文章编号:1006-9941(2013)04-0443-06

4,5-二(1H-四唑-5-基)-1H-咪唑的合成及热性能

毕福强,李吉祯,许 诚,樊学忠,高红旭,康 冰,葛忠学,刘 庆 (西安近代化学研究所,陕西西安710065)

terials.org.cn H,PT. 摘 要: 以 N, N-二甲基甲酰胺(DMF)为溶剂,优化了4,5-二(1H-四唑-5-基)-1H-咪唑(H,BTI)的合成工艺:4,5-二氰基咪唑、 叠氮化钠和氯化铵的摩尔比为1: 2.2: 2.2,反应温度 90 ℃,反应时间 8 h,收率为 94.6%。通过红外光谱、¹H NMR、¹³C NMR 和元素分析对 H,BTI 的结构进行了表征,采用 DSC 和 TG/DTG 技术研究了 H,BTI 的热分解性能,用非等温 DSC 技术研究了热分 解反应动力学。研究结果表明,H₃BTI的活化能为197.62 kJ·mol⁻¹,指前因子为16.16; H₃BTI的临界爆炸温度为556.38 K,大 于 RDX 的 487.90 K,表明其热稳定性优于 RDX; 热分解反应的活化熵、活化焓和活化自由能分别为 35.72 J·mol⁻¹·K⁻¹、 193.66 kJ・mol⁻¹和173.33 kJ・mol⁻¹。

关键词:应用化学;含能材料;4,5-二(1H-四唑-5-基)-1H-咪唑;合成;热性能

中图分类号: TJ55; O69

文献标识码: A

DOI: 10.3969/j.issn.1006-9941.2013.04.008

1 引 言

咪唑类化合物及其衍生物在医药^[1]、农药^[2]、生 物无机化学^[3]和含能材料^[4-7]等方面具有广泛的应 用。4,5-二(1H-四唑-5-基)-1H-咪唑(H₂BTI)是一 种结构新颖的咪唑衍生物,其4,5位为四唑取代基, 氮含量为68.61%,是一种典型的唑类高氮化合物,分 解产物中氮气含量较高,在低特征信号推进剂或气体 发生剂等领域具有潜在的应用前景。2008年, Mircea Dinca 等人^[8]首次合成出了 H₃BTI,并以其为配体,通 过与氯化钴在碱性条件下的自组装反应获得了一种具 有混合价态的新型钴配合物。2009 年, Min Guo^[9]报 道了 H₃BTI 的晶体中具有丰富的氢键作用,预示着该 化合物具有较好的热稳定性。目前尚未见文献报道 H₃BTI 的热性能研究,为此,本研究优化了 H₃BTI 的合 成工艺,并利用 DSC 和 TG/DTG 技术研究了 H₃BTI 的热分解行为,采用非等温 DSC 技术研究了 H₃BTI 的热分解动力学。为其在含能材料领域的应用提供 了基础。

收稿日期: 2012-06-21;修回日期: 2012-09-24

作者简介: 毕福强(1982-),男,工程师,主要从事含能材料的合成与 性能研究。e-mail: bifuqiang@gmail.com

通讯联系人: 樊学忠(1962 -), 男, 研究员, 主要从事复合含能材料和 固体推进剂研究。e-mail: xuezhongfan@126.com

实验部分 2

2.1 试剂与仪器

试剂:4,5-二氰基咪唑(DCI)为工业品,叠氮化 钠、氯化铵、盐酸和 N, N-二甲基甲酰胺(DMF)等均为 分析纯。

仪器:美国热电尼高力公司 NEXUS870 型傅里叶 变换红外光谱仪、德国 Exementar 公司 VARI-EL-3 型 元素分析仪、瑞士 Bruker 公司 AV500 型(500 MHz) 超导核磁共振仪、日本岛津 DSC-60 型差示扫描光谱 仪、STA449C型热分析仪。

2.2 实验过程

室温下,将4,5-二氰基咪唑(0.01 mol)溶于30 mL N,N-二甲基甲酰胺中,加入叠氮化钠(0.024 mol)和 氯化铵(0.024 mol),油浴加热至 90 ℃,恒温反应 8 h。减压蒸出 DMF,将剩余固体分散在 200 mL 水 中,滴加10%的盐酸溶液调节溶液 pH 值至3,滤出白 色固体后经水洗和干燥,得产物4,5-二(1H-四唑-5-基)-1H-咪唑半水合物,收率 94.6%。合成路线如 Scheme 1 所示。

