文章编号:1006-9941(2010)06-0665-05

DACP 的量子化学与光分解机理

盛涤伦, 王燕兰, 朱雅红, 陈利魁, 杨 斌, 徐鸣昊 (陕西应用物理化学研究所,陕西西安710061)

摘 要:采用量子化学密度泛函理论方法,计算了新型起爆药高氯酸·四氨、双叠氮基合钴(Ⅲ)(DACP)的分子结构参数。分析 了 DACP 的结构与光谱特性、光化学分解机理。研究表明: DACP 中 NH,和 N3 上的 N 形成了强亲核中心,而 ClO4 上的 Cl 以及 Co原子形成了强亲电子中心。DACP外层电子是由一N,上的N原子向一ClO4基团的Cl原子转移,这一能量跃迁是分裂的,在 340.99~699.89 nm 处有连续的强吸收峰。计算了 DACP 分子的红外理论图谱,其结果与实验值相吻合。

关键词:物理化学:高氯酸·四氨·双叠氮基合钴(Ⅲ)(DACP):量子化学:分子结构:感度:红外光谱 中图分类号: TJ55; O64 文献标识码: A DOI: 10.3969/j.issn.1006-9941.2010.06.012

1 引 言

高氯酸・四氨・双叠氮基合钴(Ⅲ)(DACP)是作 者根据高氯酸・四氨・双(5-硝基四唑)合钴(Ⅲ) (BNCP)结构特点,首先衍生合成的一种新型起爆药。 于 2005 年完成了其合成方法与结构表征研究,完成 了百克量级的制备方法研制,测定与评估了 DACP 的 主要性能^[1]。DACP 的合成工艺比 BNCP 简单^[2], 污 染少,避免了合成中间体 5-硝基四唑,可直接应用工 业原料叠氮化钠,缩短了合成路线。DACP的在合成、 勤务处理以及产品制造中的危险性相对常规起爆药要 小得多,安全性好。但性能与 BNCP 相当,属于安全 钝感型起爆药。DACP 的起始分解温度比 BNCP 低, 这有利于热桥丝发火和激光点火。经过应用试验证 明: DACP 可以代替 BNCP 以及叠氮化铅用于各种钝 感型雷管和工程雷管中。

随后, Magdy Bichay 等^[3]也报道了 DACP 的试验 室样品照片,认为 DACP 可作为取代叠氮化铅候选起 爆药之一。

近期通过实验验证发现: DACP 对特定波长具有 激光感度选择性,在635 nm 激光波长下,未掺杂直接 合成的 DACP 的激光感度比细化后掺碳黑的 BNCP 还要敏感一个数量级。这对激光敏感药剂设计具有指 导意义4.

收稿日期: 2010-03-20; 修回日期: 2010-04-12 作者简介: 盛涤伦(1956-), 男, 研究员, 主要从事新型火工药剂的研 究与应用开发。e-mail: sdl1998@ sina. com

作者还研究了 DACP 的单晶,用德国 Bruker smart apex Ⅱ CCD 型 X-ray 单晶面探仪对其晶体进 行了结构测定^[5]。

本文则对 DACP 进行了量子化学的理论计算,根 据获得的结果分析并试验验证了 DACP 的光谱特性 与光分解机理。此前,国内外的文献未见有关于 DACP 量子化学及光分解机理的相关研究报导。

2 DACP 的量子化学计算

2.1 量化计算方法

采用量子化学密度泛函理论(DFT)计算方法,所 有计算由 Material Studio. DMol³ 软件包完成。首先 在 Material Studio 软件包的 Materials Visualizer 模块 中搭建分子模型,以 DMol³ 模块中的 BLYP/DNP 方 法对分子进行结构优化。以 DMol³ 模块计算 DACP 分子的电子结构、原子间键级、分子总能量、前线分子 轨道能级及其差值、红外光谱和热力学性质等。

2.2 量子化学计算结果

2.2.1 DACP 的几何构型

文献[5]报道了 DACP 的晶体结构分析数据。经 过德国 Bruker AXS 的 SHELXTL 程序计算, DACP 晶体 属三斜晶系,空间群为 P-1。根据晶体结构分析所获 得的键长、键角的结构参数,进行 DACP 的量子化学 计算,DACP分子结构见Scheme 1。

