Vol. 12, No. 1 February, 2004

文章编号: 1006-9941(2004)01-0059-03

雷管破片速度初探

iaterials.org.cn 郝建春,俞金良。 (南京理工大学化工学院,江苏南京210094)

摘要:介绍了雷管破片速度的靶线测定及其分布的试验方法,给出了该测试条件下破片速度的 衰减曲线以及沿雷管轴向的分布曲线。

关键词:应用物理学; 雷管; 破片速度; 靶线

中图分类号: TO565⁺.2

文献标识码: A

1 引 言

雷管在爆炸时,其能量输出形式包括三个方面: 即雷管本身的装药爆炸反应产物:雷管管壳和加强帽 在爆炸中产生的破片(飞片)效应; 雷管爆炸的冲击波 输出等。三种能量的表现形式在不同的引爆条件,其 作用的效应不同。当与炸药直接接触时,以冲击波作 用为主; 当与炸药的距离被严格控制在某个空间范围 内时,则以破片(飞片)的作用为主;装药爆炸的反应 生成物则对被起爆对象有直接的压缩和热作用。

在爆炸物理测试中,通常利用高速摄影仪来拍摄 雷管的爆炸过程,并对照片上雷管的外形变化进行多 幅跟踪测量,从而求出雷管爆炸时壳体(一般是金属 材质)形成破片时的速度和加速度[1]。这种方法直 观、准确,但设备昂贵,工作量大,测量费用高。因而, 在一定的假设条件下,在保证可接受的测试精度范围 内,利用靶线网多点捕捉雷管破片的可能性,成为本工 作的目的。

2 测试原理

在军品弹药性能测试中,常利用靶线法测量火炸 药或弹丸的爆速或弹道速度,其原理可简单理解为被 测介质通过设定的靶线,使其通一断或断一通时产生 的电参数的改变量来计算求得。

本试验是将多根相隔一定距离的连续靶线固定在 某基板上,每个靶线串联一设定阻值电阻,然后并联成

收稿日期: 2003-06-19; 修回日期: 2003-09-19

作者简介:郝建春(1950-),男,研究员,从事军事化学与烟火 技术专业的教学与研究。e-mail: haojianchun@ sohu. com

一靶板,在靶板两端施加一定的电压,当受试的8*军 用雷管爆炸时,记录靶线被破片切断时线路中的电压 变化及电压变化的时间间隔,从而求出破片的速度。 测试线路原理见图 1。图中 R1、R2、R3、R4 为串联电 阻, r_1 、 r_2 、 r_3 、 r_4 是靶线电阻, R_x 为耦合电阻。

图1 测试线路原理示意图

Fig. 1 Schematic principle diagram of the testing circuit

直流电源的输出电压为(10.0±0.1) V,要使各 靶线断裂时,在R,两端有一个明显的电压变化并反映 到记录仪上,必须适当地选择电阻 R_1 、 R_2 、 R_3 、 R_4 及 R_4 的值。各电阻的阻值及计算电压见表1。

表1 各电阻阻值及计算电压 Table 1 Value of every resistance and the calculated voltages

电阻	电阻值	米加 恒 户	并联电阻	R_x 端电压
	$/\Omega$	时轮帜厅	$/\Omega$	/V
R_1	993	$R_1 R_2 R_3 R_4$	619.7	8.06
R_2	2930	$R_2 R_3 R_4$	1648	6.09
R_3	6100	R_3R_4	3767	4.06
R_4	9850	R_4	9850	2.07
R_{x}	2570			0

注: R_x 端电压忽略了靶线电阻。

对理论计算的靶板电压进行静态标定,结果见图2。

试验使用的记录仪是 DAS-820M 高速数据采集分 析系统, 雷管采用 8[#]军用雷管, 打印机为 TX-800 型, 直流电源。

3 测试结果

试验中共测试18发雷管,其中捕捉到数据14发, 认为可能被同一破片切断靶线的有效数据4 组/发,靶 板参数见表2,典型的测试曲线见图3。

表2 靶板参数 Table 2 The parameter of the target board

序号	d_1/cm	d_2/cm	d_3 /cm	d_4 /cm	h∕cm
1	0.45	1.00	1.54	2.01	1.60
2	0.44	0.88	1.35	1.88	1.67
3	1.20	1.75	2.24	2.78	1.55
4	1.85	2.41	2.89	3.36	1.48