Scheme 1 Synthesis of H₃BTI

令能材料

¹H NMR (DMSO- d_6 , 500 MHz), δ : 8.25 ¹³C NMR(DMSO- d_6 , 125 MHz), δ : 121.58, 139.36, 149.32 $_{\circ}$ IR (KBr, cm⁻¹), ν : 3427, 3160, 3016, 2768, 2649, 1869, 1634, 1571, 1514, 1464, 1423, 1329, 1281, 1243, 1199, 1161, 1072, 1008, 956, 888, 747, 645_{\circ} Anal. Calcd for C₅H₄N₁₀ • 0.5H₂O: C, 28.17; H, 2.36; N, 65.71; Found: C, 28.21; H, 2.20; N, 65.49.

3 结果与讨论

3.1 合成工艺优化

Mircea Dinca 等人^[8]采用体积比为4:1的甲苯 和甲醇混合液作为反应溶剂,三乙胺盐酸盐为催化试 剂,回流反应3d,收率93.5%,反应周期较长。 Min Guo^[9]以 DMF 为反应溶剂,氯化铵为催化试剂, 但其物料比无法保证原料完全反应。通过分析上述两 种方法的优缺点,对 H₃BTI 的合成工艺进行优化,采 用稍过量(2.2 倍量)的叠氮化钠与氯化铵和 4,5-二 氰基咪唑在 DMF 中, 于温度 90 ℃的条件下反应 8 h, 以94.6%的较高收率获得 H₃BTI,结果见表 1。

表1 H₃BTI的合成方法

Tal	ble	1	Synth	netic	meth	ods	of	H_3I	3TI	
-----	-----	---	-------	-------	------	-----	----	--------	-----	--

method	Mircea Dinca [8]	Min Guo ^[9]	this paper
solvent	methanol/toluene $(V/V=1:4)$	DMF	DMF
catalyst	$N(Et)_3 \cdot HCl$	NH_4Cl	NH_4CI
n(catalyst)/n(DCI)	6	1.1	2.2
$n(NaN_3)/n(DCI)$	6	1.5	2.2
reaction time	3 d	8 h	8 h
yield/%	93.50	75 ^{a)}	94.60 \C
Note: a) theoretical	yield.	at	eriais
3.2 H。BTI热	分解行为研究	na	

3.2 H₃BTI 热分解行为研究

采用DSC对H₃BTI的热性能进行研究(升温速率 10 K·min⁻¹),结果如图1所示。由图1可见,DSC 曲线中未发现明显的吸热峰,表明该化合物无明显的 熔化过程,这与熔点测试过程未发现样品熔化,仅发生 颜色变化一致。324.6 ℃时有一个明显的放热峰,对 DSC曲线进行积分计算后得知它的分解热约为 208 kJ·mol⁻¹,表明 H₃BTI 在该温度发生了剧烈的放 热分解反应。DSC 曲线上无明显熔化过程,说明该放 热峰为 H₃BTI 的固相分解过程。热重曲线如图 2 所 示,由图 2 可见,最大分解速率温度为 337.5 ℃,至

374.6 ℃时,质量损失为 42.32%,表明该化合物具有 较好的热稳定性。

图 2 H₃BTI的TG曲线 Fig. 2 TG curve of H₃ BTI

3.3 H₃BTI 的非等温分解动力学研究

表2 为不同加热速率2.5,5.0,10.0,15.0 K・min⁻¹下 DSC 曲线的主放热峰和由此获得的初始反应温度 (T_{e}) 及峰顶温度 (T_{p}) ; 表 3 为由 DSC 曲线得到的热 力学数据。为了揭示 H₃BTI 放热分解的反应机理,获 得其最概然机理函数和相应的动力学参数,对表2中 的主放热峰、初始反应温度 (T_a) 和峰顶温度 (T_a) 以及 表 3 中的基本数据,采用如下 6 种动力学分析方法进 行计算,其中包括1种微分方程(方程(1))和5种积 分法(方程(2)~(6)):

