文章编号:1006-9941(2012)01-0035-05

4-氨基-1,2,4-三唑-NTO 盐的晶体结构及性能

容,董海山,孙 杰 徐

(中国工程物理研究院化工材料研究所,四川 绵阳 621900)

ials.org.cn 摘 要:用X射线单晶衍射法测定了4-氨基-1,2,4-三唑(4-AT)与3-硝基-1,2,4-三唑-5-酮(NTO)制得的盐(AT)(NTO)的单晶结 构。结果表明:该晶体为单斜晶系,属 P,1,2空间群,晶体学参数 a=7.071(2) Å, b=6.361(3) Å, c=18.792(7) Å; β=96.43(3)°; V=839.9(5) Å³; Z=4; D_c=1.694 g·cm⁻³; μ=0.145/mm; F(000)=440。在(AT)(NTO)晶体中,4-AT 阳离子上所有的原子 和 NTO 阴离子上所有的原子均在以各自三唑环为基础的一个平面上,两平面夹角为 7.6°。由真空安定性(VST)、撞击感度、摩擦感 度和静电火花感度试验所得的真空放气量、特性落高、爆炸概率、50%发火电压、50%发火能分别为0.28 mL·g⁻¹(100 ℃/48 h), 124.7 cm, 0%, 12.841 kV和2.515 J,表明,(AT)(NTO)对热是稳定的,对撞击、摩擦和静电火花是不敏感的。

关键词:物理化学;4-氨基-1,2,4-三唑;3-硝基-1,2,4-三唑-5-酮(NTO);晶体结构;性能;结构化学 中图分类号: TJ55; O64 DOI: 10.3969/j.issn.1006-9941.2012.01.009 文献标识码:A

1 引 言

长久以来,以黑索今(RDX)和梯恩梯(TNT)为主 要成分的 B 炸药被广泛用于装填各种弹药和爆破器 材^[1],但是 TNT 脆性大、容易形成裂纹、机械强度低、能 量低、毒性大且安全性能较差,无法满足当今武器弹药 对高能钝感及环保的要求^[2]。因此,美国空军现将新型 含能材料(含能离子液体)作为基础和应用研究计划的 一部分^[3]。对这种新型含能材料的要求包括:(1)高 密度和高能量;(2)热稳定性/耐贮性;(3)危险性低 (如撞击、摩擦和静电火花感度低及毒性低);(4)简单 的制造路线、低成本。以含能盐为基的含能材料,具有 较低的蒸汽压,较高的密度和能量,低易损性等优势。 美国空军实验室(AFRL)一直致力于含能离子液体的结 构设计、合成及其应用研究。他们选择了一些三唑类化 合物作为阳离子,与强酸根阴离子如:硝酸、高氯酸和 二硝酰胺铵等制备了一系列的含能离子盐^[4-5]。其中 以4-氨基-1,2,4-三唑高氯酸盐性能较好。而3-硝基-1.2.4-三唑-5-酮(NTO)是一种低感高能量密度化合 物,世界各国已经对其进行了广泛研究^[6-10],我国也对 其性能及应用进行了深入的研究^[11-13]。虽然 NTO 性

收稿日期: 2010-10-08; 修回日期: 2011-05-21 基金项目:国家自然科学基金联合基金资助项目(11076002) 作者简介:徐容(1971-),女,硕士,从事含能材料合成、性能及晶体 制备研究。e-mail: xurwjy@ sina. com

能优越,制备工艺简单,生产成本低,但其强酸性限制了 它的应用^[14]。由于 NTO 的强酸性(pK_{a} 3.67),可与许 多碱金属、碱土金属离子或带碱性的阴离子形成盐然后 加以应用^[15-16]。因此,我们尝试将 NTO 作为含能离 子化合物的阴离子,4-氨基-1,2,4-三唑(4-AT)作为阳 离子形成一种新型的含能离子盐,研究其作为新型含能 离子液体的可能性。因此,研制了 4-氨基-1,2,4-三唑 与 NTO 形成的(AT)(NTO)盐,培养了它的单晶,分析 了它的分子和晶体结构,为(AT)(NTO)进一步应用研 究提供参考数据。

