Vol. 10, No. 3 September, 2002

Article ID: 1006-9941(2002)03-0100-04

The Dilution/Crystallization Kinetics of RDX and HMX

HU Rong-zu¹, LI Zhi-bin², CHEN Xi-jün², GAO Sheng-li¹, FANG Yan¹, SHI Qi-zhen¹

(1. Department of Chemistry, Northwest University, Xi'an 710069, China;

2. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China)

Abstract: Three thermokinetic equations describing the crystal growth process and two relationships between the parameters and the constants of the kinetic equations are derived. The thermokinetic data of crystal growth processes of RDX and HMX are treated based on the derived equations and relationships. The results show that the exothermic dilution / crystallization processes of RDX and HMX are the first order reaction and accord with the dislocation theory.

Key words: Crystallization kinetics; RDX; HMX; dislocation theory

CLC number: 078; 0642.3

In two previous notes ^[1,2], the crystallization kinetics of RDX and HMX from DMSO and cyclohexanone, and that of HMX from HNO₃ were reported. For exploring the adaptability of the thermokinetic equations to the crystal growth processes of RDX and HMX and obtaining the information about the interdependence between the parameters and the constants of different kinetic equations, three thermokinetic equations describing the crystal growth process are derived. Assuming that in forming the crystal A(s) from A(aq). C is the solute concentration in the solution at time t(g/100 g solvent). C_{∞} is equilibrium saturation concentration (g/100 g solvent). m and α are the mass and fraction of solid deposited during a certain time, respectively. H is the heat produced during a certain time t, and when t = 0, $C = C_0$, m = 0, $\alpha = 0$ and H=0 , when $t=\infty$, $C=~C_{\infty}$, $m~=~m_{\infty}$, $\alpha=\alpha_{\infty}~=1$ and $H = H_{\infty}$,

$$A(aq) \longrightarrow A(s) + heat$$
(1)

$$t = 0, \quad C_0 \qquad 0, 0 \qquad 0$$

$$t = t, \quad C \qquad m, \alpha \qquad H$$

$$t = \infty, \quad C_{\infty} \qquad m_{\infty}, \alpha_{\infty} = 1 \qquad H_{\infty}$$

the relationship between the energy change (i. e. the heat produced) of a reacting system and the extent (i. e.

Biography: HU Rong-zu(1938 –), male, professor, research yields: thermochemistry and thermal analysis; published over 230 papers.

Document code: A

mass or fraction or concentration) of the reaction (1) may be expressed as

$$\frac{C_0 - C}{C_0 - C_{\infty}} = \frac{0 - m}{0 - m_{\infty}} = \frac{0 - \alpha}{0 - \alpha_{\infty}} = \frac{0 - H}{0 - H_{\infty}} \quad (2)$$

From eq. (2), we obtain

$$\alpha = \frac{H}{H_{\infty}} \tag{3}$$

$$\frac{\mathrm{d}\,\alpha}{\mathrm{d}t} = \frac{1}{H_{\infty}} \frac{\mathrm{d}H}{\mathrm{d}t} \tag{4}$$

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \left(\frac{m_{\infty}}{H_{\infty}}\right) \frac{\mathrm{d}H}{\mathrm{d}t} \tag{5}$$

and

$$\frac{C - C_{\infty}}{C_0 - C_{\infty}} = \left(1 - \frac{H}{H_{\infty}}\right) \tag{6}$$

Inserting eqs. (3) and (4) into the differential kinetic equation (7) of the reaction of the *n*th order

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = k \left(1 - \alpha\right)^n \tag{7}$$

The thermokinetic equations (8) and (9) are obtained:

$$\frac{\mathrm{d}H}{\mathrm{d}t} = H_{\infty} k \left(1 - \frac{H}{H_{\infty}} \right)^n \tag{8}$$

Received date: 2001-11-22

and

$$\ln\left[\frac{1}{H_{\infty}}\left(\frac{\mathrm{d}H}{\mathrm{d}t}\right)_{i}\right] = \ln k + n\ln\left[1 - \left(\frac{H}{H_{\infty}}\right)_{i}\right]$$
$$i = 1, 2 \cdots L \tag{9}$$

where H_{∞} is the total heat produced (corresponding to the global area under the thermokimetic curve); H_{i} is the heat produced in a certain time (corresponding to the partial area under the curve); dH_t/dt is the rate of heat production at time t; k and n are the rate constant and reaction order of the crystal growth, respectively.