Kissinger 法^[10]

$$\ln \frac{\beta_{i}}{T_{P_{i}}^{2}} = \ln \frac{A_{K}R}{E_{K}} - \frac{E_{K}}{RT_{P_{i}}}, i = 1 \sim 4, (E_{K} \text{ in } kJ \cdot mol^{-1})$$
(1)

Flann-Wall-Ozawa 法^[11]

$$\lg \beta = \lg \left[\frac{AE_0}{RG(\alpha)} \right] -2.315 -0.4567 \frac{E_0}{RT}, (E_0 \text{ in } \text{kJ} \cdot \text{mol}^{-1}) (2)$$

含能材料

Mac Callum-Tanner 法^[12]

$$lg[G(\alpha)] = lg\left(\frac{AE_{a}}{\beta R}\right) - 0.4828E_{a}^{0.4357} - \frac{0.449 + 0.217E_{a}}{0.001T},$$

(E_a in kJ · mol⁻¹) (3)

Satava-Sestak 法^[13]

$$lg[G(\alpha)] = lg\left(\frac{AE_{a}}{\beta R}\right) - 2.315 - 0.4567 \frac{E_{a}}{RT},$$
(E_{a} in kJ · mol⁻¹) (4)
Agrawal $\underline{k}^{[14]}$

$$lg[\frac{G(\alpha)}{T^{2}}] = lg\left[\frac{AR}{\beta E_{a}}\left(\frac{1-\frac{2RT}{E_{a}}}{1-\frac{5RT}{E_{a}}}\right)\right] - \frac{E_{a}}{RT}, (E_{a} \text{ in } \text{kJ} \cdot \text{mol}^{-1}) \quad (5)$$
$$- \Re R H \Delta E_{a} = 2RT - E_{a}$$

$$\lg[\frac{G(\alpha)}{T^2}] = \lg\left[\frac{AR}{\beta E_a}\left(1 - \frac{2RT}{E_a}\right)\right] - \frac{E_a}{RT}(E_a \text{ in } kJ \cdot \text{mol}^{-1}) \quad (6)$$

上述方程中, $\alpha = H_t/H_0$, 为反应深度, H_t 为 H₃BTI 在某时刻的反应热, H_0 为总放热量, T 为绝对 温度, E_a 为表观活化能, A 为指前因子, $G(\alpha)$ 为积分 机理函数, β 为升温速率, R 为通用气体常数。

从表 2 结果可见,由 Kissinger 方法计算的表观活 化能 193.66 kJ · mol⁻¹和由 Flann-Wall-Ozawa 方法 计算的表观活化能 193.40 kJ · mol⁻¹基本一致,且线 性相关系数都接近于 1,表明计算结果可信,并以此作 为检验其他计算方法一致性的标准。同时,由表观活 化能值可知,H₃BTI 的稳定性较好。

将不同升温速率下的 DSC 数据 T_i 和 α_i (i = 1, 2, 3...)列于表 3,然后分别代入 Flann-Wall-Ozawa 方程 中,得到不同转化率时的活化能变化曲线,如图 3 所 示。由图 3 可知,当 α = 0.25 ~0.85 时,表观活化能 变化较小,因此,选用此范围的 α 计算 H₃BTI 的非等 温反应动力学参数。

表 2 多重扫描速率法计算所得 H₃ BTI 热分解反应的动力学参数

Table 2 Kinetic parameters of the exothermic decomposition reaction of H₃BTI obtained by the multiple heating methods

$\beta/K \cdot min^{-1}$	T _e /K	<i>T</i> _p / K	$E_{\rm k}/{\rm kJ}\cdot{\rm mol}^{-1}$	lgA _k	<i>r</i> _k	$E_{\rm o}$ / kJ · mol ⁻¹	r _o	$E_{\rm mean}$ / kJ · mol ⁻¹
2.5	552.50	578.25	193.66	14.94		193.40	0.99997	193.53
5	562.74	587.74			0,00000			
10	573.27	597.77			0.99996			
15	580.56	603.81						

Note: β , Heating rate; T_e , onset temperature in the DSC curve; T_p , maximum peak temperature; E, apparent activation energy; A, pre-exponential constant; r, linear correlation coefficient. Subscript k, data obtained by Kissinger's method; subscript o, data obtained by Flann-Wall-Ozawa's method.