2 实验部分

2.1 试剂与仪器

甲醇、乙醚、4-氨基-1,2,4-三唑等均为分析纯,用 NTO 和 4-氨基-1,2,4-三唑通过中和反应合成了 4-氨 基-1.2.4-三唑与 NTO 的盐(AT)(NTO)。

X射线单晶衍射分析:荷兰 ENRAF NONIUS CAD4 型四圆单晶衍射仪。温度为 295(2) K, λ 为0.71073 Å的 MoKα 射线,石墨单色器。

差示扫描量热(DSC)测试:美国 PE 公司热分析 系统。氮气气氛,流速为40 mL·min⁻¹;升温速率为 10 °C·min⁻¹,温度范围10~300 °C。

热重(TG)分析:美国 TA 公司 TGA Q500 型热 分析仪。氮气气氛,流速为40 mL·min⁻¹;升温速率

含能材料

为10 ℃·min⁻¹,温度范围 10~300 ℃。

2.2 单晶培养

选取适量的(AT)(NTO)晶体,加入适量的乙腈, 搅拌状态下加热至沸腾,使其充分溶解,冷却至室温后 过滤,将滤液放在25℃的恒温箱中进行单晶培养,3 d 后即可得到无色的片状晶体。

2.3 试剂与仪器

选取尺寸为 0.30 mm × 0.25 mm × 0.12 mm 的 单晶,在 CAD4 型四圆单晶衍射仪上,用波长为 0.71073 Å的 MoKa 射线,石墨单色器,晶胞参数用回 摆照相测定,用回摆法收集整个倒易空间的衍射数据。 在 295(2) K 温度条件下,在 θ 为2.18°~25.50°范围 内,共收集衍射点 1721 个($-8 \le h \le 8$, $0 \le k \le 7$, $-3 \le L \le 22$),其中独立衍射点 1550 个($R_{int} = 0.0140$)。 $l > 2\sigma(l)$ 衍射点 1230 个,全部数据经 LP 校正和经验吸 收校正,整个计算工作在 Founder 5166 计算机上用 SHEL XL97程序完成。

3 实验结果与讨论

3.1 晶体结构测量结果

四圆单晶衍射仪实测(AT)(NTO)晶体中的分子 结构和分子在晶胞中的堆积方式分别如图1和图2所 示。非氢原子坐标和等效温度因子见表1,键长和键 角数据见表2和表3,各向异性移动参数见表4,氢原 子坐标和等效温度因子见表5。

图1 (AT)(NTO)的分子结构

Fig. 1 Molecular structure of (AT) (NTO)

图2 (AT)(NTO)分子在晶胞中的堆积

表1 (AT)(NTO) 非氢原子坐标和等效温度因子

Table 1	Nonhydrogen atomic coordinates ($\times 10^4$) and equivalent
temperatu	re factor $(\text{Å}^2 \times 10^3)$ for $(\text{AT})(\text{NTO})$

	X	у	z	U(eq)
O(1)	366(3)	13438(3)	-838(1)	42(1)
O(2)	932(3)	6965(3)	98 (1)	49(1)
O(3)	4268(3)	8023(3)	1195(1)	52(1)
N(1)	7565(3)	11885(3)	1513(1)	37(1)
N(2)	8468(3)	11184(3)	2148(1)	42(1)
N(3)	7251(3)	14305(3)	2263(1)	32(1)
N(4)	6651(4)	16218(4)	2251(1)	45(1)
N(5)	1347(3)	13013(3)	379(1)	35(1)
N(6)	2305(3)	11552(3)	815(1)	35(1)
N(7)	2101(3)	10529(3)	-347(4)	32(1)
N(8)	3696(3)	8255(3)	562(1)	37(1)
C(1)	6818(4)	13727(4)	1584(1)	34(1)
C(2)	8252(4)	12708(4)	2593(1)	37(1)
C(3)	1203(4)	12412(4)	-320(1)	32(1)
C(4)	2690(3)	10153(4)	341(1)	29(1)

