文章编号:1006-9941(2009)06-0694-05

4. ch 钻(III)配合物[Co(NH₃)₄(N₃)₂]ClO₄ 合能材料 晶体结构及激光化学感度

盛涤伦,马凤娥,张裕峰,朱雅红,陈利魁,杨 斌 (陕西应用物理化学研究所,陕西西安710061)

摘要:制备了高氯酸·四氨·双叠氮基合钴(Ⅲ)(DACP)的单晶;用 X-ray 单晶面探衍射仪测定了其晶体结构。结果 表明,晶体属三斜晶系,空间群为 P-1。晶体学参数为: α=0.74229(9)nm,α=93.244(2)°; b=1.21273(14) nm, β = 100.074(2)°; *c* = 1.8124(2) nm, γ = 98.033(2)°。 晶胞体积 *V* = 1.5851(3) nm³, 晶胞分子数 *Z* = 6, 计算密度 $D_{\rm c}$ =1.952 mg·mm⁻³,线性吸收系数 μ =1.901 mm⁻¹,单胞中电子数目 F(000) =948。该化合物对 635 nm 的激光非常敏感。

关键词:物理化学; 钴(Ⅲ)配合物; 晶体结构; 激光化学感度 中图分类号:TJ55;064

文献标识码⋅A

DOI: 10.3969/j.issn.1006-9941.2009.06.013

1 引 言

钴氨配位化合物含能材料的研究近年来一直比较 活跃。典型代表有:高氯酸・五氨・(5-氰基四唑)合 钴(Ⅲ)(CP)^[1-2],高氯酸·四氨·双(5-硝基四唑)合 钴(Ⅲ)(BNCP)等^[3]。BNCP的特点是结构中增加了 两个功能性的配位体 5-硝基四唑(NT),从而使它的燃 烧转爆轰时间、输出能量等作用性能优于 CP。BNCP 耐温性能好,适应于热桥丝发火和激光点火,在美国已 经应用于燃烧转爆轰雷管,半导体桥雷管,激光起爆器 以及多种点火元件中^[4-7]。

笔者已经完成了对 CP 和 BNCP 的研制^[8-9]。目前, BNCP 已经试用于军用雷管和石油民爆产品中。虽然 BNCP 有诸多优点,但 BNCP 需要首先合成原料 5-硝基四 唑钠(NaNT),使 BNCP的合成路线较长,成本较高。

叠氮基也是一种性能良好的配位基团,原料易购。 故设计具有如下分子结构的新含能材料,化学名称为 高氯酸 · 四氨 · 双叠氮基合钴(Ⅲ)(DACP), $[Co(NH_3)_4(N_3)_2]ClO_4$,并完成了该化合物的合成及 主要基本性能研究^[10]。

经过试验证明: DACP 性能与 BNCP 相当,属安全 钝感型起爆药。DACP 可以代替 BNCP 用于军用各种 钝感型雷管和工程雷管中。

为了更好地表征 DACP 的结构,充分开发 DACP 的用途,为今后理论和应用研究提供基础数据,本研究

制备了 DACP 的单晶,测定了晶体结构,并研究了它的 激光化学感度。

2 实验部分

2.1 试剂和仪器

硝酸・四氨・碳酸根合钴(Ⅲ)(CTCN): 自制; 叠氮化钠 NaN₃: 工业品,含量 95%; HClO₄:分析纯, 70% ~ 72% .