When
$$\ln\left[\frac{1}{H_{\infty}}\left(\frac{\mathrm{d}H}{\mathrm{d}t}\right)_{i}\right]$$
 is plotted versus $\ln\left[1-\left(\frac{H}{H_{\infty}}\right)_{i}\right]$

by the least-squares method, this gives the value of nfrom the slope and k from the intercept.

Equation (8) is known as the general form describing the crystal growth process.

According to the Burton-Cabrera-Frank (BCF) dislocation theory ^[3], for relatively high supersaturations, the rate of crystal growth at time t(dm/dt) may be expressed as

$$\frac{\mathrm{d}m}{\mathrm{d}t} = km_{\infty} \left(C - C_{\infty} \right) \tag{10}$$

The combination of eqs. (5), (6) and (10) gives

$$\frac{\mathrm{d}H}{\mathrm{d}t} = kH_{\infty} \left(C_0 - C_{\infty} \right) \left(1 - \frac{H}{H_{\infty}} \right)$$
$$= k_1 \left(1 - \frac{H}{H_{\infty}} \right) \qquad (11)$$

where $k_1 = kH_{\infty} (C_0 - C_{\infty})$

If $C_0 \gg C_\infty$, we have

$$= kH_{\infty} (C_{0} - C_{\infty})$$
(12)
 $h \gg C_{\infty}$, we have
 $\frac{dH}{dt} = kH_{\infty} C_{0} \left(1 - \frac{H}{H_{\infty}}\right) = k_{2} \left(1 - \frac{H}{H_{\infty}}\right)$ (13)

where $k_2 = kH_{\infty}C_0$ (14) when $\left(\frac{dH}{dt}\right)_i$ is plotted versus $1 - \left(\frac{H}{H_{\infty}}\right)_i$ by the leastsquares method, this gives the values of k_2 and a in the e-

quation (15)

$$\frac{\mathrm{d}H}{\mathrm{d}t} = k_2 \left(1 - \frac{H}{H_{\infty}}\right) + a \tag{15}$$

If equation (10) is written as

$$\frac{\mathrm{d}m}{\mathrm{d}t} = km_{\infty} \left(C - C_{\infty} \right) + b \tag{16}$$

The equation (17) is obtained by combining eqs. (5), (6)and (16)

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\mathrm{d}m}{\mathrm{d}t} \left(\frac{H_{\infty}}{m_{\infty}}\right) = \frac{H_{\infty}}{m_{\infty}} \left[km_{\infty}\left(C - C_{\infty}\right) + b\right]$$
$$= \frac{H_{\infty}}{m_{\infty}} \left[km_{\infty}\left(C_{0} - C_{\infty}\right)\left(1 - \frac{H}{H_{\infty}}\right) + b\right]$$
$$= H_{\infty}k\left(C_{0} - C_{\infty}\right)\left(1 - \frac{H}{H_{\infty}}\right) + \frac{bH_{\infty}}{m_{\infty}}$$
$$= H_{\infty}kC_{0}\left(1 - \frac{H}{H_{\infty}}\right) + \frac{bH_{\infty}}{m_{\infty}} \quad (C_{0} \gg C_{\infty}) \quad (17)$$

Comparing eq. (15) with eq. (17), two relationships $\lceil \text{eqs.}(18) \text{ and } (19) \rceil$ are obtained

$$k = \frac{k_2}{H_{\infty}C_0} \tag{18}$$

and

$$b = \frac{am_{\infty}}{H_{\infty}} \tag{19}$$

Equations (18) and (19) relate k to k_2 and b to a, respectively.

If the values of the constants a and b are small in comparison with those of k_2 and k, the kinetics of the crystal growth processes can be expressed by eqs. (10) and (13).

Equations (10) and (13) are known as the thermokinetic equations of the crystal growth process.

Equation (13) is only an especial example (n = 1)of equation (8).

To verify the reliability of eqs. (8), (15) and (16)and obtain information about the kinetic parameters and the constants of RDX and HMX, the original thermokinetic data tabulated in Table 1 are fitted to the eqs. (8), (15) and (16) by the linear least-squares method. Results obtained, including the total heat produced, the reaction order (n), the rate constants (k, and k) during the crystallization of RDX and HMX from DMSO and cyclohexanone at 30 °C and that of HMX from HNO₃ at 34 $^{\circ}$ C, and the constants (a and b) in eqs. (15) and (16), are shown in Table 2.