表2 键长测试结果

Table 2	Experimental	bond	lengths
---------	--------------	------	---------

bond	length/Å	bond	length/Å
O(1) - C(3)	1.263(3)	N(1) - C(1)	1.298(3)
O(2)-N(8)	1.223(2)	N(2) - C(2)	1.300(3)
O(3)-N(8)	1.222(3)	N(3) - N(4)	1.416(3)
N(1) - N(2)	1.365(3)	N(1) - H(n1)	0.91(3)
N(3) - C(1)	1.330(3)	N(3) - C(2)	1.348(3)
N(4) - H(1n4)	0.86(3)	N(4) - H(2n4)	0.94(4)
N(5) - C(3)	1.360(3)	N(5) - N(6)	1.367(3)
N(6) - C(4)	1.308(3)	N(7) - C(4)	1.335(3)
N(7) - C(3)	1.360(3)	N(8) - N(4)	1.439(3)
C(1) - H(1)	0.92(2)	C(2) - H(2)	0.94(3)

表3 键长测试结果

Table 3 Experimental bond lengths

bond	$angle/(\circ)$	bond	angle/(°)
C(1)-N(1)-N(2)	111.1(2)	C(1) - N(1) - H(n1)	127.1(16)
C(2) - N(2) - N(1)	104.0(2)	C(1)—N(3)—C(2)	106.6(2)
C(2)—N(3)—N(4)	129.5(2)	N(3)-N(4)-H(1n4)	106.6(19)
H(1n4) - N(4) - H(1n4)	103(3)	C(3)—N(5)—N(6)	111.4(2)
C(4)—N(7)—C(3)	102.54(18)	O(3)—N(8)—O(2)	123.9(2)
O(2) - N(8) - C(4)	117.4(2)	N(1) - C(1) - N(3)	107.2(2)
N(3)-C(1)-H(1)	125.3(15)	N(2)-C(2)-N(3)	111.1(2)
N(3)-C(2)-H(2)	125.9(5)	O(1)—C(3)—N(7)	127.3(2)
N(7)—C(3)—N(5)	107.4(2)	N(6) - C(4) - N(7)	118.1(2)
N(7)-C(4)-N(8)	121.3(2)	N(2)-N(1)-H(n1)	121.4(17)
C(1)-N(3)-N(4)	123.9(2)	N(3)—N(4)—H(2n4)	109(2)
C(4) - N(6) - N(5)	100.48(18)	O(3)—N(8)—C(4)	118.8(2)
N(1) - C(1) - H(1)	127.5(16)	N(2)-C(2)-H(2)	123.0(15)
O(1)-C(3)-N(5)	125.2(2)	N(6)—C(4)—N(8)	120.5(2)

4-氨基-1,2,4-三唑-NTO 盐的晶体结构及性能

表4 各	向异性移动参数(A×10 ³)
------	---------------------------	---

Tab	le	4 /	Anisotro	pic d	isplacement	parameters($(A \times 10^3)$)
-----	----	-----	----------	-------	-------------	-------------	-------------------	---