美国 Nicolet 公司 Magna-760 红外光谱仪(4000~ 400 cm⁻¹),日本 VHX-100K 三维视频显微镜;德国 Bruker smart apex Ⅱ CCD 型 X-ray 单晶面探仪, U-340 分光光度计,半导体激光器。

2.2 DACP 单晶制备和分析

采用 CTCN 和 NaN, 为原料合成 DACP。

合成反应原理为:

 $[Co(NH_3)_4CO_3]NO_3 + 2NaN_3 + 3HClO_4 \rightarrow$

 $[Co(NH_3)_4(N_3)_2]ClO_4 + HNO_3 + 2NaClO_4 + CO_2 + H_2O$

采用重结晶方法制备 DACP 的单晶。在 60~ 80 ℃下,将合成得出的DACP配制饱和水溶液,过滤, 将滤液冷却至室温。放置若干天后得到紫黑色的 DACP大结晶。从中挑选出适当大小的单个结晶颗粒 进行 X-ray 单晶分析。

大结晶 DACP 的结晶外貌如图 1 所示,其红外分 析如图2所示。

DACP 的结晶外貌为多棱柱体,红外图与直接合成 品 DACP 红外图谱一致。主要官能团的特征吸收峰为: $v_{(NH_2)} = 3345 \text{ cm}^{-1}, 3255 \text{ cm}^{-1}, \delta_{(NH_2)} = 1628 \text{ cm}^{-1}_{\circ}$ $v_{(CI0,-1)} = 1087 \text{ cm}^{-1}, 625 \text{ cm}^{-1}, v_{(N_c^{-1})} = 2024 \text{ cm}^{-1}, 1288 \text{ cm}^{-1}$

收稿日期:2009-03-12;修回日期:2009-06-07

作者简介:盛涤伦(1956-),男,研究员,硕士,主要从事新型含能材料 的研究与应用开发工作。

大结晶 DACP 的化学成分分析值(%)为: Co³⁺ 18.80, NH₃ 22.71, ClO₄ 31.82; 分子结构计算 值: Co³⁺ 18.97, NH₃ 21.90, ClO₄ 32.02。因而,制备 的大结晶 DACP 的分子结构、质量与合成样品一致。

2.3 DACP 晶体结构测定

选取 0.34 mm × 0.16 mm × 0.05 mm 单晶,置于 单晶衍射仪上进行衍射试验。用 MoKα 射线(λ = 0.071073 nm) 扫描。衍射实验温度: 296(2) K,数据 收集的 θ 角范围: 1.97°~25.10°, 衍射指标: $-8 \le h \le 8$, $-14 \le k \le 12$, $-21 \le l \le 20$ 。共收集衍射 点 8155 个, 其中独立衍射点 5550 个 [R(int) = 0.0124]。θ = 25.10°的完整度为98.5%。最大与最 小透过率为 0.9076 和 0.5659。精修方法为基于 F² 的全矩阵最小二乘法。数据/限制/参数的个数 5550/ 0/446。基于 F² 的 拟 合 优 度 1.041。 对于 $I > 2\sigma(I)$ 数据的最终残差因子 $R_1 = 0.0250$, $wR_2 = 0.0767$; 对 所有数据的残差因子 $R_1 = 0.0648$, $wR_2 = 0.0843$ 。消 光系数为0.00075(5)。

3 结果与讨论

3.1 DACP 晶体结构描述

经过德国 Bruker AXS 的 SHELXTL 程序计算, DACP

晶体属于三斜晶系,空间群为 P-1。有关晶体学数据 见表1。DACP 晶体的分子结构如图 3 所示。DACP 的键角与键长、扭转角数据分别见表 2、表 3 和表 4。