				CVI		
data point			- E /kl · mol ⁻¹			
uata point	α	$\beta = 2.5 \text{ K} \cdot \text{min}^{-1}$	$\beta = 5.0 \text{ K} \cdot \text{min}^{-1}$	β = 10.0 K · min ⁻¹	β =15.0 K · min ⁻¹	L _a /KJ ⁺ mor
1	0.05	536.50	552.49	564.02	567.06	134.66
2	0.10	549.25	561.49	572.52	577.31	157.65
3	0.15	555.75	566.99	577.52	583.06	167.27
4	0.20	560.25	570.74	581.27	587.06	173.15
5	0.25	563.50	573.74	584.02	590.06	177.28
6	0.30	566.00	576.24	586.27	592.56	179.48
7	0.35	568.25	578.49	588.27	594.56	182.84
8	0.40	570.25	580.24	590.27	596.56	183.67
9	0.45	572.00	581.99	591.77	598.31	185.43
10	0.50	573.75	583.49	593.27	599.81	188.13
11	0.55	575.25	584.99	594.77	601.06	190.52
12 N	0.60	576.75	586.24	596.02	602.56	191.67
13 N	0.65	578.00	587.74	597.27	603.81	192.98
14	0.70	579.50	588.99	598.52	605.06	195.64
15	0.75	581.00	590.49	599.77	606.31	198.86
16	0.80	582.50	591.99	601.27	608.06	198.28
17	0.85	584.25	593.99	603.02	609.81	199.94
18	0.90	587.25	596.74	605.27	612.81	203.24
19	0.95	593.75	603.24	609.27	618.81	214.85
20	0.975	603.25	611.49	613.27	625.31	242.32

表 3 由 DSC 曲线得到的热力学数据 Table 3 Thermodynamics results from DSC curves

图 3 H₃BTI 在不同分解深度的 E_a-α 曲线

Fig. 3 E_a - α curve of H₃BTI at different decomposition extents

将表 3 中 α 在 0.25 ~0.85 之间对应的数据 α 、 β 及 T 与 41 种机理函数^[16]分别代入到方程(3)~(6), 由线性最小二乘法求得 41 种机理函数在相应升温速 率 β 下各自对应的 E_a 、A、线性相关系数 r、标准偏差 SD 及可信因子 d(d = (1 - r)SD),并依据如下判断依 据^[17]确定最概然机理函数:

(1) 80 kJ · mol⁻¹ <
$$E_a$$
 < 250 kJ · mol⁻¹,

$$7 \, \mathrm{s}^{-1} < \mathrm{lg}A < 30 \, \mathrm{s}^{-1};$$

- (2) r > 0.98;
- (3) SD < 0.30;

(4) 微、积分法所得 E_a 和 lgA 的值应大致相近, 并尽量与 Flann-Wall-Ozawa 法结果一致;

表 4	H_3BTI	的热分解反	应动力	学参数计	·算结果
-----	----------	-------	-----	------	------

Table 4 Calculated values of kinetic parameters of thermal decomposition reaction for H₃BTI

(5) E_a 对应的机理函数形式与样品状态相符。满足 该条件的机理函数为15 号函数 $G(\alpha) = [-\ln(1-\alpha)]^{3/4}$, 由其计算所得热力学参数结果列于表 4 中。可见,由 此机理函数计算所得不同升温速率下的 *E* 和 lg*A* 值呈 现一定的偏差,其平均值与 Kissinger 法和 Flann-Wall-Ozawa 法所得结果基本一致。

因此 H₃BTI 热分解的最概然机理函数的积分式 $G(\alpha) = [-\ln(1 - \alpha)]^{3/4}$,相应微分式 $f(\alpha) =$ $4/3(1 - \alpha)[-\ln(1 - \alpha)]^{1/4}$ 。表明 H₃BTI 的热分解 反应受随机成核和随后生长控制,反应机理服从 n = 3/4 的 Avrami-Erofeev 方程。因此, H₃BTI 的热分解 动力学参数为 $E_a = 197.62$ kJ·mol⁻¹, lgA = 16.16。

将最概然机理函数的微分式及所求得的 *E*_a、lgA 代入方程(7)中,得到 H₃BTI 热分解反应的动力学方 程为式(8)所示。

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \left(\frac{A}{\beta}\right) f(\alpha) e^{-\frac{E}{RT}}$$