2.2.2 DACP 的原子编序与电子密度计算

DACP 经过结构优化后,电子密度计算结果见表 1、图1和图2。

含能材料

2.2.3 DACP 分子与轨道能级计算

根据量化计算结果,列出 DACP 前线分子轨道能 级、分子体系总能量、结合能计算结果见表 2。

Scheme 1

表1 DACP电子密度计算结果	
-----------------	--

表1 D.	ACP 电子密度计算结	果	ane
Table 1	Calculating result or	f DACP ele	ctron density
atom	electron density	atom	electron density
Co(1)	0.498	N(8)	-0.120
N(2)	-0.811	N(9)	-0.236
N(3)	-0.826	N(10)	0.041
N(4)	-0.784	N(11)	-0.148
N(5)	-0.829	H(12)	0.362
N(6)	-0.264	H(13)	0.371
N(7)	0.055	H(14)	0.367
atom	electron density	atom	electron density
H(15)	0.339	H(22)	0.363
H(16)	0.361	H(23)	0.369
H(17)	0.366	Cl(24)	1.096
H(18)	0.348	O(25)	-0.399
H(19)	0.362	O(26)	-0.511
H(20)	0.366	O(27)	-0.592
H(21)	0.373	O(28)	-0.517

图1 DACP 原子编号

Fig. 1 Atom serial number of DACP

图2 DACP电子密度分布图 Fig. 2 electron density distributing figure of DACP

表2 DACP 前线轨道能量与分子体系能量

Frontier molecule orbit's energy and molecule Table 2 system energy of DACP

			A. 2. A
orbit	serial No.	E/eV	occupation
	72	-8.074	2.000
	73 80	-7.614	1.999
	74 0	-7.476	1.997
	75	-7.400	1.995
номо	76	-7.375	1.994
00	77	-7.340	1.993
	78	-6.930	1.858
	79	-6.906	1.833
	80	-6.303	0.231
LOMO	81	-4.438	0.000
molecule syste	em total energy	-2687.816 Ha	a =73139.311 eV
binding energy	/	-3.8453 Ha =	= -104.636 eV

2.2.4 DACP 前线分子轨道能量比较

DACP 前线分子轨道计算能量比较见图 3、4。

2.2.5 DACP 的红外计算

用量子化学密度泛函 BLYP/DNP 计算了 DACP 的理论红外光谱。表3为相应计算的频率和强度(强 度大于 10 km · mol⁻¹)。图 5 为 DACP 理论计算所 得的红外波谱图。

图 3 DACP 的 HOMO 轨道图 Fig. 3 HOMO orbits of DACP

图 4 DACP 的 LUMO 轨道图 Fig. 4 LOMO orbits of DACP

frequency/cm $^{-1}$	intensity/km \cdot mol $^{-1}$	frequency/cm ⁻	¹ intensity/km \cdot mol ⁻¹	frequency/cm $^{-1}$	intensity/km \cdot mol $^{-1}$	frequency/cm ⁻¹	intensity/km \cdot mol ⁻¹
141.90	10.51	761.79	34.28	1331.67 ¹⁾	127.30	3142.84	220.50
214.46	20.41	767.50	17.40	1629.47	12.67	3165.48 ¹⁾	369.32
241.30	15.00	769.72	74.44	1643.44	23.70	3215.85 ¹⁾	769.02
257.25	12.82	827.05	172.72	1648.74	18.88	3347.35	61.30
265.36	12.37	886.851)	267.07	1659.57	19.24	3360.97	33.87
305.04	67.14	$950.98^{1)}$	267.16	1667.43	13.44	3364.59	175.82
410.48	10.92	$1070.68^{1)}$	382.99	1680.70	19.76	3388.32	43.54
533.20	10.02	1276.47	34.20	1698.76	40.20	3423.63	13.97
549.35 ¹⁾	60.23	1277.37	61.00	1711.47 ¹⁾	46.17	3425.84	35.21
744.18	30.10	1294.01	142.96	2043.76 ¹⁾	614.54	3426.73	28.47
756.79	21.05	1315.01	125.23	2058.99	594.43	3437.74	21.72

表3 DACP 的理论红外光谱数据(强度大于 10 km・mol⁻¹) **Table 3** Calculating infrared spectrum of DACP (>10 km \cdot mol⁻¹)

Fig. 5 Calculating infrared spectrum of DACP

3 计算结果分析

3.1 电子密度分析

从对 DACP 的电子密度计算结果分析可知:

NH₃的N(2)~(5)原子电子云密度最高,达到 -0.784~-0829,其次是 N₃上的 N(6)~(11) 原 子,达到-0.120~-0.264,它们形成了强亲核中心; 而 Cl 原子为 +1.096, Co 原子为 +0.498, H 原子为 +0.361~+0.373,它们形成了强亲电子中心。