注: d 为靶线距雷管边缘的距离; h 为靶板水平面距雷管 底部平面的距离。

对测试曲线上电压为 6.24、4.08、2.08 V 各点进

行测量,得到相应各靶线被切断的时间(从瞬态记录 仪上可直接读出),从而可得出对应于各距离点的速 度值,结果见表3。

表3 测量及计算结果 Table 3 The results of the measurement and the calculation

_в г.С.	$t_1(6.24)$	$t_2(4.08)$	$t_3(2.08)$	$t_4(0.00)$
序专	∕µs	∕µs	∕µs	∕µs
(9)	0.6	4.9	9.8	17.4
2	0.8	4.3	8.1	16.5
3	1.6	6.0	10.0	18.2
4	1.8	6.1	10.4	18
序号	$(t_2 - t_1)/\mu$	us $(t_3 -$	$(t_2)/\mu s$	$(t_4 - t_3)/\mu s$
1	4.3	2	4.9	7.6
2	3.5	3	3.8	8.4
3	4.4	4	4.0	8.2
4	4.3	2	4.3	7.6
 序号	$\frac{4.3}{(d_2 - d_1)/d_1}$	cm (d ₃ -	$\frac{4.3}{(d_2)/cm}$	7.6 $(d_4 - d_3)/cm$
 序号 1	$\frac{4.3}{(d_2 - d_1)/6}$ 0.55	$cm (d_3 - 0)$	$\frac{4.3}{(d_2)/cm}$	7.6 $(d_4 - d_3)/cm$ 0.47
	$ \begin{array}{r} 4.3 \\ (d_2 - d_1) \\ 0.55 \\ 0.44 \end{array} $	cm ($d_3 - 0$	$\frac{4.3}{(d_2)/cm}$ 0.54 0.47	$\frac{7.6}{(d_4 - d_3)/\text{cm}}$ 0.47 0.53
 序号 1 2 3	$ \begin{array}{r} 4.3 \\ \hline (d_2 - d_1)/d_1 \\ 0.55 \\ 0.44 \\ 0.55 \end{array} $	cm (d_3 – 0 0 0 0	$\frac{4.3}{d_2} / \text{cm}$ 0.54 0.47 0.49	7.6 $(d_4 - d_3)/cm$ 0.47 0.53 0.54
 序号 1 2 3 4	$ \begin{array}{r} 4.3 \\ (d_2 - d_1)/d_2 \\ 0.55 \\ 0.44 \\ 0.55 \\ 0.56 \\ \end{array} $	cm (d_3 – 0 0 0 0 0 0 0	4.3 d ₂)/cm 54 4.47 4.49 4.48	7.6 $(d_4 - d_3)/cm$ 0.47 0.53 0.54 0.47
4 序号 1 2 3 4 序号	$ \begin{array}{r} 4.3 \\ (d_2 - d_1)/0 \\ 0.55 \\ 0.44 \\ 0.55 \\ 0.56 \\ v_1/m \cdot s^{-1} \end{array} $	$(d_3 - 0)$	$\frac{4.3}{d_2}/cm$ $\frac{3.54}{0.47}$ $\frac{4.49}{0.48}$ $\frac{1.49}{0.48}$	7.6 $(d_4 - d_3)/cm$ 0.47 0.53 0.54 0.47 $v_3/m \cdot s^{-1}$
4 序号 1 2 3 4 序号 1	$ \begin{array}{r} 4.3 \\ (d_2 - d_1)/d \\ 0.55 \\ 0.44 \\ 0.55 \\ 0.56 \\ v_1/m \cdot s^{-1} \\ 1280 \end{array} $	$(d_3 - 0)$ $(d_3 - 0)$ (0) (0	$\frac{4.3}{d_2}/cm$ $\frac{3.54}{2.47}$ $\frac{4.49}{2.48}$ $\frac{1.48}{100}$	7.6 $(d_4 - d_3)/cm$ 0.47 0.53 0.54 0.47 $v_3/m \cdot s^{-1}$ 620
4 序号 1 2 3 4 序号 1 2 3 4 序号 1 2	$ \begin{array}{r} 4.3 \\ (d_2 - d_1)/d_2 \\ 0.55 \\ 0.44 \\ 0.55 \\ 0.56 \\ \hline v_1/m \cdot s^{-1} \\ 1280 \\ 1260 \end{array} $	$ \frac{cm}{cm} (d_3 - \frac{0}{0}) \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ v_2/r \\ 1 \\ 1 \\ 1 $	$\frac{4.3}{d_2}/cm$ 0.54 0.47 0.49 0.48 $m \cdot s^{-1}$ 100 180	$\frac{7.6}{(d_4 - d_3)/\text{cm}}$ 0.47 0.53 0.54 0.47 $\frac{v_3/\text{m} \cdot \text{s}^{-1}}{620}$
4 序号 1 2 3 4 序号 1 2 3 4 房号 3 4	$ \begin{array}{r} 4.3 \\ (d_2 - d_1)/d \\ 0.55 \\ 0.44 \\ 0.55 \\ 0.56 \\ \hline v_1/m \cdot s^{-1} \\ 1280 \\ 1260 \\ 1250 \\ \end{array} $	$ \frac{cm}{cm} (d_3 - \frac{1}{2}) = \frac{1}{2} \frac{1}{2} \frac{v_2 / r}{r} $	$\frac{4.3}{d_2}/cm$ 0.54 0.47 0.48 $m \cdot s^{-1}$ 100 180 130	7.6 $(d_4 - d_3)/cm$ 0.47 0.53 0.54 0.47 $v_3/m \cdot s^{-1}$ 620 630 660