99.12

102.4

106.7

1.506

1.172

0

		Table 1 Thermo	okinetic data of the cry	ystal gro	wth proc	esses of RDX	X and HMX		20	
		Experimental conditions N	Experimental conditions No. 2							
Temp.	Solute RDX	Solvent DMSO	Diluent 50. 1% DMSO-H ₂ O	Temp.	Solute RDX	Solvent DMSO	Seed RDX	50.1	Diluent 50.1% DMSO-H ₂ O	
<u> </u>	0.0084 g	;) (0.0250 g)	(0.6896 g)	<u> </u>	0.0084 g) (0.0250 g)	(0.4000 g)	E P	0.6896 g)	
	t/s	$(\mathrm{d}H/\mathrm{d}t)_i \cdot 10^4/\mathrm{J}\cdot\mathrm{s}^{-1}$	$(H_t)_i \cdot 10^2/\mathrm{J}$		t/s	(d <i>H</i> /d <i>t</i>	$)_i \cdot 10^4 / J \cdot$	s ⁻¹ ($(H_t)_i \cdot 10^2/\mathrm{J}$	
	210	6.962	3.180		210	_ \ \	10.77		9.623	
	240	6.648	5.146	. (240		9.477		12.18	
	270	6.766	7.113	01	270		8.895		14.73	
	300	6.171	9.079	61-	300		8.171		17.07	
	330	5.862	10.84		330		7.447		19.25	
	360	5.552	12.80		360		6.866		21.21	
	390	5.381	14.56		390		6.284		23.01	
	420	5.071	16.15		420		5.703		24.64	
	450	4.761	17.70	450			5.263		26.44	
	480	4.452	19.25		480		4.824		27.87	
	510	4.427	20.46	510 540 570 600 630 660			4.527 4.088		28.91	
	540	4.117	21.63						30.12	
	570	4.092	23.01				3.648		31.17	
	600	3.778	23.97				3.756 3.201 2.761 2.749		32.22	
	630	3.469	25.14						33.10	
	660	3.159	26.32						34.10	
	690	3.418	27.28		690 720 750				34.94	
	720	2.966	28.24				2.456		35.73	
	750	2.941	29.20				2.301		36.25	
	780	2.632	30.00	780 810			2.004		36.90	
	810	2.460	30.75				1.854		37.36	
	840	2.435	31.50		840		1.699		38.03	
	8	0	∞ 0 44.39							
		Experimental conditions N	Experimental conditions No. 4							
Tomp	Solute	Solvent Seed	Diluent	Tomp	Solute	Solvent	Sood		Diluent	
remp.	HMX	cyclohexanon HMX	$n - C_7 H_{16} / CCl_4 (1:1)$	remp.	HMX	HNO_3	Jeeu		H_2O	
30 C	0.0022 g	g) (0.1000 g) (0.4771 g)	(0.9555 g)	34 L	0.3648 g	g) (2.8685 g)		(0.7910 g)		
	t/s	$(\mathrm{d}H/\mathrm{d}t)_i \cdot 10^5/\mathrm{J}\cdot\mathrm{s}^{-1}$	$(H_t)_i \cdot 10^2/\mathrm{J}$	012	t∕min	(d <i>H</i> /	dt) _{<i>i</i>} /J · min	- 1	$(H_{i})_{i}/J$	
	210	111.2	22.72 5		1.25		21.42		3.473	-
	240	92.59	26.53		1.50		22.51		8.828	
	270	79.71	30.21		1.75		23.05		14.39	
	300	71.13	33.30		2.00		20.00		19.20	
	330	61.13	35.86		2.25		20.59		25.06	
	360	53,97	38.03		2.50		17.07		29.29	
	390	42.51	40.04		2.75		15.02		33.05	
	420	36.78	41 84		3 00		14.27		37 11	
	450	30.70	43 10		5.50		7 300		71 55	
	490	32.47	+3.10		5.50		5 420		11.33 77 7	
1	510	23. 89	44.33		0.30		J. 439		11.1	
1	510	21.00	45.27		7.50		4.812		83.76	
	540	16.74	46.32		8.50		3.515		87.86	
	570	12.43	46.65		10.5		2.761		94.98	