		•		•		
atom	U11	U22	U33	U23	U13	U12
O(1)	56(1)	37(1)	32(1)	1(1)	-4(1)	9(1)
O(2)	58(1)	37(1)	53(1)	-8(1)	10(1)	12(1)
O(3)	60(1)	59(1)	37(1)	15(1)	3(1)	19(1)
N(1)	46(2)	37(1)	15(1)	-3(1)	3(1)	5(1)
N(2)	47(2)	44(1)	35(1)	3(1)	0(1)	13(1)
N(3)	35(1)	35(1)	26(1)	-3(1)	2(1)	2(1)
N(4)	56(2)	46(2)	33(1)	-7(1)	3(1)	12(1)
N(5)	45(1)	27(1)	33(1)	-1(1)	2(1)	6(1)
N(6)	41(1)	29(1)	33(1)	1(1)	2(1)	3(1)
N(7)	39(1)	28(1)	28(1)	0(1)	3(1)	1(1)
N(8)	39(1)	35(1)	38(1)	3(1)	8(1)	3(1)
C(1)	35(2)	38(2)	29(1)	1(1)	1(1)	1(1)
C(2)	38(2)	45(2)	29(1)	2(1)	0(1)	7(1)
C(3)	36(2)	29(1)	30(1)	1(1)	2(1)	-3(1)
C(4)	31(2)	26(1)	31(1)	0(1)	6(1)	-1(1)

Note: The anisotropic displacement factor exponent takes the form:

 $-2 pi^{2} [h^{2} a^{*2} U11 + ... + 2h k a^{*} b^{*} U12].$

表 5 氢原子坐标(x10⁴)和等效温度因子(Å² ×10³)

Table 5 Hydrogen atomic coordinates ($x\;10^4$) and equivalent temperature factor(${\AA}^2\;x10^3$)

	X	у	Ζ	U(eq)
H(2)	8790(3)	12690(4)	3076(14)	39(7)
H(n1)	7630(4)	11170(4)	1097(15)	55(9)
H(1)	6150(4)	14530(4)	1235(13)	45(7)
H(1n4)	6970(4)	16160(4)	3007(17)	56(9)
H(2n4)	7410(5)	17320(5)	2400(2)	97(14)

晶体分析结果表明,该晶体为单斜晶系,属 $P_{21/c}$ 空间 群,晶体学参数 a = 7.071(2)Å, b = 6.361(3)Å, c =18.792(7)Å; $\beta = 96.43(3)^\circ$; V = 839.9(5)Å³; Z = 4; $D_c = 1.694$ g·cm⁻³; $\mu = 0.145$ /mm; F(000) = 440。晶 体结构测定中,非氢原子坐标由直接法获得,氢原子坐标 由差值 Fourier 合成法得到,结构参数为 160个,由全矩 阵最小二乘法优化。非氢原子采用各向异性热参数,氢 原子采用各向同性热参数修正,最终偏差因子 R_1 为 0.0399, $R_{w2} = 0.094$,最佳拟合度 S为 0.992, $W = \sigma^2(F_0^2) + (0.1074P)^2$,其中 $P = (F_0^2 + 2F_c^2)/3$ 。最终差值 Fourier 图上的最高峰($\Delta \rho$)_{max} = 0.198 e/Å³; 最低峰: $(\Delta \rho)_{min} = -0.210$ e/Å³。

3.2 (AT)(NTO)分子结构讨论

从图 1 可以看出,(AT)(NTO)分子是由一个 NTO 负离子和一个 4-氨基三唑上正离子组成的,从图 中还可看出原 NTO 分子位于 N(7)上的氢原子已转 移到 4-氨基三唑上 N(1)位置处,表明 NTO 与 4-AT 发生了酸碱中和反应,生成了目标产物(AT)(NTO)。 从平面方程的计算及晶体结构图可以发现,在 4-AT 阳离子上所有的原子均在以三唑环为基础的一个平面 上,其平面方程为: C₁C₂N₁N₂N₄N₄H₁₁H₁H₂H_{1n4}H_{2n4}:

6.2140x + 2.6747y - 6.0586z = 6.9564

(偏差为0.0055 Å)。

NTO 阴离子上所有原子也在以三唑环为基的一个 平面上,其平面方程为: $C_3C_4N_5N_6N_7N_8H_{n1}O_1O_2O_3$: 6.2056x+2.9791y-3.7484z=4.5675