分析与讨论 4

将表3中各点的速度值与测试所对应的每个靶板 中的 d(见表 2 序号) 作图, 可得到相应的四条速度衰 减曲线(拟合曲线),见图4。

从图4中的任何一条曲线都可以看出,破片速度

随着飞行距离的增大,衰减很快。对表4中4号产品 测试数据进行拟合,其衰减规律符合

 $v = -0.479 \ 6e^{2.199d} + 1 \ 396.07$

当 d 较小时,破片沿径向速度衰减不大,但随着 d 的增加,速度的衰减加大。

由图4还可以看出,对应于相同的破片速度,其衰 减距离随着h的缩小而增加,即破片速度是h和d的 二元函数。

v = f(h,d)

取 d = 1.5 cm 处对应的各速度值,可得到雷管破 片速度沿雷管轴向的分布曲线,见图5。

Fig. 5 The distribution curve of the axial fragment velocity (d = 1.5 cm)

对图5中的曲线进行拟合,得到雷管破片速度沿 雷管轴向的衰减规律为

 $v = -1\ 026.\ 3e^{0.\ 64h} + 4\ 010.\ 2$

本试验的先决条件是粗略地假设各靶线由同一块 破片切断,对于大破片基本可满足假设条件。而对手 小破片,则不可能切断所有靶线。在试验中也发现,有

的靶线被切断2根或3根,同时破片的形状对测量亦 会产生误差。另外,当破片冲击靶线时,在未切断靶线 之前,靶线将由于破片的冲击而产生拉伸变形,并在靶 线中产生弯曲波扰动,在低爆速状态下,这种扰动对测 试的影响较大,从而产生误差^[3]。综合本实验条件和 数据,所拟合破片衰减规律公式适用性受到一定的限 制。

结 语

5

设计合适的装置,配合测试雷管破片速度可以定 量评价雷管的起爆能力,目前正受到专业人士的普遍 关注。关于这方面的研究已有报道。本实验是基于 Jahanson^[4]实验的雷管起爆能力在有限空间分布的对 称性,从一个侧面探讨雷管破片的衰减性,进而寻找一 个最简便可行的测试方案。本试验结果表明,该方法 简单、经济,在试验条件的范围内可行。同时也预示从 试验方法本身、数据处理、结果规律的总结等方面都有 待于进一步完善。

参考文献:

- [1] 杨权中,张春云.爆炸物理测试技术[M].南京:华东 工学院,1988.6.
- [2] 杨文彬. 滑移爆轰下飞板飞行速度测量的实验方法 [J]. 爆炸与冲击,1986,1.
- [3] 谢兴华. 矿用雷管破片速度的测试[J]. 火工品, 1994, (1): 12 - 16.XIE Xing-hua. Measurement of fly fragment velocity of

mine detonator [J]. INITIATORS & PYROTECHNICS, 1994, (1): 12 - 16.

[4] 蔡瑞娇.火工品设计原理[M].北京:北京理工大学 出版社,1990.10.

Study on the Fragment Velocity Measurement after Explosion of Detonator

HAO Jian-chun, YU Jin-liang

(School of Chemical Engineering NUST, Nanjing 210094, China)

WWW.ene Abstract: A test method named target wires measurement was described, which was proved to be efficient and convenient in measuring the fragment velocity after explosion of detonator. Attenuation curves of the fragment velocity and distribution curve of the fragment velocity along the axis of detonator under the test conditions were obtained.

Key words: applied physics; detonator; fragment velocity; target wire