态加载下双轴压缩试验获得的应力-应变曲线特性,验证了最优试验件构型设计的有效性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
    • 复合推进剂凝聚相燃烧产物成分分析方法

      2021, 29(7):599-606. DOI: 10.11943/CJEM2020246

      摘要 (400) HTML (244) PDF 824.62 K (3664) 评论 (0) 收藏

      摘要:为获得准确可靠的复合推进剂凝聚相燃烧产物(CCPs)的理化特性,提出了一种基于微波消解的乙二胺四乙酸(EDTA)滴定法以实现凝聚相燃烧产物全组分定量解析。采用自研凝聚相燃烧产物收集系统获取了四组元推进剂凝聚相燃烧产物,针对活性Al含量对比分析了EDTA滴定法、电感耦合高频等离子体发射光谱法(ICP)、气体容量法及重铬酸钾滴定法等4种方法的测试精度。结果表明,基于微波消解的EDTA滴定法能准确测定复合推进剂凝聚相燃烧产物中的Al、Al2O3、AlN、Fe2O3和C等组分含量。微波消解能有效溶解包裹在活性Al表面的Al2O3壳层,其最优溶液配比参数为VH3PO4VH2SO4VHNO3=10∶2∶1,温度为240 ℃,时间为150 min。ICP光谱法也能检测凝聚相燃烧产物中的全部组分,精度略低于EDTA滴定法。气体容量法和重铬酸钾滴定法测定凝聚相燃烧产物中活性Al的含量则显著低于EDTA滴定法和ICP光谱法。EDTA滴定法测定活性Al含量最精确,其精度相较气体容量法、重铬酸钾滴定法、ICP光谱法分别提高60%,40%,22%。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
    • >反应性材料与毁伤
    • 高速动能破片和包覆活性材料对屏蔽装药的串联毁伤效应

      2021, 29(7):607-616. DOI: 10.11943/CJEM2020328

      摘要 (337) HTML (249) PDF 1.25 M (2356) 评论 (0) 收藏

      摘要:高速动能破片和包覆活性材料破片串联战斗部兼具高速侵彻毁伤效应及化学能毁伤效应,为研究其对屏蔽装药的串联冲击毁伤行为,建立了高速动能破片和包覆活性材料撞击屏蔽装药的冲击动力学模型,结合活性材料激发理论以及屏蔽装药起爆判据计算分析了高速动能破片和包覆活性材料对屏蔽装药的冲击毁伤行为。基于2D-Autodyn平台对高速动能破片和包覆活性材料冲击屏蔽装药过程进行了数值模拟。对比验证了理论计算和数值模拟的一致性,结合理论分析和数值模拟结果讨论了影响屏蔽装药毁伤的主要因素、可能存在的毁伤模式和各毁伤模式之间的转变条件。结果表明:高速动能破片和包覆活性材料对屏蔽装药作用主要存在前段侵彻冲击引爆模式(Ⅰ)、主体段侵彻冲击引爆模式(Ⅱ)、活性材料未反应且侵彻未引爆模式(Ⅲ)、活性材料反应增强引爆模式(Ⅳ)及活性材料反应未引爆模式(Ⅴ)等五种毁伤模式;在材料和结构一定的情况下,撞击速度和屏蔽厚度是影响毁伤模式的主要因素;所建立的理论模型可较好地预测上述毁伤模式。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
    • PTFE基含能药型罩射流释能特性及影响因素

      2021, 29(7):617-624. DOI: 10.11943/CJEM2021041

      摘要 (428) HTML (188) PDF 5.70 M (2340) 评论 (0) 收藏

      摘要:为了研究聚四氟乙烯(PTFE)基含能药型罩的动态释能特性及其形成的射流对目标的侵爆毁伤效果,采用静爆试验测量了含能射流与铝射流在准密闭容器中的动态超压,并通过理论计算得到射流释能及释能效率。分析认为,含能射流在成型过程中会发生爆燃反应,相比于铝射流,含能射流超压峰值可提升3~4倍。对于30 g含能药形罩,钨(W)含量为0%~70%时,随着W含量提高,射流释能降低,但药型罩承受爆炸驱动载荷提高,且钨颗粒与活性金属摩擦加剧,射流释能效率提高。对于PTFE/Ti药形罩,在13~30 g范围内,随着药型罩质量增加,射流释能量提高,但侵彻体成型压力降低,射流释能效率下降。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
    • 不同Al粒径的PTFE/Al活性射流作用双层间隔靶的实验研究