3.2 DACP 晶体结构讨论

每个 DACP 晶胞有 6 个分子。3 个分子在空间结 构上有差异,其中一个分子的阴离子(-ClO₄)与阳离 子(-Co⁺³)的距离相对于其它2个分子更远。

表	ŧ 1	DACP	的晶	体学数	数据	
Fable1	Су	rtallogra	aphic	data	for	DACI

- 91	表 1 DACP 的晶体学数据 Table1 Cyrtallographic data for DACP						
(10	parameter	results					
	empirical formula	H ₁₂ ClCoN ₁₀ O ₄					
	formula weight	310.58					
	color	black					
	habit	cubical column					
	crystal size/mm	$0.34 \times 0.16 \times 0.05$					
	θ range for data collection/(°)	1.97 to 25.10					
	crystal system	triclinic					
	space group	<i>P</i> -1					
	a/nm	0.74229(9)					
	α/(°)	93.244(2)					
	b∕ nm	1.21273(14)					
	β/(°)	100.074(2)					
	c/nm	1.8124(2)					
	γ/(°)	98.033(2)					
	volume/nm ³	1.5851(3)					
	Ζ	6					
	calculated density/g \cdot cm $^{-3}$	1.952					
	F(000)	948					
	absorption coefficient μ /mm $^{-1}$	1.901					
Ē	reflections collected	8155					
0,	unique	5550 [$R(int) = 0.0124$]					
2	final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0250, wR_2 = 0.0767$					
舌	R indices (all data)	$R_1 = 0.0648$, $wR_2 = 0.0843$					
:	largest diff. peak and hole/e \cdot nm $^{-3}$	317 and -418					