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{1.927}{\beta} \times 10^{16} (1-\alpha) \left[-\ln(1-\alpha)\right]^{\frac{1}{4}} e^{-\frac{2.377 \times 10^4}{T}}$$
(8)

为了考察 H₃BTI 由放热分解导致热爆炸的行为, 获得其热爆炸临界温度值(T_{be} 和 T_{bp}),将表 2 中 β_i 、 T_{ei} 及 T_{pi} , $i = 1 \sim 4$,代入方程(9)^[18],得 $\beta \rightarrow 0$ 时的 T_{e0} 和 T_{p0} 值分别为 543.07, 569.05 K。

<i>β</i> /K	• min ⁻¹	Eq.	Mech. funct. no.	E / kJ \cdot mol ⁻¹	logA	r	SD	d
2.5		4	15	179.97	17.33	0.9992	8.17 ×10 ⁻³	6.54×10^{-6}
		5	15	178.10	13.54	0.9992	8.17 ×10 ⁻³	6.54×10^{-6}
		6	15	177.75	13.47	0.9991	1.87×10^{-2}	1.68×10^{-5}
		7	15	177.75	13.53	0.9991	1.87×10^{-2}	1.68×10^{-5}
5		4	15	194.76	18.72	0.9994	7.05×10^{-3}	4.23×10^{-6}
		5	15	192.06	14.54	0.9994	7.05×10^{-3}	4.23×10^{-6}
		6	15	192.26	14.81	0.9993	1.61 ×10 ⁻²	1.13×10^{-5}
		7	15	192.26	14.87	0.9993	1.61×10^{-2}	1.13×10^{-5}
10		4 00	15	213.11	20.39	0.9992	8.24×10^{-3}	6.59×10^{-6}
		50	15	209.39	16.33	0.9992	8.24×10^{-3}	6.59 × 10 ⁻⁶
	11.	6	15	210.33	16.45	0.9991	1.89×10^{-2}	1.70×10^{-5}
	NN	7. **	15	210.33	16.51	0.9991	1.89×10^{-2}	1.70×10^{-5}
15	1	(4 K/)	15	210.82	20.15	0.9990	8.89×10^{-3}	8.89×10^{-6}
	E.F	5	15	207.22	15.41	0.9990	8.89 × 10 ⁻³	8.89 × 10 ⁻⁶
		6	15	207.94	16.21	0.9989	2.04×10^{-2}	2.24×10^{-5}
		7	15	207.94	16.26	0.9989	2.04×10^{-2}	2.24×10^{-5}
		mean		197.62	16.16	0.9992	1.33 ×10 ⁻²	1.17 × 10 ⁻⁵

Note: SD is standard deviation, d, confidence factor.

$$T_{(e \text{ or } p)} = T_{(e0, \text{ or }, p0)} + b\beta_i + c\beta_i^2, i = 1 \sim 4$$

$$F_{-} = \sqrt{F^2 - 4F_{-}RT_{-}}$$
(9)

$$T_{\rm be or bp} = \frac{E_0 - \sqrt{E_0 - 4E_0 K I_{e0 \text{ or } p0}}}{2R}$$
(10)

式中, T_e 为外推始点温度,K; T_p 为热分解峰温,K; T_{e0} , T_{p0} 分别为当 $\beta \rightarrow 0$ 时对应的 T_e 和 T_p 时的温度, K; β 为升温速率,K・min⁻¹;b和c分别为系数。

利用方程(10)^[17]计算得 H_3 BTI 的临界爆炸温度 为 $T_{be} = 556.38$ K, $T_{bp} = 583.70$ K。其中 $T_{be} > T_{be}$ (RDX) =487.90 K^[19],表明其热稳定性优于 RDX。

当 $T = T_{p0}$, $E_a = E_k$, $A = A_k$ 时,可由式(11)~(13) 得到峰温处热分解反应的活化熵、活化焓和活化自由 能分别为 35.72 J·mol⁻¹·K⁻¹、193.66 kJ·mol⁻¹ 及 173.33 kJ·mol⁻¹。

$$A = \frac{k_B T}{h} e^{\Delta S^{\neq}/R}$$
(11)

$$A\exp(-\frac{E}{RT}) = \frac{k_B T}{h} \exp(\frac{\Delta S^{\neq}}{R}) \exp(\frac{-\Delta H^{\neq}}{RT})$$
(12)