      2021, 29(7):625-633. DOI: 10.11943/CJEM2021015

      摘要 (428) HTML (210) PDF 5.18 M (2245) 评论 (0) 收藏

      摘要:为了获得采用不同铝(Al)粒径制备而成的聚四氟乙烯/铝(PTFE/Al)活性药型罩作用双层间隔靶的毁伤威力特性,采用模压烧结成型法制备了5种不同Al粒径(10,30,70,200 μm,50/70 μm)的PTFE/Al活性药型罩,并开展了相应的静爆威力实验。研究结果表明:随着Al粒径从10 μm增加到200 μm时,活性射流对钢靶和铝靶的破孔面积、等效破裂孔直径、破孔隆起高度以及形成的破坏区域体积均呈现减小趋势,当Al粒径为10 μm时破坏钢靶的毁伤参量为SSteel=0.4 CD(装药直径)、hAl=0.48 CD、VSteel=420 cm3,破坏铝靶的毁伤参量为SAl=3.8 CD、hAl=1.72 CD、VAl=2280 cm3。采用50 nm/70 μm级配Al粒径的PTFE / Al活性射流对钢靶的穿孔效果显著提高,等效破裂孔直径dSteel=0.59 CD。结合实验相关数据拟合得到了活性射流对后效铝靶的爆裂毁伤效应分析模型。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
    • >制备与性能
    • 联环丁烷及其甲基衍生物的设计和性质模拟

      2021, 29(7):634-640. DOI: 10.11943/CJEM2020287

      摘要 (337) HTML (271) PDF 982.63 K (1735) 评论 (0) 收藏

      摘要:为获得高能量密度液体推进剂燃料,提升运载火箭的有效载荷,设计了20种不同甲基取代的联环丁烷衍生物,理论计算研究了联环丁烷及其甲基衍生物结构对性能的影响规律。研究结果表明:随甲基取代基数量的增多,联环丁烷衍生物的生成焓和比冲均呈现减小的趋势;当取代基为对位取代时其分子稳定性最好,生成焓和比冲值较大,而邻位状态取代时联环丁烷衍生物的生成焓和比冲值相对较低;在设计的化合物中,联环丁烷是比冲最高的物质,当联环丁烷与液氧的混合比为28.5∶71.5,0.1 MPa环境压力下,比冲可达304.52 s,燃烧产物主要组成为CO(34.64%)、CO2(13.89%)、H2O(29.54%)。联环丁烷衍生物的综合性能优于火箭煤油,具有作为高能推进剂的潜力,本研究为高能燃料的设计提供了理论支撑。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
    • 新型高能量密度炸药ICM-101的热膨胀特性

      2021, 29(7):641-649. DOI: 10.11943/CJEM2021037

      摘要 (533) HTML (560) PDF 3.73 M (2507) 评论 (0) 收藏

      摘要:炸药晶体在热刺激作用下的热膨胀特性是导致混合炸药应力增加及长贮时结构损伤的重要原因之一,采用原位X-射线粉末衍射技术研究了[2,2''-联(1,3,4-噁二唑)]-5,5''-二乙酰胺(ICM-101)的热膨胀特性,基于Rietveld全谱拟合结构精修原理,获得了ICM-101的热膨胀系数。结果表明,ICM-101在热场作用下表现出明显的可逆各向异性热膨胀,在30~170℃温度范围内晶胞参数a、b、c轴和体积V的热膨胀系数分别为9.19×10-5,-9.22×10-6,5.21×10-5-1和13.8×10-5-1,其中b轴表现出负膨胀特性。基于分子光谱技术结合理论计算方法,对ICM-101在不同温度下晶胞堆积结构及其与热膨胀特性的关联展开研究,认为热刺激下ICM-101分子的四元环结构发生压缩变形使晶胞沿着b轴方向被压缩是导致晶胞在b轴呈现线性负膨胀的重要原因,同时与其它炸药晶体热膨胀特性对比,分析了晶胞堆积对炸药晶体结构热稳定性的影响。具有较强氢键作用的层状堆积结构的炸药晶体的热膨胀各向异性更明显,其中当分子与分子间的相对夹角大于100时,层内氢键网络对层间作用影响不大,反之,则会对a、b、c轴方向产生影响,限制其热膨胀。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
    • 低易损浇注HMX-Al基PBX炸药设计与性能