(偏差为0.0025 Å)。

计算表明,两平面的夹角为7.6°,所有 NTO 阴离 子和4-AT 阳离子中键长、键角均属正常范围。

(AT)(NTO)分子中 4-AT 阳离子三唑环氮上的 氢原子和氨基上的氢原子与 NTO 阴离子上的氮原子 及 4-AT 阳离子三唑环上的氮原子形成氢键,氢键参 数如表 6 所示。从表 6 可以看出,(AT)(NTO)分子 中 NTO 阴离子和 4-AT 阳离子之间不仅有离子键还 有氢键相连,使得分子排列规则,这种结构使分子间排 列得更整齐,分子排列更加紧密,晶体结构更加稳定, 从而使(AT)(NTO)的密度达到 1.694 g·cm⁻³。

表6 (AT)(NTO)分子内氢键的键长和键角

Table 6 Specified hydrogen bonds for (AT)(NTO)

atom D	atom H	atom A	D—H ∕Å	H…A ∕Å	D…A ∕Å	D—H…A /(°)
N(1)	H(n1)	N(7)	0.91(3)	1.80(3)	2.706(3)	173(2)
N(4)	H(1n4)	N(6)	0.86(3)	2.23(3)	3.085(3)	171(3)
N(4)	H(2n4)	N(2)	0.94(4)	2.63(4)	3.524(4)	159(3)

3.3 (AT)(NTO)的性能

3.3.1 (AT)(NTO)的 DSC 分析

按 GJB502.1 方法, 气氛 N₂、流速 20 mL · min⁻¹、升 温速度 10 ℃ · min⁻¹测得(AT)(NTO)的 DSC 曲线, 如 图 3 所示。

图 3 (AT)(NTO)的 DSC 曲线(升温速率 10 ℃・min⁻¹) Fig.3 DSC curve of (AT)(NTO) at a heating rate of 10 ℃・min⁻¹

3.3.2 (AT)(NTO)的热重分析

按 GJB772A - 1997 中方法 502.1, 气氛 N₂, 升温 速度10 ℃・min⁻¹, 气体流量 20 mL・min⁻¹, 温度范围 为10 ~ 300 ℃, 测得(AT)(NTO)的 TG-DTG 曲线如图 4 所示。由图 4 可知, (AT)(NTO)的外推起始温度为 172 ℃, 结束分解温度在 210 ℃左右, 在结束分解时产 物的剩余量接近 40%。(AT)(NTO)中 4-AT 的理论含 量为 42%, 这表明, 在测试温度范围内, (AT)(NTO)中 只有 NTO 离子发生了分解反应, 而4-AT离子几乎全部 未发生分解。

Fig. 4 TG-DTG curves of (AT)(NTO)

3.3.3 (AT)(NTO)的热安定性

按 GJB772A - 1997 中方法 501.2 和 502.3 对 (AT)(NTO)和 NTO 进行了真空安定性(VST)和热失 重(TG)试验,结果见表 7。为便于比较,同时列出 NTO 的数据。从表 7 可以看出,(AT)(NTO)的 VST 数据在 48 h,100 ℃条件下的放气量为 0.28 mL · g⁻¹,远低于 2 mL · g⁻¹的标准,只比 NTO 稍大,表明其热安定性很 好。恒温 TG 数据也表明,(AT)(NTO)的热安定性好。

表 7 (AT)(NTO)的真空安定性和热失重试验数据 **Table 7** VST and TG tested data of (AT)(NTO)

test methods	materials	$V_{\rm H}/{\rm mL}\cdot{\rm g}^{-1}$	test conditions
VST	(AT)(NTO)	0.28	100 ℃,48 h
	NTO	0.20	100 ℃,48 h
TG	AT)(NTO)	0.02	75 ℃,24 h
	NTO	0.13	100 ℃,48 h

Note: $V_{\rm H}$ is the value of evolved gas.