$$\Delta G^{\neq} = \Delta H^{\neq} - T \Delta S^{\neq} \tag{13}$$

式中, *k*_B 为波尔兹曼常数, 1.3807×10⁻²³ J・K⁻¹; *h* 为普朗克常数, 6.626×10⁻³⁴ J・s

4 结 论

用优化的工艺完成了 H₃BTI 的合成,4,5-二氰基 咪唑、叠氮化钠和氯化铵的摩尔比为1:2.2:2.2, 溶剂为 DMF,反应温度 90 ℃,反应时间 8 h,收率达 到 94.6%。以 DSC 和 TG/DTG 技术研究了 H₃BTI 的热分解性能,结果表明,H₃BTI 无熔化过程, 324.6 ℃时的放热峰为固相分解过程,分解热约为 208 kJ mol⁻¹。以不同升温速率的 DSC 技术,研究了 H₃BTI 的非等温反应动力学,研究结果表明,热分解反 应受随机成核和随后生长控制,反应机理服从 n = 3/4的 Avrami-Erofeev 方程,热分解反应的动力学方程为 $\frac{d\alpha}{dT} = \frac{1.927}{\beta} \times 10^{16} (1 - \alpha) [-\ln(1 - \alpha)]^{\frac{1}{4}} e^{-\frac{2.377 \times 10^4}{T}}$, 临界爆炸温度为 $T_{be} = 556.38$ K,热稳定性优于 RDX, 峰温处热分解反应的活化熵、活化焓和活化自由能分 别为 35.72 J·mol⁻¹·K⁻¹、193.66 kJ·mol⁻¹及 173.33 kJ·mol⁻¹。

参考文献:

[1] 高学军,李庆章. 广谱抗蠕虫药物奥芬达唑研究进展[J]. 动物医 学进展, 2004, 25(3):53-55.

GAO Xue-jun, LI Qing-zhang. The progress of study on oxfendazole [J]. *Progress In Veterinary Medicine*, 2004, 25(3): 53 – 55.

- [2] 许诚,丁秀丽,李宗英,等. 杀菌剂氰霜唑的合成与表征[J]. 应 用化工,2009,38(7):1076-1077,1083.
- XU Cheng, DING Xiu-liu, LI Zong-ying, et al. Synthesis and characterization of fungicide cyazofamid [J]. *Applied Chemical Industry*, 2009, 38(7): 1076 1077, 1083.
- [3] 蒋宗林,肖蓉,苏晓渝,等.咪唑衍生物的一锅法选择性合成
 [J].高等学校化学学报,2003,24(1):64-67.
 JIANG Zong-lin, XIAO Rong, SU Xiao-yu, et al. Selective one-pot synthetic method for imidazole and benzimidazole derivatives
 [J]. Chemical Journal of Chinese Universities, 2003, 24(1):64-67.
- [4] 杨国臣,刘慧君,曹端林.4,5-二硝基咪唑的制备[J].含能材 料,2006,14(5):349-351.

YANG Guo-chen, LIU Hui-jun, CAO Duan-lin. Prepration of 4, 5-dinitroimidazole [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2006,14(5): 349–351.

- [5] 杨威, 姬月萍. 多硝基咪唑及其衍生物的研究进展[J]. 火炸药学报, 2008(5): 46-50.
 YANG Wei, JI Yue-ping. Progress in polynitroimidazoles and derivatives[J]. *Chinese Journal of Explosives and Propellants*, 2008(5): 46-50.
- [6] 杨利,高福磊,凡庆涛,等.咪唑类含能化合物的研究进展[J]. 含能材料,2009,17(3):374-379.
 YANG LI, GAO Fu-lei, FAN Qing-tao, et al. Progress in imidazolium-based energetic compounds[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2009,17(3):374-379.
- [7]杨威,王伯周,姬月萍,等.1-甲基-2,4,5-三硝基咪唑(MTNI)的热分解动力学及机理研究[J].含能材料,2012,20(2):176-179.

YANG Wei, WANG Bo-zhou, JI Yue-ping, et al. Thermal decomposition kinetics and mechanism of 1-methyl-2,4,5-trinitroimidazole[J]. *Chinese Journal of Energetic Materials* (*Hannene Cailiao*), 2012, 20(2): 176 – 179.