      2021, 29(7):650-657. DOI: 10.11943/CJEM2020270

      摘要 (480) HTML (538) PDF 4.66 M (2132) 评论 (0) 收藏

      摘要:为提高HMX-Al基混合炸药的能量和低易损性能,通过分析计算Al含量、奥克托今(HMX)含量对炸药爆轰性能的影响规律,确定了高固含量含铝PBX(polymer bonded explosive)炸药设计依据,在此基础上通过三级颗粒级配优化、固化体系筛选及降感剂、工艺助剂的选择应用,制备了固相含量90%(HMX/Al=75/15)的端羟基聚丁二烯(HTPB)/异佛尔酮二异氰酸酯(IPDI)黏结体系浇注固化炸药GOL-42,炸药工艺及安全性能优良。按照GJB772A等方法对GOL-42炸药进行了爆轰能量、低易损性、力学性能、热性能及加速贮存性能测试,结果表明:该炸药实测密度1.782 g·cm-3、爆速8251 m·s-1、爆压26.9 GPa,Φ25 mm圆筒试验格尼系数2.76 mm·μs-1,在快速烤燃、慢速烤燃、子弹撞击试验中响应程度均为低反应等级的燃烧反应,炸药综合性能优良,预估贮存寿命20年以上,是一种长寿命低易损浇注炸药。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
    • 基于高效液相色谱的BPTAP纯度分析方法

      2021, 29(7):658-666. DOI: 10.11943/CJEM2020318

      摘要 (409) HTML (564) PDF 1.07 M (1900) 评论 (0) 收藏

      摘要:高效液相色谱(HPLC)具有灵敏度高、重现性好、分析效率高、自动化程度高等优势,是材料研发过程中纯度分析、质量检测的重要手段之一。四硝基苯并-1,3a,6,6a-四氮杂戊搭烯并吡啶(BPTAP)作为近年来广受关注的一种新型耐热炸药,目前尚缺乏相应的HPLC分析方法。本研究考察并优化了BPTAP的色谱分离条件,建立了基于HPLC的BPTAP纯度分析方法。该方法基于Plus C18色谱柱(4.6×150 mm,5.0 µm),以乙腈-水混合液(含0.1 mg·mL-1乙酸铵)为流动相,采用梯度洗脱模式,检测波长为230 nm。该分析方法下,BPTAP的保留时间为9.13 min,各峰分离度均大于1.90,分离效果良好。进一步对该方法进行验证,BPTAP在0.5~200 µg·mL-1范围内呈良好的线性关系,相关系数R2为0.9997,检测限和定量限分别为0.02 µg·mL-1和0.07 µg·mL-1,并具有良好的精密度、稳定性和耐用性。此外,还将该方法用于BPTAP重结晶过程的纯度检测,结果表明本方法在BPTAP研制过程的含量分析与质量控制中具有良好的应用前景。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
    • >综述
    • 燃烧毁伤技术研究进展

      2021, 29(7):667-679. DOI: 10.11943/CJEM2020294

      摘要 (631) HTML (355) PDF 2.17 M (2454) 评论 (0) 收藏

      摘要:燃烧毁伤技术是含能材料与毁伤领域的重要研究方向。主要综述了燃烧毁伤技术的研究进展,从燃烧剂配方设计和应用、燃烧热辐射毁伤理论与技术、燃烧毁伤评估技术三个方面进行论述,指出目前存在燃烧剂燃烧毁伤效能不足、热辐射模型中参数表征过程单一、燃烧毁伤评估方法不全面等问题。认为高密度、高热值燃烧材料、燃烧剂装药构效关系、以火球温度为代表的关键模型参数的测试技术、热辐射毁伤模型的修正和优化、毁伤场中多种毁伤元耦合作用下的热辐射毁伤效应的精准评估方法是未来的研究重点。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
    • 声共振混合技术在含能材料领域的应用进展

      2021, 29(7):680-686. DOI: 10.11943/CJEM2020285

      摘要 (1167) HTML (522) PDF 1.55 M (3642) 评论 (0) 收藏

      摘要:21世纪初,ResoDyn声共振混合器公司首次开发出了声共振混合(RAM)技术。这项技术利用声波在一种材料中形成多个微混合区,而不是传统的叶轮或转子搅拌或行星混合器产生的大混合区。这种技术可用于制药、化妆品和散装粉末混合的大规模生产,与传统的高剪切含能材料加工方法(如行星混合)相比,RAM具有潜在的优势,其优点包括更短的混合时间、改善混合均匀性、减少废物输出、没有运动部件(点火源)以及混合高粘度、难混合成分的可能性(与行星混合器相比)。RAM已成为研发和生产推进剂、炸药、烟火剂的首选加工技术。从RAM原理角度出发,介绍了RAM技术在共晶炸药、纳米铝热剂制备中及其在固体推进剂和高聚物粘结炸药(PBX)加工中的应用。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1

《含能材料》编辑部

年第卷第

当期目录


文章目录

过刊浏览

刊期浏览
本期排行

PDF下载排行

HTML阅读排行

摘要点击排行

引用排行