47.74

48.24

50.08

12.5

14.5

œ

10.96

6.653

0

600

630

œ

	Experin	nental conditio	ns No. 5			Experir	nental condition	s No 5
Temp.	Solute HMX	Solvent HNO ₂	Seed HMX	Diluent H ₂ O	Temp.	Solute HMX	Solvent HNO,	Seed Diluent
34 ℃	(0.3684 g)	$\frac{(2.8685 \text{ g})}{H/dt}$ / I · mi	(0.2089 g)	$\frac{(0.2089 \text{ g})}{(0.7910 \text{ g})} \frac{(0.7910 \text{ g})}{(H)}$		(0.3684 g)	(2.8685 g) (2.4685 g)	$(0.2089 \text{ g}) (0.7910 \text{ g})^{-1} (H) / I$
1.00)	44.56		13.43	5.50		4.226	77.07
1.25	5	34.18		23.35	7.50		3.096	83.76
1.50)	25.48		30.46	9.50		2.050	87.74
1.75	i .	21.21		36.57	12.5		0.627	92.76
2.00 2.75)	18.70 12.89		40.96 53.39	œ		0	96.55

Table 2 Total heat produced and crystal growth kinetics of RDX and HMX

<i>T/°</i> ℃	$H_{\infty}/J \cdot g^{-1}$	$\frac{\mathrm{d}H}{\mathrm{d}t} = H_{\infty} k \left(1 - \frac{H}{H_{\infty}}\right)^n$			$\frac{\mathrm{d}H}{\mathrm{d}t} = k_2 \left(1 - \frac{H}{H_{\infty}} \right) + a$			$\frac{\mathrm{d}m}{\mathrm{d}t} = k \ m_{\infty} \left(\ C - C_{\infty} \right) + b$	
		$k \cdot 10^{3} / \mathrm{s}^{-1}$	n	r	$k_2 \cdot 10^4 / \mathrm{J} \cdot \mathrm{s}^{-1}$	$a \cdot 10^5 / \mathrm{J} \cdot \mathrm{s}^{-1}$	r	$k \cdot 10^3 / \mathrm{s}^{-1}$	$b \cdot 10^6 / \text{g} \cdot \text{s}^{-1}$
30	52.2	1.75	0.906	0.996	7.21	4.59	0.996	1.39	0.879
30	52.8	3.10	1.01	0.999	13.7	-2.86	0.999	2.63	-0.542
30	227	4.23	1.00	0.996	20.1	1.89	0.998	19.5	0.083
34	270	3.63	0.996	0.994	4097	- 757	0.990	0.41	-28.0
34	253	7.45	1.33	0.995	7950	- 7267	0.964	0.788	- 287

From Table 2, the following observations can be made:

(1) The crystal growth processes of RDX and HMX are exothermic. The exothermic process may be expressed by the isothermal differential kinetic equation (8).

(2) The dilution / crystallization reactions of RDX and HMX under the studied conditions are found to be of the first order.

(3) BCF model [eq. (13)] is only an especial example (n = 1) of the general form [eq. (8)] of the crystal growth process.

(4) Because $n \approx 1$ in [eq. (8)], $k_2 \gg a$ in [eq. (15)] and $k \gg b$ in [eq. (16)], describing the kinetics of the crystal growth processes of RDX and HMX by the eqs. (15) and (16) are tenable. This indicates that the crystal growth processes of RDX and HMX from DMSO and cyclohexanone and that of HMX from HNO₃ accords

with the BCF dislocation theory.

(5) With the addition of seed crystals of RDX and HMX, the value of k is larger than that of k without seeds. This shows that the total number of nuclei in the seeded solution is greater than that in unseeded solution.

REFERENCES:

- [1] CHEN Xi-jun, LI Zhi-bin, HU Rong-zu. Investigation of the crystallization kinetics of cyclotrimethylenetrinitramine and cyclotetramethylenetetranitramine by microcalorimetry
 [J]. Thermochim. Acta, 1990, 173: 193 - 198.
- [2] CHEN Xi-jun, LI Zhi-bin, HU Rong-zu. Investigation of the crystallization kinetics of cyclotetramethylenetetranitramine from nitric acid by microcalorimetry [J]. Thermochim. Acta, 1995, 260: 243-245.
- Burton W K, Cabrera N, Frank F C. The growth of crystals and equilibrium structure of their surfaces [J]. Trans. Roy. Soc. (London), 1951, A243: 299 - 358.