图 3 DACP 的晶体结构 Fig. 3 Structure of DACP crystal

含能材料

表 2 DACP 分子的键角 Table 2 Bond angles for DACP

bond	angle/(°)	bond	angle/(°)	bond	angle/(°)
N(4)-Co(1)-N(20)	176.56(4)	N(7)-Co(2)-N(26)	88.79(5)	N(16)-Co(3)-N(27)	88.28(5)
N(4) - Co(1) - N(1)	88.35(4)	N(7) - Co(2) - N(25)	176.47(4)	N(16)-Co(3)-N(28)	(176.64(4)
N(20) - Co(1) - N(1)	88.31(4)	N(26) - Co(2) - N(25)	90.04(5)	N(27)-Co(3)-N(28)	90.70(5)
N(4) - Co(1) - N(22)	90.46(5)	N(7) - Co(2) - N(23)	90.21(5)	N(16) - Co(3) - N(30)	90.48(5)
N(20) - Co(1) - N(22)	90.39(5)	N(26) - Co(2) - N(23)	177.43(4)	N(27)-Co(3)-N(30)	177.41(4)
N(1) - Co(1) - N(22)	90.62(4)	N(25) - Co(2) - N(23)	90.82(5)	N(28) - Co(3) - N(30)	90.42(5)
N(4) - Co(1) - N(19)	88.26(5)	N(7) - Co(2) - N(10)	88.57(4)	N(16) - Co(3) - N(13)	88.53(4)
N(20) - Co(1) - N(19)	90.76(4)	N(26) - Co(2) - N(10)	87.21(4)	N(27) - Co(3) - N(13)	87.31(4)
N(1) - Co(1) - N(19)	87.15(4)	$N(25) - C_0(2) - N(10)$	88.05(4)	N(28) - Co(3) - N(13)	88.23(4)
N(22) - Co(1) - N(19)	177.45(4)	N(23) - Co(2) - N(10)	90.39(4)	N(30) - Co(3) - N(13)	90.39(4)
N(4) - Co(1) - N(21)	93.95(4)	$N(7) - C_0(2) - N(24)$	93.57(4)	N(16) - Co(3) - N(29)	93.42(4)
$N(20) - C_0(1) - N(21)$	89.36(4)	N(26) - Co(2) - N(24)	91.39(4)	N(27) - Co(3) - N(29)	91.40(4)
N(1) - Co(1) - N(21)	177.28(4)	N(25) - Co(2) - N(24)	89.78(4)	N(28) - Co(3) - N(29)	89.80(4)
$N(22) - C_0(1) - N(21)$	90.82(4)	N(23) - Co(2) - N(24)	91.03(4)	N(30) - Co(3) - N(29)	90.94(4)
$N(19) - C_0(1) - N(21)$	91.47(4)	N(10) - Co(2) - N(24)	177.42(4)	N(13) - Co(3) - N(29)	177.63(4)
N(2) - N(1) - Co(1)	118.30(7)	N(8) - N(7) - Co(2)	125.96(9)	N(14) - N(13) - Co(3)	118.90(8)
N(3) - N(2) - N(1)	176.83(11)	N(9) - N(8) - N(7)	174.76(13)	N(15) - N(14) - N(13)	177.41(12)
N(5) - N(4) - Co(1)	125.65(9)	N(11) - N(10) - Co(2)	118.38(8)	N(17) - N(16) - Co(3)	126.28(9)
N(6) - N(5) - N(4)	174.18(13)	N(12) - N(11) - N(10)	177.32(11)	N(18) - N(17) - N(16)	175.14(13)
$C_0(1) - N(19) - H(19A)$	109.50	$C_0(2) - N(23) - H(23A)$	109.50	Co(3) - N(27) - H(27A)	109.50
$C_0(1) - N(19) - H(19B)$	109.50	$C_0(2) - N(23) - H(23B)$	109.50	Co(3) - N(27) - H(27B)	109.50
H(19A)—N(19)—H(19B)	109.50	H(23A) - N(23) - H(23B)	109.50	H(27A)-N(27)-H(27B)	109.50
Co(1) - N(19) - H(19C)	109.50	$C_0(2) - N(23) - H(23C)$	109.50	Co(3) - N(27) - H(27C)	109.50
H(19A) - N(19) - H(19C)	109.50	H(23A) - N(23) - H(23C)	109.50	H(27A)-N(27)-H(27C)	109.50
H(19B) - N(19) - H(19C)	109.50	H(23B) - N(23) - H(23C)	109.50	H(27B)-N(27)-H(27C)	109.50
Co(1) - N(20) - H(20A)	109.50	Co(2) - N(24) - H(24A)	109.50	Co(3)—N(28)—H(28A)	109.50
Co(1) - N(20) - H(20B)	109.50	Co(2) - N(24) - H(24B)	109.50	Co(3)—N(28)—H(28B)	109.50
H(20A) - N(20) - H(20B)	109.50	H(24A) - N(24) - H(24B)	109.50	H(28A)-N(28)-H(28B)	109.50
Co(1) - N(20) - H(20C)	109.50	Co(2)-N(24)-H(24C)	109.50	Co(3)—N(28)—H(28C)	109.50
H(20A) - N(20) - H(20C)	109.50	H(24A) - N(24) - H(24C)	109.50	H(28A)-N(28)-H(28C)	109.50
H(20B) - N(20) - H(20C)	109.50	H(24B) - N(24) - H(24C)	109.50	H(28B)-N(28)-H(28C)	109.50
Co(1) - N(21) - H(21A)	109.50	Co(2) - N(25) - H(25A)	109.50	Co(3) - N(29) - H(29A)	109.50
Co(1) - N(21) - H(21B)	109.50	Co(2) - N(25) - H(25B)	109.50	Co(3) - N(29) - H(29B)	109.50
H(21A) - N(21) - H(21B)	109.50	H(25A) - N(25) - H(25B)	109.50	H(29A) - N(29) - H(29B)	109.50
Co(1) - N(21) - H(21C)	109.50	$C_0(2) - N(25) - H(25C)$	109.50	Co(3) - N(29) - H(29C)	109.50
H(21A) - N(21) - H(21C)	109.50	H(25A) - N(25) - H(25C)	109.50	H(29A)-N(29)-H(29C)	109.50
H(21B)-N(21)-H(21C)	109.50	H(25B) - N(25) - H(25C)	109.50	H(29B)-N(29)-H(29C)	109.50
Co(1)-N(22)-H(22A)	109.50	Co(2) - N(26) - H(26A)	109.50	Co(3) - N(30) - H(30A)	109.50
Co(1) - N(22) - H(22B)	109.50	Co(2) - N(26) - H(26B)	109.50	Co(3) - N(30) - H(30B)	109.50
H(22A)-N(22)-H(22B)	109.50	H(26A) - N(26) - H(26B)	109.50	H(30A)-N(30)-H(30B)	109.50
Co(1)-N(22)-H(22C)	109.50	Co(2) - N(26) - H(26C)	109.50	Co(3) - N(30) - H(30C)	109.50
H(22A) - N(22) - H(22C)	109.50	H(26A)-N(26)-H(26C)	109.50	H(30A)-N(30)-H(30C)	109.50
H(22B) - N(22) - H(22C)	109.50	H(26B)-N(26)-H(26C)	109.50	H(30B)-N(30)-H(30C)	109.50
0(3) - Cl(1) - 0(2)	109.99(6)	0(8) - Cl(2) - O(7)	109.33(6)	0(11) - Cl(3) - 0(12)	108.92(6)
0(3) - Cl(1) - O(1)	109.07(6)	0(8) - Cl(2) - O(6)	109.50(6)	0(11) - Cl(3) - 0(10)	109.74(6)
0(2) - Cl(1) - 0(1)	109.36(6)	0(7) - Cl(2) - O(6)	110.03(6)	0(12) - Cl(3) - 0(10)	109.97(6)
0(3) - Cl(1) - O(4)	110.15(6)	0(8) - Cl(2) - O(5)	109.86(6)	0(11) - Cl(3) - 0(9)	110.02(6)
0(2) - Cl(1) - 0(4)	109.66(6)	0(7) - Cl(2) - O(5)	109.51(6)	0(12) - Cl(3) - 0(9)	108.60(6)
0(1) - Cl(1) - 0(4)	108.59(6)	0(6) - Cl(2) - O(5)	108.60(6)	0(10) - Cl(3) - O(9)	109.57(6)