3.3.4 感度的测定

按 GJB772A-1997 方法 601.1、601.2 和 602.1 标准方法测试了(AT)(NTO)和 NTO 的撞击感度和 摩擦感度,结果见表 8 和表 9。由表 8 和表 9 可知,

(AT)(NTO)的摩擦感度和撞击感度的爆炸概率均为 0,特性落高为124.7 cm,其感度比 NTO 低,静电火 花感度也比 NTO 低很多,因此(AT)(NTO)为不敏感 炸药,在不敏感弹药中有潜在的应用前景。

表 8	(A	T)(NTO)和 NTO 的感度测试结果	3
Table	8	Sensitivities of (AT)(NTO) and NTO)

materials	friction sensitivity/%	impact sensitivity/%	$H_{\rm 50}$ / cm
(AT)(NTO)	0	0	124.7
NTO TI	6	7	92
.00			

表9 (AT)(NTO)的静电火花感度测试结果

 Table 9
 Sensitivities to static electricity spark of (AT)(NTO)

 and NTO

materials	50% fire voltage/kV	50% fire energy/J
(AT)(NTO)	12.841	2.515
NTO	5.998	0.549

4 结 论

(1) X 射线单晶衍射测试结果为: (AT)(NTO)晶体 为单斜晶系,属 $P_{21/c}$ 空间群,晶体学参数 a = 7.071(2) Å, b = 6.361(3) Å, c = 18.792(7) Å; $\beta = 96.43(3)^{\circ}$; V = 839.9(5) Å³; Z = 4; $D_c = 1.694$ g·cm⁻³; $\mu =$ 0.145/mm; $F(000) = 440_{\circ}$ 在(AT)(NTO)晶体中, 4-AT 阳离子上所有的原子和 NTO 阴离子上所有的原 子均在以各自三唑环为基础的一个平面上,两平面夹 角为 7.6°。(AT)(NTO)分子中 NTO 阴离子和 4-AT 阳离子之间不仅有离子键还有氢键相连,使得分子排 列规则,晶体结构更稳定。

(2) 感度测试和热安定性测试表明(AT)(NTO) 的感度低,热安定性好。

致谢:四川大学的毛治华老师测试了晶体结构,材料化学研究 室的周建华、姚燕群、沈永兴、夏敬琼等测试了 DSC、热安定性 等,以上同志对本工作给予了大力协助,特此致谢!

参考文献:

- [1] 孙国祥,陈鲁祥. B 炸药的品种、组成和性能[J].火炸药,1989 (1):15-21.
- [2] Voigt H W. Castable explosive containing TNT and a reaction product of a diisocyanate and 1,4-butyleneoxide polyglycol: US 34477980[P].
- [3] Brand A, Hawkins T, Drake G. Air Force Research Laboratory Edwards AFB, CA Energetic Ionic Liquids as TNT Replacements (Preprint), AFRL-PR-ED-TP-2006-08.
- [4] Gregory Drake, Greg Kaplan. A new family of energetic ionic liquids 1-amino-3-alkyl-1, 2, 3-triazolium nitrates [J]. *Journal of*

含能材料

Chemical Crystallography, 2005.

- [5] Gregory Drake, Tommy Hawkins, Adam Brand. Energetic, lowmelting salts of simple heterocycles[J]. *Propellants, Explosived*, *Pyrotechnics*, 2003, 28(4): 174 – 180.
- [6] Kofirm T P, Pevzner M S, Zhukova L N, et al. Methylation of 3-nitro-1,2,4-triazol-5-one[J]. Zhumal Organicheskoi Khimii,1980,16(2): 78-82.
- [7] Lee K Y. 3-Nitro-1,2,4-triazol-5-one, A less sensitive explosive. LA 10302-MS, DE86009787 [R].
- [8] Lonnie Chapman. NTO development at Los Alamos. LA-UR-88-3163, DE89000356[R].
- [9] Alain Becuwe, Delclos A. Low sensitivity explosive compounds for low vulnerability warheads [J]. Propellant Explosives Pyrotechincs, 1993 (18): 1-10.
- [10] Singh G, Inder Pal Singh Kapoor, Sunli Kumar Tiwari, et al. Studies on energetic compounds Part 16. Chemistry and decomposition mechanisms of 5-nitro-2,4-dihydro-3H-1,2,4-triazole-3-one (NTO)[J]. Journal of Hazardous Materials, 2001 (B81): 67 82.
- [11] 左玉芬, 聂福德, 郁卫飞, 等. NTO 基 PBX 热行为及其与金属的 相容性[J]. 含能材料, 2009, 17(1): 55-58. ZUO Yu-fen, NIE Fu-de, YU Wei-fei, et al. Thermal behaviors of NTO-based PBXs and their compatibilities with metals[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2009, 17

