Vol.9, No.4 December,2001

文章编号:1006-9941(2001)04-0179-04

[Mg(H₂O)₆](TNR⁻)₂・2H₂O的制备 与分子结构研究

张建国¹,张同来¹,杨 利¹,郁开北² (1. 北京理工大学机电工程学院,北京 100081; 2. 中科院成都分院分析测试中心,四川 成都 610041)

摘要:通过斯蒂酚酸与氧化镁反应,制备出标题化合物,测定了二水合斯蒂酚酸六水合镁(II)的分子结构和晶体结构。该晶体属三斜晶系,PI空间群。晶体学参数为: $a = 0.788 \ 9(1) \ \text{nm}, b = 0.882 \ 1(2) \ \text{nm}, c = 1.043 \ 3(2) \ \text{nm}; \alpha = 77.47 \ (1)^{\circ}, \beta = 70.96 \ (2)^{\circ}, \gamma = 66.74 \ (1)^{\circ}; V = 0.627 \ 3(2) \ \text{nm}^{3}, Z = 1, D_{c} = 1.738 \ \text{g} \cdot \text{cm}^{-3}, \mu = 0.193 \ \text{mm}^{-1}, F(000) = 338$ 。

关键词:斯蒂酚酸镁;制备;分子结构 中图分类号:0614.24

1 引 言

斯蒂酚酸镁是制造常用起爆药斯蒂酚酸铅、斯蒂 酚酸钡和铅钡共晶起爆药的中间原料,以它为原料制 得的斯蒂酚酸铅起爆药广泛应用于各种军用、民用火 工品^[1,2]。因此,我们制备了斯蒂酚酸镁单晶,对其晶 体结构和分子结构进行了分析,为这种含能材料原料 的进一步推广应用提供了基础性数据。

2 实验部分

2.1 样品制备

反应原理:

MgO +2C₆H(NO₂)₃(OH)₂ +7H₂O $\xrightarrow{\text{III},\text{III},\text{IIII}}$ [Mg(H₂O)₆](TNR)₂ · 2H₂O (TNR⁻ 为 C₆H(NO₂)₃(OH)O⁻)

将9.2g斯蒂酚酸(0.037 mol,精制品)悬浮于 50 ml蒸馏水中,加热至50℃,在搅拌下缓慢分份加入 1.5g氧化镁(0.0344 mol,分析纯),反应完全,得到黄 色透明溶液;冷却至室温、过滤,将滤液放置在培养皿 中,置于25℃的培养箱中,15天便可得到用于结构分 析的淡黄色单晶。

2.2 晶体结构测定

选取尺寸为 0.40 mm × 0.38 mm × 0.30 mm 的单

收稿日期: 2001-04-28; 修回日期: 2001-07-18

作者简介:张建国(1974-),男,从事含能配合物结构与性能 关系及新型火工药剂研究。

文献标识码:A

晶,在 Siemens P4 四圆衍射仪,用 λ =0.071 073 nm 的 MoK_α 射线、石墨单色器,在 3.09° ≤ θ ≤ 16.28°范围 内,用 26 个独立衍射点精确测定取向矩阵和晶胞参 数。在 298(2) K 温度下,在扫描范围: 2.08° ≤ θ ≤ 25.00°,h:0~9,k: -9~10,l: -11~12,以ω扫描 方式扫描,共收集衍射点2 465 个,其中独立衍射点 2 210个。选取 $I > 2\sigma(I)$ 的 1 710 个的可观察点用于 结构的测定和修正,全部数据均经 L_p 因子和半经验吸 收校正。该晶体属三斜晶系,Pī 空间群。晶体学参数 为: a = 0.788 9 (1) nm, b = 0.882 1 (2) nm, c = 1.043 3(2) nm; $\alpha = 77.47(1)^\circ$, $\beta = 70.96(2)^\circ$, $\gamma = 66.74(1)^\circ$; V = 0.627 3 (2) nm³, Z = 1, $D_c =$ 1.738 g·cm⁻³, $\mu = 0.193$ mm⁻¹, F(000) = 338。