bond	bond length/nm	bond	bond length/nm	bond	bond length/nm
Co(1)-N(4)	0.19396(11)	Co(2) - N(7)	0.19427(11)	Co(3) - N(16)	0.19420(11)
Co(1) - N(20)	0.19546(10)	Co(2) - N(26)	0.19487(10)	$C_0(3) - N(27)$	0.19534(10)
Co(1) - N(1)	0.19643(9)	Co(2) - N(25)	0.19539(11)	Co(3) - N(28)	0.19559(11)
Co(1) - N(22)	0.19644(10)	Co(2) - N(23)	0.19555(10)	Co(3) N(30)	0.19577(11)
Co(1) - N(19)	0.19642(10)	Co(2) - N(10)	0.19645(9)	Co(3) - N(13)	0.19628(9)
Co(1) - N(21)	0.19773(9)	Co(2) - N(24)	0.19699(9)	Co(3) - N(29)	0.19694(9)
N(1) - N(2)	0.11963(14)	N(7) - N(8)	0.11887(13)	N(13) - N(14)	0.12056(15)
N(2) - N(3)	0.11455(15)	N(8) - N(9)	0.11485(14)	N(14) - N(15)	0.11445(16)
N(4) - N(5)	0.11967(12)	N(10)-N(11)	0.12016(14)	N(16) - N(17)	0.11858(13)
N(5) - N(6)	0.11534(14)	N(11) - N(12)	0.11465(15)	N(17) - N(18)	0.11473(15)
N(19)—H(19A)	0.08900	N(23)—H(23A)	0.08900	N(27)—H(27A)	0.08900
N(19)—H(19B)	0.08900	N(23) - H(23B)	0.08900	N(27)—H(27B)	0.08900
N(19)-H(19C)	0.08900	N(23)-H(23C)	0.08900	N(27)-H(27C)	0.08900
N(20)—H(20A)	0.08900	N(24)—H(24A)	0.08900	N(28)-H(28A)	0.08900
N(20) - H(20B)	0.08900	N(24)—H(24B)	0.08900	N(28)-H(28B)	0.08900
N(20)-H(20C)	0.08900	N(24)—H(24C)	0.08900	N(28)-H(28C)	0.08900
N(21)—H(21A)	0.08900	N(25)—H(25A)	0.08900	N(29)-H(29A)	0.08900
N(21) - H(21B)	0.08900	N(25)—H(25B)	0.08900	N(29)-H(29B)	0.08900
N(21)-H(21C)	0.08900	N(25)-H(25C)	0.08900	N(29)-H(29C)	0.0900
N(22)—H(22A)	0.08900	N(26)—H(26A)	0.08900	N(30)-H(30A)	0.08900
N(22) - H(22B)	0.08900	N(26)—H(26B)	0.08900	N(30)-H(30B)	0.08900
N(22)-H(22C)	0.08900	N(26)—H(26C)	0.08900	N(30)-H(30C)	0.08900
Cl(1) - O(3)	0.14316(9)	Cl(2) - O(8)	0.14259(11)	Cl(3) - O(11)	0.14259(10)
Cl(1) - O(2)	0.14344(10)	Cl(2) - O(7)	0.14281(9)	Cl(3) - O(12)	0.14341(10)
Cl(1) - O(1)	0.14402(9)	Cl(2) - O(6)	0.14373(10)	Cl(3) - O(10)	0.14377(11)
Cl(1) - O(4)	0.14425(10)	Cl(2) - O(5)	0.14407(9)	Cl(3) - O(9)	0.14383(10)