DACP 官能团的电荷密度分析见表 4 和表 5。因 此,以上官能团为 DACP 的敏感性基团。

3.2 前线轨道能量分析

根据 DACP 分子与轨道能级计算, DACP 的最高 占据轨道为72号,最低空轨道为81号。

根据分子轨道理论,前线轨道 HOMO 和 LUMO 及其附近的分子轨道对物质的活性(感度)影响很大, HOMO 具有优先提供电子的作用, LUMO 具有接受 电子的重要作用。认识 DACP 的前线轨道及其分布

有助于确定各种基团的活性部位,探索激发反应机理。

表4 DACP强亲核中心官能团电荷密度分析

Electron density analysis of strong nucleophilic Table 4 center group of DACP

nucleanbilic conter	atom in NH ₃ group			
nucleophilic center	N(2)	N(3)	N(4)	N(5)
electron density	-0.811	-0.826	-0.784	-0.829
nucleophilic conter	atom in N_3 group			
nucleophilic center	N(6)	N(8)	N(9)	N(11)
alaatuan danaitu	0 264	_0 120	-0.236	-0.148

表5 DACP强亲电中心官能团电荷密度分析

Table 5 Electron density analysis of strong electrophilic center group of DACP

electrophilic center	Cl	Со	H(12) ~H(23)
electron density	+1.096	+0.498	+0.361 ~ +0.373

从 DACP 的 HOMO 和 LUMO 前线轨道分布图 3 和 图 4 对比可知: DACP 外层电子是由两个-N₃上的 N 原子向—CIO₄ 基团转移,与 BNCP 分子相反。DACP 前 线轨道能量是分裂的,HOMO 被分裂成能级相似的 8 个 轨道,LUMO 被分裂为能量相似的 2 个轨道。

最高能量差(72 与 81)为:

3.636 eV = 350.47 kJ · mol⁻¹ = 340.99 nm;

最低能量差(72 与 80)为:

1.771 eV = 170.88 kJ \cdot mol⁻¹ = 699.89 nm; 最低能量差(79 与 80)为:

 $0.603 \text{ eV} = 60.73 \text{ kJ} \cdot \text{mol}^{-1} = 2056.1 \text{ nm}_{\odot}$

在 340.99 ~ 699.89 nm 之间存在多重能级跃迁。

668

因此,通过量化计算可以得出如下结论:

(1) DACP 在紫外可见光 340.99~699.89 nm 处有连续的强吸收峰;在此波长范围的激光更容易引 起 DACP 的激发反应,激光感度将更高。

(2) 影响 DACP 感度的官能团是叠氮根和高氯 酸根。

因此,DACP 激光光致分解机理模型为:

光谱测试验证:

DACP 样品为自制,质量符合技术条件要求。利 用 U-340 分光光度计、60 mm 直径球形积分仪测定了 DACP 光谱吸收性能如图 6 所示。从图 6 的紫外可见 光谱分析数据可知: DACP 在紫外可见光区存在连续 的光谱吸收。这与 BNCP 的量子计算非常吻合。

DACP 激光感度的试验验证:

用 635 nm 和 915 nm 激光器测定了 DACP 和对 比样品 BNCP 的激光感度见表 6。试验表明:在 635 nm波长下,直接合成的 DACP 激光感度比在 915 nm波长作用下和细化掺碳黑 BNCP 都要敏感一 个数量级。表明:单质药激光感度在其固有吸收波段 比其它波段要高得多。

3.3 红外光谱分析

用 Nicolet 红外分析仪测定自制 DACP 样品,其 红外吸收光谱如图 7 所示。DACP 的光谱分析和官能 团归属见表7。

比较理论计算(图5)与实验测试(图7)的红外光 谱图,DACP 的红外主要吸收峰的位置与强度趋势基 本相符。红外光谱的计算值与实测值之间存在一个系 统的校正值。对 DACP 的校正值为: 0.88~1.00,多 数在 0.95 以上, 说明 DACP 理论计算红外波谱图相 关性较好。

Fig. 7 Infrared spectrum of DACP

表 6	DACP	和 BNC	P 的激光感度	
Table	6 Las	er sensi	tivity of DACF	and BNCP

表 6 DACP 和 BNCP 的激步 Table 6 Laser sensitivity of	光感度 DACP an	d BNCP	s.org.ch		
name	λ / nm	50% firing energy density/J · cm ⁻²	99% firing energy density/J · cm ⁻²	0.01% firing energy density/J \cdot cm $^{-2}$	standard deviation /J • cm ⁻²
DACP(pure)	635	1.45	2.12	0.79	0.22
BNCP(containing carbon)	635	10.66	12.12	9.82	0.65
DACP(pure)	915	12.24	22.12	2.35	2.50