- [8] Dinca M, Harris T D, lavarone A T, et al. Synthesis and characterization of the cubic coordination cluster [Co₆^{III}Co₂^{III} (IBT)₁₂]¹⁴⁻(H₃IBT = 4,5-bis(tetrazol-5-yl)imidazole)[J]. *Journal of Molecular Structure*, 2008, 890(1-3): 139 143.
- [9] Guo M. 4,5-Bis(1*H*-tetrazol-5-yl)-1*H*-imidazole monohydrate [J]. *Acta Crystallographica*, 2009, 65(6): o1403.
- [10] Kissnger H E. Reaction kinetics in differential thermal analysis [J]. Anal Chem, 1957, 29(11): 1702 1706.
- [11] Ozawa T. A new method of analyzing thermogravimetric data[J]. Bul Chem Soc Jpn, 1965, 38: 1881 1886.
- [12] MacCallum J R, Tanner J. The kinetics of thermogravimetry[J]. Eur Polymer J, 1970, 6(7): 1033 – 1039.
- [13] Škvára F, Šesták J. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method
 [J]. J Therm Anal, 1975, 8(3): 477 489.
- [14] Agrawal R K. A new equation for modeling nonisothermal reactions[J]. J Therm Anal, 1987, 32(1): 149-156.
- [15] Coats A W, Redfern J P. Kinetic parameters from thermogravimetric Data[J]. Nature, 1964, 201: 68 - 69.
- [16] 胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001:
 127-131.
 HU Rong-zu, SHI Qi-zhen. Thermal analysis kinetics[M]. Bei-
- jing: Science Press, 2001: 127 131.
 [17] Hu R, Yang Z, Ling Y. The determination of the most probable mechanism function and three kinetic parameters of exothermic decomposition reaction of energetic materials by a[J]. *Thermo-*

含能材料

chim Acta, 1988, 123: 135-151.

- [18] Zhang T, Hu R, Xie Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC[J]. *Thermochim Acta*, 1994, 244: 171 – 176.
- [19] 徐抗震,常春然,宋纪蓉,等. RDX 的比热容、热力学性质及绝

热至爆时间[J]. 火炸药学报,2008,31(4):35-38. XU Kang-zhen, CHANG Chun-ran, SONG Ji-rong, et al. Specific heat capacity, thermodynamic properties and adiabatic time to-explosion of RDX[J]. *Chin J Explos Propel.*, 2008, 31(4): 35-38.

Synthesis and Thermal Decomposition Properties of 4,5-Bis(1H-tetrazol-5-yl)-1H-imidazole

BI Fu-qiang, LI Ji-zhen, XU Cheng, FAN Xue-zhong, GAO Hong-xu, KANG Bing, GE Zhong-xue, LIU Qing

(Xi'an Modern Chemistry Research Institute, Xi'an 710065, China)

Abstract: 4,5-Bis(1*H*-tetrazol-5-yl)-1*H*-imidazole(H₃BTI) is a high-nitrogen azole compound which may be suitable as ingredient for low signal propellant and gas generator. The synthetic technology of H₃BTI was optimized with the yield of 94.6% as following: the molar ratio of 4,5-dicyanoimidazole, sodium azide and ammonium chloride, 2.2 : 2.2 : 1, solvent DMF, reaction temperature 90 $^{\circ}$, and reaction time 8 h. The thermal behavior and non-isothermal decomposition kinetics of H₃BTI were studied with DSC and TG/DTG method. Results show that the kinetic parameters of thermal decomposition reaction, are the activation energy and pre-exponential factor are 197.62 kJ \cdot mol⁻¹ and 16.16, respectively, and the critical temperature of thermal explosion of H₃BTI is 556.38 K, which indicates that H₃BTI has better thermal stability than that of RDX, and activation entropy, activation enthalpy and activation Gibbs free energy of the thermal decomposition are 35.72 J \cdot mol⁻¹ \cdot K⁻¹, 193.66 kJ \cdot mol⁻¹ and 173.33 kJ \cdot mol⁻¹, respectively.

Key words: Applied chemistry; energetic material; 4,5-bis(1*H*-tetrazol-5-yl)-1*H*-imidazole; synthesis; thermal decomposition performance

CLC number: TJ55; O69

Document code: A

DOI: 10.3969/j.issn.1006-9941.2013.04.008

www.energetic-materials.org.cn