该晶体结构由 Patterson 直接法解出,原子位置均 由差值 Fourier 合成法得到。结构用 232 个参数,由块 矩阵最小二乘法进行优化(对于氢原子采用各向同性 热参数,对于非氢原子采用各向异性热参数)。对于 $I > 2\sigma(I)$ 数据的最终偏差因子 $R_1 = 0.046$ 9, $wR_2 =$ 0.129 2;对于所有数据的偏差因子 $R_1 = 0.060$ 5, $wR_2 =$ 0.137 0; s = 1.069, $\omega = 1/[\sigma^2(F_0^2) + (0.078 5p)^2 +$ 0.288 0p], $p = (F_0^2 + 2F_c^2)/3$; 末轮优化的最大参数 位移(Δ/σ)_{max} = 0.001。最终差值 Fourier 图上最高 峰: (Δp)_{max} = 1.034 e · Å⁻³,最低峰: (Δp)_{min} = -0.525 e · Å⁻³。计算工作是在 Eclipes/140 计算机 上利用 Siemens SHELXTL 5.03 程序系统完成的。

结果与讨论 3

3.1 标题化合物的物性表征和元素分析

其外观呈淡黄色粉末状固体,在水中溶解度不太 大,呈悬浮状态,其水溶液呈弱酸性,pH=5~6。经结 构测定和元素分析推得该标题化合物的经验式为: C₁₂H₂₀MgN₆O₂₄。元素分析实测值(%):C 21.69,H 2.95, N 12.82; 按化学式[Mg(H₂O)₆](TNR⁻)₂·2H₂O 计算 值(%): C 21.93, H 3.05, N 12.79; 实测值与计算值 NN 基本相符。

3.2 标题化合物的结构分析

配合物的分子结构和晶胞堆积分别见图 1 和图 2,原子坐标和等效温度因子数据见表1,部分键角和 键长数据分别列于表2和表3中。

图 1 [Mg(H₂O)₆](TNR⁻)₂·2H₂O的分子结构 Fig. 1 Molecular structure of $[Mg(H_2O)_6](TNR^-)_2 \cdot 2H_2O$

图 2 [Mg(H₂O)₆](TNR⁻)₂·2H₂O 分子的晶胞堆积图 Fig. 2 Packing of $[Mg(H_2O)_6](TNR^-)_2 \cdot 2H_2O$ in crystal

•
•

Table 1 Atomic coordinates and

equivalent isotropic thermal parameters $(nm^2 \times 10^{-4})$

原子	x	y y	A Stra	$U^{\scriptscriptstyle 1\scriptscriptstyle)}_{\scriptscriptstyle m eq}$
Mg	0.5000	0.5000	0.0000	3.1(1)
0(1)	0.1815(3)	0.7151(3)	0.3098(2)	5.6(1)
0(2)	0.2563(4)	0.4648(3)	0.5055(2)	7.4(1)
0(3)	0.1552(5)	0.5379(4)	0.7045(3)	10.1(1)
0(4)	-0.4415(3)	0.9534(3)	0.8416(2)	4.3(1)
0(5)	-0.5552(3)	1.1581(3)	0.6999(2)	5.1(1)
0(6)	-0.3836(3)	1.1704(2)	0.4477(2)	4.1(1)
0(7)	-0.2232(3)	1.0803(3)	0.1964(2)	5.6(1)
0(8)	0.0753(3)	1.0224(3)	0.1747(2)	4.6(1)
0(9)	0.3847(3)	0.7376(2)	0.0467(2)	4.7(1)
0(10)	0.4672(3)	0.4255(3)	0.2088(2)	4.9(1)
0(11)	0.2319(3)	0.4948(3)	0.0290(3)	5.6(1)
0(12)	0.1327(3)	0.2682(3)	-0.0582(2)	4.9(1)
N(1)	0.1477(4)	0.5598(3)	0.5857(2)	4.2(1)
N(2)	-0.4325(3)	1.0208(3)	0.7255(2)	3.5(1)
N(3)	-0.0834(3)	1.0199(3)	0.2415(2)	3.1(1)
C(1)	0.0423(4)	0.7835(3)	0.4029(2)	3.1(1)
C(2)	0.0102(4)	0.7155(3)	0.5445(3)	3.0(1)
C(3)	-0.1437(4)	0.7919(3)	0.6446(2)	3.0(1)
C(4)	-0.2797(4)	0.9439(3)	0.6150(2)	2.9(1)
C(5)	-0.2611(3)	1.0220(3)	0.4804(2)	2.7(1)
C(6)	-0.1038(3)	0.9406(3)	0.3800(2)	2.7(1)