表7 DACP的光谱分析结果和官能团归属

 Table 7
 Spectrum analysis results of DACP groups

testing absorbing peaks/cm ⁻¹	calculating absorbing peaks/cm ⁻¹	attributive groups	revising coefficient
3326.76, 3259.21	3215.85, 3165.48	NH ₃ telescopic vibrant energy	0.97,0.97
1628.94	1711.47	NH ₃ bend vibrant energy	0.95
1102.35, 623.24	1070.68, 549.35	ClO ₄ ⁻¹ telescopic vibrant energy	0.97,0.88
2035.18, 1314.55	2043.76,1331.67	N ₃ ⁻¹ telescopic vibrant energy	1.00,0.99
808.81 (width)	886.85 ~950.98	N_3^{-1} bend vibrant energy	0.91

4 结 论

依据激光特征感度机理,激光特征敏感化合物的 设计可以先通过量子化学方法计算光化学的能级跃 迁,从而预估化合物的激光敏感的波长与感度。经过 对典型钝感起爆药 DACP 的量子化学理论分析与验 证,说明影响 DACP 感度的官能团是叠氮基和高氯酸 根,并且 DACP 外层电子是由-N₃上的 N 原子向 --ClO₄基团转移。DACP 的前线轨道能量是分裂的, 在短波长的紫外可见光激光范围内存在连续吸收。这 说明DACP对 340.99~699.89 nm 的激光更容易引 起激发反应,激光感度将更高。量化理论计算的 DACP 的红外光谱与实测值的趋势相符,系统校正系 数多数在为 0.95 以上。DACP 的量子化学理论计算 与光谱分析、激光感度验证都取得了一致的结果, DACP 可以作为激光特征敏感化合物优良样品之一应 用于激光点火与起爆装置。

参考文献:

[1] 盛涤伦,马凤娥. 新型起爆药 DACP 的合成及其主要性能[J]. 含 能材料,2006,14(3):162-164. SHENG Di-lun, MA Feng-e. Synthesis and main performances of new initiating explosive DACP[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(3): 162 - 164.

[2] 盛涤伦,马凤娥,孙飞龙,等. BNCP 起爆药的合成及其主要性能 [J]. 含能材料,2000,8(3):100-103. SHENG Di-lun, MA Feng-e, SUN Fei-long, et al. Study on synthesis and main properties of BNCP[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2000, 8(3): 100 – 103.

- [3] Magdy Bichay, John Fronabarger, Mike Williams, et al. Lead azide replacement program [C] // The 49th Annual Fuze Conference, USA, 2005.
- [4] 盛涤伦,朱雅红,陈利魁,等. 激光与含能化合物相互作用机理研 究[J]. 含能材料,2008,16(5):481-486. SHENG Di-lun, ZHU Ya-hong, CHEN Li-kui, et al. Study on the interactional mechanism between laser and energetic compound [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(5): 481 - 486.
- [5] 盛涤伦,马凤娥,张裕峰,等. 钴(Ⅲ)配合物[Co(NH₃)₄(N₃)₂] ClO₄的晶体结构及激光化学感度[J]. 含能材料,2009,17(6): 694 - 698.

SHENG Di-lun, MA Feng-e, ZHANG Yu-feng, et al. Crystal structure and laser light sensitivity properties of cobalt(III) complex [Co(NH₃)₄(N₃)₂]ClO₄[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao) ,2009 ,17 (6) : 694 - 698.

Quantum Chemistry and Photochemical Decompose Mechanism of Tetraamminediazido Cobalt (III) Perchlorate (DACP)

SHENG Di-lun, WANG Yan-lan, ZHU Yan-hana, CHENG Li-kui, YNAG Bin, XU Ming-hao (Shaanxi Applied Physics and Chemistry Research Institute, Xi'an 710061, China)

Abstract: By using DFT method of quantum chemistry, the tetraamminediazido cobalt (III) perchlorate (DACP) molecule structure parameters were calculated. The DACP structural characteristics, spectrum performance and photochemical decomposition mechanism were analyzed. Results show that the nucleophilic center was N, atom in NH₃ and N₃, the electronic center was Cl in ClO_4 and Co atoms. The DACP outside electron was moved from N atom in $-N_3$ to Cl atom in $-ClO_4$. The transition energy was divided into many levels. there was sequence absorbing peaks in the range of 340.99 - 699. 89 nm. The DACP theory IR spectra were calculated at BLYP/DNP level. The results of calculation on IR were essentially consistent with experimental values.

Key words: physical chemistry; tetraamminediazido cobalt (III) perchlorate (DACP); quantum chemistry; molecule structure; www.energetic 各能林科 sensitivity; IR spectrum

CLC number: TJ55; O64

Document code: A

DOI: 10.3969/j.issn.1006-9941.2010.06.012