表 3 DACP 分子的键长 Table 3 Bond lengths for DACP

表 4 DACP 分子中键的扭转角

Fable 4	Torsion	angles	for	DACP

bond	torsion angle /(°)	bond	torsion angle /(°)	bond	torsion angle ∕(°)
N(4)-Co(1)-N(1)-N(2)	-47.16(9)	N(26)-Co(2)-N(7)-N(8)	98.37(12)	N(16)-Co(3)-N(13)-N(14)	-46.81(10)
N(20) - Co(1) - N(1) - N(2)	133.66(9)	N(25)-Co(2)-N(7)-N(8)	169.10(7)	N(27)-Co(3)-N(13)-N(14)	-135.16(10)
N(22) - Co(1) - N(1) - N(2)	43.28(9)	N(23)-Co(2)-N(7)-N(8)	-84.00(12)	N(28)-Co(3)-N(13)-N(14)	134.06(10)
N(19) - Co(1) - N(1) - N(2)	-135.50(9)	N(10)-Co(2)-N(7)-N(8)	-174.39(12)	N(30)-Co(3)-N(13)-N(14)	43.66(10)
N(21)-Co(1)-N(1)-N(2)	165.10(8)	N(24)-Co(2)-N(7)-N(8)	7.05(12)	N(29)-Co(3)-N(13)-N(14)	167.70(10)
Co(1) - N(1) - N(2) - N(3)	-172.00(2)	Co(2) - N(7) - N(8) - N(9)	-174.90(15)	Co(3) - N(13) - N(14) - N(15)	-165.00(3)
N(20) - Co(1) - N(4) - N(5)	-172.30(7)	N(7) - Co(2) - N(10) - N(11)	47.30(9)	N(27)-Co(3)-N(16)-N(17)	-98.08(12)
N(1)-Co(1)-N(4)-N(5)	173.83(12)	N(26) - Co(2) - N(10) - N(11)	136.16(9)	N(28)— $Co(3)$ — $N(16)$ — $N(17)$	-170.40(8)
N(22) - Co(1) - N(4) - N(5)	83.23(12)	N(25)-Co(2)-N(10)-N(11)	-133.70(9)	N(30)-Co(3)-N(16)-N(17)	84.20(12)
N(19) - Co(1) - N(4) - N(5)	-98.97(11)	N(23)-Co(2)-N(10)-N(11)	-42.90(9)	N(13)— $Co(3)$ — $N(16)$ — $N(17)$	174.57(12)
N(21)-Co(1)-N(4)-N(5)	-7.62(12)	N(24) - Co(2) - N(10) - N(11)	-166.50(9)	N(29) - Co(3) - N(16) - N(17)	-6.78(13)
Co(1)-N(4)-N(5)-N(6)	162.80(13)	Co(2) - N(10) - N(11) - N(12)	-178.00(100)	Co(3) - N(16) - N(17) - N(18)	178.00(100)