注:1)
$$U_{eq} = \frac{1}{3} (U_{11} + U_{22} + U_{33})$$

表 2 部分键长 Table 2 Selected bond lengths

化学键	键长/nm	化学键	键长/nm
Mg - O(9)	0.2026(2)	O(7) - N(3)	0.1219(3)
Mg - O(9) #1	0.2026(2)	O(8) - N(3)	0.1225(3)
Mg - O(11) #1	0.2054(2)	N(1) - C(2)	0.1456(3)
Mg - O(11)	0.2054(2)	N(2) - C(4)	0.1425(3)
Mg - O(10)	0.2095(2)	N(3) - C(6)	0.1450(3)
Mg - O(10) #1	0.2095(2)	C(1) - C(6)	0.1442(4)
O(1) - C(1)	0.1244(3)	C(1) - C(2)	0.1448(3)
O(2) - N(1)	0.1185(3)	C(2) - C(3)	0.1361(4)
O(3) - N(1)	0.1229(4)	C(3) - C(4)	0.1394(4)
O(4) - N(2)	0.1221(3)	C(4) - C(5)	0.1412(3)
O(5) - N(2)	0.1256(3)	C(5) - C(6)	0.1388(3)
O(6) - C(5)	0.1337(3)		

注: 对称变换为#1 - x + 1, - y + 1, - z。

	表 3 部分	键角	C.M
	Table 3 Selected	bond angles	ard.
化学键	键角/(°)	化学键	键角/(°)
O(9) - Mg - O(9) #1	180.0	O(5) - N(2) - C(4)	118.4(2)
O(9) - Mg - O(11) #1	89.29(10)	O(7) - N(3) - O(8)	122.9(2)
O(9) #1 - Mg - O(11) #1	90.71(10)	O(7) - N(3) - C(6)	119.2(2)
O(9) - Mg - O(11)	90.71(10)	O(8) - N(3) - C(6)	117.9(2)
O(9) #1 - Mg - O(11)	89.29(10)	O(1) - C(1) - C(6)	123.0(2)
O(11)#1 – Mg – $O(11)$	180.0	0(1) - C(1) - C(2)	124.0(2)
O(9) - Mg - O(10)	87.66(8)	C(6) - C(1) - C(2)	113.1(2)
O(9) #1 - Mg - O(10)	92.34(8)	C(3) - C(2) - C(1)	123.1(2)
O(11) #1 - Mg - O(10)	92.63(10)	C(3) - C(2) - N(1)	116.9(2)
O(11) - Mg - O(10)	87.37(10)	C(1) - C(2) - N(1)	120.1(2)
O(9) - Mg - O(10) #1	92.34(8)	C(2) - C(3) - C(4)	120.8(2)
O(9) #1 - Mg - O(10) #1	87.66(8)	C(3) - C(4) - C(5)	120.8(2)
O(11) #1 - Mg - O(10) #1	87.37(10)	C(3) - C(4) - N(2)	117.9(2)
O(11) - Mg - O(10) #1	92.63(10)	C(5) - C(4) - N(2)	121.2(2)
O(10) - Mg - O(10) #1	180.00(4)	O(6) - C(5) - C(6)	119.7(2)
O(2) - N(1) - O(3)	121.9(3)	O(6) - C(5) - C(4)	123.0(2)
O(2) - N(1) - C(2)	121.1(2)	C(6) - C(5) - C(4)	117.3(2)
O(3) - N(1) - C(2)	116.8(2)	C(5) - C(6) - C(1)	125.0(2)
O(4) - N(2) - O(5)	121.7(2)	C(5) - C(6) - N(3)	117.7(2)
O(4) - N(2) - C(4)	120.0(2)	C(1) - C(6) - N(3)	117.3(2)

注: 对称变换为#1 - x + 1, - y + 1, - z。

标题化合物分子具有中心对称性,镁离子位于对称中心,六个水分子的氧原子分别参与配位,由于受到结晶水和体积较大的外界斯蒂酚酸根离子的影响,整个配位阳离子表现为畸变的八面体结构。从键长数据上分析,中心镁离子与其周围六个配体氧原子间的距离最大差值仅为0.0069 nm。在该配合物分子中,外界斯蒂酚酸酸根离子表现为一价离子,并非二价离子,靠静电引力和氢键与配位阳离子结合在一起。另外,在整个晶体结构中,还存在两个结晶水分子,靠大量的氢键作用与配合物分子相结合。