(1): 55 - 58.

- [12] 薛其彬,黄辉,康彬,等. NTO 晶体生长:从分形结构到立方结构
 [J]. 含能材料,2009,17(4):149-154.
 XUE Qi-bin, HUANG Hui, KANG Bin, et al. NTO crystal growth: From fractal to cube-shaped structure[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2009,17(4):149-154.
- [13] 熊贤锋,王晓峰,王亲会. 含 NTO 的 TNT 基熔铸炸药研究[J]. 含能材料,2001,9(2):70-72.
 XIONG Xian-feng, WANG Xiao-feng, WANG Qin-hui. A research on the TNT-based castable explosives containing NTO [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2001,9(2):70-72.
- [14] Lee K Y. Binary eutectics formed between ammonium nitrate and initial characterization [J]. *Journal of Energetic Materials*, 1983 (1): 109 – 122.
- [15] singh G, Felix S P. Studies on energetic compounds. Part 32: Crystal structure, thermolysis and applications of NTO and its salts[J]. Journal of Molecular Structure, 2003(649): 71-83.
- [16] MA Hai-xia, SONG Ji-rong, SUN Xiao-hong, et al. Preparation, crystal structure and thermodynamic properties of [Mg(H₂O)₆](NTO)₂ · 2H₂O[J]. *Thermochimica Acta*, 2002 (389): 43 - 47.

Crystal Structure and Properties of 4-Amino-1,2,4-triazole NTO Salt

XU Rong, DONG Hai-shan, SUN Jie

(Institute of Chemical Materials, CAEP, Mianyang 621900, China)

Abstract: The single crystal structure of 4-amino-1,2,4-triazole NTO salt ((AT)(NTO)) prepared by neutral reaction of 4-amino-1,2,4-triazole (4-AT) and NTO was determined by a four-circel X-ray diffractometer. The results show that the crystal is moloclinic, space group $P_{21/c}$ with main crystallography parameters a = 7.071(2) Å, b = 6.361(3) Å, c = 18.792(7) Å, $\beta = 96.43(3)^{\circ}$, V = 839.9(5) Å³, Z = 4, $D_c = 1.694$ g \cdot cm⁻³, $\mu = 0.145$ /mm, F(000) = 440. The atoms of the 4-AT cation and the atom of the NTO anion in (AT)(NTO) crystal are in a plane of self-triazole ring. The two plane angle is 7.6°. The values of standard volume of gas evived by 100 °C/48 h, 50% drop height of impact sensitivity, explosion probability of friction sensitivity, 50% fire voltage and 50% fire energy by vacuum stability test(VST) and sensivity tests to impact, friction and static electricity spark are 0.28 mL \cdot g⁻¹, 124.7 cm,0%, 12.841 kV and 2.515 J, respectively, indicating that (AT)(NTO) is thermally stable and insensitive to impact, friction and spark.

 Key words: physical chemistry; 4-amino-1,2,4-triazole NTO salt; synthesis; crystal structure; property

 CLC number: TJ55; O64
 Document code: A
 DOI: 10.3969/j.issn.1006-9941.2012.01.009

 Words: manual content code: A
 DOI: 10.3969/j.issn.1006-9941.2012.01.009