由于—N₃的影响使得以钴为中心的八面体结构不 对称,产生 2°~4°的变形。将—N₃上两个实测的 N—N 键长[N(1)—N(2):0.11963(14) nm; N(2)—N(3): 0.11455(15) nm]与标准键长(N—N:0.125 nm; N—N:0.110 nm)对比可知:—N₃上的键合性能处于 双键 与三键之间,N(1)—N(2)更具有双键性能, N(2)—N(3)更具有三键性能。并且,每个分子中的 2 个—N₃与 Co 键合后,键角的弯曲程度不同,例如: N(2)—N(1)—Co(1):118.30(7)°,N(3)—N(2)—N(1): 176.83 (11)°; m N(5)−N(4)−Co(1): 125.65 (9)°, N(6)−N(5)−N(4): 174.18(13)°_°

所有 N—H 键长相等(0.08900 nm),并且所有 以—NH₃中的 N 为顶点与相邻两个原子构成的空间 角度相等(109.5°),所以 Co—NH₃形成了对称性四面 体。所有—ClO₄中的 Cl—O 键长不相等,O—Cl—O 的键角也不相等,所以—ClO₄是非对称四面体结构。

钴原子与4个氨、2个叠氮基中的6个氮原子连接的键长均较长,达到0.19396~0.19773 nm,键合较

3.3 DACP 激光化学感度

利用 U-340 分光光度计,60 mm 直径球形积分仪, 对比测定了 BNCP、DACP 的光吸收性能。

BNCP的主要吸收峰为:可见455.4 nm,近红外2054.6 nm、2162.1 nm和2432.4 nm

DACP的主要吸收峰为:紫外有宽吸收,可见 527.8 nm、642.0 nm 处有宽吸收,近红外 1556.9 nm、 1865.6 nm、2036.9 nm、2164.4nm 和 2467.0 nm。

由于 DACP 在可见光 527.8 nm、642.0 nm 有连续 吸收,而 BNCP 仅在 455.4 nm 有单峰吸收。因此,在 可见光的单色激光范围内,用 635 nm 波长的激光器作 用于 DACP,更容易引起 DACP 发生外层电子跃迁而 发生激发分解反应,也就是说 DACP 的激光感度比 BNCP 高。DACP 与 BNCP 激光化学感度对比见表 5。

通过对比,DACP对 635 nm 波长的单色激光的化 学反应敏感程度要比 BNCP 高一个数量级。因而, DACP 可以作为激光特征敏感化合物优良样品之一应 用于激光点火与起爆装置。

表 5 激光化学感度的验证试验结果(激光器: 635 nm) Table 5 The laser sensitivities of DACP and BNCP with a wavelength of 635 nm

sample name	50% firing energy density /J · cm ⁻²	99% firing energy density /J · cm ⁻²	0.01% firing energy density $/J \cdot cm^{-2}$	SD / J · cm ⁻²
DACP	1.45	2.118	0.793	0.220
BNCP	10.66	12.120	9.820	0.650

参考文献:

[1] 盛涤伦,于天义,许碧英,等. 安全钝感药剂一高氯酸五氨[2-(5-氰基四唑)]合钴(Ⅲ)[J]. 火工品,1989,4:4-8.

SHENG Di-lun, YU Tian-yi, XU Bi-ying, et al. The safety insensitiv-

ity initiating explosive — 2-(5-cyanotetrazolato) pentaammiuecobalt
(Ⅲ)[J]. Initiator & Pyrotechnics, 1989, (4): 4-8.