在整个配合物晶体结构中存在大量分子内和分子 间氢键,其氢键键长和键角数据如表4所示。其中,分 子内氢键有:一价斯蒂酚酸根非脱氢羟基氧原子 06 与相应位置的硝基氧 05 间形成较强的氢键 06 - H6 …05;配体水的 09、010 与一价斯蒂酚酸根脱氢羟基 氧原子 01 间形成的氢键 09 - H9A…01、010 - H10A …01;配位水的 011 与结晶水的 012 间形成的氢键 011 - H11A…012、011 - H11B…012。分子间氢键 有:结晶水的 012 与相应位置的相邻配合物分子硝基 氧 08#和 05#间形成较弱的分子间氢键 012 - H12A… 08#、012 - H12B…05#;配体水的 09 与相应位置的 相邻配合物分子硝基氧 04#间形成较弱的分子间氢键 09 - H9B…04#。配合物晶体结构中大量氢键的存 在,增强了整个配合物结构的稳定性^[3,4]。

表 4 [Mg(H₂O)₆](TNR⁻)₂·2H₂O的部分氢键键长和键角 Table 4 Selected H-bond lengths and angles of [Mg(H₂O)₆](TNR⁻)₂·2H₂O

	α					
原子 D	原子 H	原子 A	D − H∕nm	H…A∕nm	D…A/nm	D – H····A/($^{\circ}$)
09	Н9А	01	0.0854(10)	0.1908(18)	0.2700(3)	154(4)
010	H10A	01	0.0856(10)	0.2004(19)	0.2791(3)	152(4)
011	H11A	012	0.0867(10)	0.1934(16)	0.2774(3)	163(3)
011/2	H11B	012	0.0865(10)	0.1954(12)	0.2816(3)	174(4)
06	Н6	05	0.0862(10)	0.1750(2)	0.2537(3)	150(3)
012	H12A	08#	0.0855(10)	0.2105(13)	0.2930(3)	162(3)
012	H12B	05#	0.0855(10)	0.2064(12)	0.2914(3)	173(4)
09	H9B	04#	0.0853(10)	0.2250(4)	0.2909(3)	134(4)

通过对斯蒂酚酸镁的晶体结构的测定,对其分子 结构进行了分析,确定了其结构参数,为进一步从微观 分子水平认识这种重要含能材料原料奠定了理论基 础。

参考文献:

[1] 艾鲁群. 国外火工品手册 [M]. 北京: 国家机械工业

委员会兵器标准化研究所,1988.

- 刘自汤. 起爆药学实验[M]. 北京: 北京理工大学出 [2] 版社,1994.
- [3] 邢其毅,徐瑞秋,周政,等. 基础有机化学(第二版) [M]. 北京: 高等教育出版社, 1994.
- [4] 王庆文,杨玉桓,高鸿宾. 有机化学中的氢键问题 [M]. 天津: 天津大学出版社,1993.

NW. energe **Study on Preparation and Molecular Structure** of $[Mg(H_2O)_6](TNR^-)_2 \cdot 2H_2O$

ZHANG Jian-guo¹, ZHANG Tong-lai¹, YANG Li¹, YU Kai-bei²

(1. Department of Mechano-electric Engineering, Beijing Institute of Technology, Beijing 100081, China;

2. Analysis and Measurement Center, Chengdu Branch of China Science Academy, Chengdu 610041, China)

Abstract: In this paper, the coordination compound $[Mg(H_2O)_6](TNR^-)_2 \cdot 2H_2O$ is prepared by the reaction between styphnic acid and magnesia. Its molecular structure and crystal structure are determined by X-ray diffraction. The crystalline is in triclinic with space group Pī. The crystal parameters of the title compound are as follows: a = 0.7889(1) nm, b = 0.8821(2) nm, c = 1.0433(2) nm; $\alpha =$ 77. 47(1)°, $\beta = 70.96(2)°$, $\gamma = 66.74(1)°$; V = 0.6273(2) nm³, $Z = 1, D_c = 1.738$ g · cm⁻³, $\mu =$ 0.193 mm⁻¹, F(000) = 338.

Key words: magnesium styphnate; preparation; molecular structure

materiansister

本刊加入《中国学术期刊(光盘版)》和"中国期刊网"的声明

为适应我国信息化建设需要,扩大作者学术交流渠道,本刊已加入《中国学术期刊(光盘版)》 和"中国期刊网",其作者著作权使用费交中国版权保护中心统一分配。如作者不同意将文章编入 该数据库,请在来稿时声明,本刊将做适当处理。