- [2] Lieberman M L, Fronabarger J W. Status of development of 2-(5-cyanotetrazolato) pentaamine cobalt(III) perchlorate for DDT devices[R]. SAND 80 - 0204G, 1980 (CONF - 800713 - 10).
- [3] Fronabarger J, Schuman A, Chapman R D, et al. Chemistry and development of BNCP, A novel DDT explosive [C] // International Symposium Energetic Materials Technology, March 21 - 24, 1994, Florida, USA.
- [4] Fronaberger J W, Sanborn W B, Massis T. Recent activities in the development of the explosive—BNCP [C] // Twenty-second International Pyrotechnics Seminar, Fort Collins Colorado, 15 - 19 July, 1996.
- [5] Fyfe D W, Fronabarger J W, Bickes R W. BNCP prototype detonator studies using a semiconductor bridge initiator [C] // Proceedings Twentieth International Pyrotechnics Seminar, 25 - 29 July 1994, Colorado, USA. 341 - 344.
- [6] Marx K D, Ingersoll D, Bickes R W. Electrical modeling of semiconductor bridge (SCB) CP detonators with electrochemical capacitor firing sets [C] // 24 th International Pyrotechnics Seminar Monterey, California, 27 - 31 July, 1998.
- [7] Ewick D W, Bateas G, Riley S P, et al. Laser-ignitable ignition composition and initiator devices and assemblies comprising the same. W099/00343, PCT/US98/12583 [P].
- [8] 盛涤伦,刘晓慧,于天义,等. 高氯酸五氨 · [2-(5-氰基四唑酸根)]合钴(Ⅲ)的制备[J].火工品,1991(4):1-6.
 SHENG Di-lun, LIU Xiao-hui, YU Tian-yi, et al. The preparation of 2-(5-cyanotetrazolato) pentaammiuecobalt (Ⅲ)[J]. Initiator & Pyrotechnics,1991(4):1-6.
- [9] 盛涤伦,马凤娥,孙飞龙,等. BNCP 起爆药的合成及其主要性能
 [J]. 含能材料,2000,8(3):100-103.
 SHENG Di-lun, MA Feng-e, SUN Fei-long, et al. Study on synthesis

and main properties of BNCP [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2000,8(3): 100 - 103.

[10] 盛涤伦,马凤娥. 新型起爆药 DACP 的合成及其主要性能[J]. 含能材料,2006,14(3):161-164.

SHENG Di-lun, MA Feng-e. Synthesis and main properties of new initiating explosive DACP[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2006, 14(3): 161 – 164.

Crystal Structure and Laser Sensitivity of Cobalt(III) Complex[Co(NH₃)₄(N₃)₂]ClO₄

SHENG Di-lun, MA Feng-e, ZHANG Yu-feng, ZHU Ya-hong, CHEN Li-kui, YANG Bin (Shaanxi Applied Physics and Chemistry Research Institute, Xi'an 710061, China)

Abstract: The single crystal of tetraamminediazido cobalt (III) perchlorate (DACP) was prepared, and its crystal structure was determined by a X-ray single crystal diffractometer. The results show that the crystal is triclinic belonging to space group of *P*-1 with crystal parameters of the unit cell dimensions: a = 0.74229(9) nm, $\alpha = 93.244(2)^{\circ}$, b = 1.21273(14) nm, $\beta = 100.074(2)^{\circ}$, c = 1.8124(2) nm, $\gamma = 98.033(2)^{\circ}$, volume V = 1.5851(3) nm³, Z = 6, calculated density $D_c = 1.952$ mg \cdot mm⁻³, absorption coefficient $\mu = 1.901$ mm⁻¹, F(000) = 948. The compound is very sensitive to laser with a wavelength of 635 nm.

Key words: physical chemistry; cobalt(Ⅲ) complex; crystal structure; laser sensitivity