文章编号: 1006-9941(2012)06-0674-06

CL-20 /TNT 共晶炸药的制备、结构与性能

杨宗伟、张艳丽、李洪珍、周小清、聂福德、李金山、黄 辉 (中国工程物理研究院化工材料研究所,四川 绵阳 621900)

naterials.org.cn 注单晶衍^{由---} 摘 要:通过溶液共结晶法制得 CL-20/TNT 共晶炸药,采用扫描电镜(SEM)和 X 射线单晶衍射对其形貌和结构进行了表征,该晶体 属于正交晶系, Pbca 空间群, 晶胞参数: a = 0.9735(2) nm, b = 1.9912(6) nm, c = 2.4695(6) nm, α = β = γ = 90°, V = 4.787 nm³, Z=8。采用差示扫描量热(DSC)法分析了共晶炸药的热分解,并测定了其撞击感度,结果表明,CL-20/TNT 共晶炸药在 180~275 ℃ 间放热分解,并将 TNT 熔点显著提高 50 ℃左右:共晶炸药撞击感度较低,并将 CL-20 撞击感度明显降低 87%%。

关键词:物理化学;共晶炸药;CL-20;TNT;晶体结构;性能 中图分类号: TJ55; O64 文献标识码:A

DOI: 10.3969/j.issn.1006-9941.2012.06.003

引 言 1

提高武器的高效性和安全性是现代武器发展的两 大目标,其重要的解决途径是采用高能低感单质炸药。 而现有单质含能材料能量和安全性存在突出矛盾,严 重制约其发展应用^[1]。目前,高能低感炸药研制主要 有两条途径:一是设计和合成新的炸药^[2]:二是对现 有高能单质炸药进行改性研究[3],这也是目前最重要 的途径。但目前对现有单质炸药的改性,通常采用重 结晶[4]、高聚物包覆和复合[5-6]等法,这些传统改性 方法均未改变炸药内部组成和晶体结构,因此改性效 果不理想,迫切需要研发一种有效改性途径,以满足高 能低感炸药发展要求。

共晶作为一种新的改性技术,是将两种或两种以上 不同种类的分子通过分子间非共价键(氢键、离子键、范 德华力和 π-π 键等)作用,微观结合在同一晶格中,形 成具有特定结构和性能的多组分分子晶体[7-8]。目前, 共晶技术已广泛应用于药物方面,并开发出一系列新型 共晶药物,有效改善了药物的溶解性,提高了药物的稳

收稿日期: 2012-09-13;修回日期: 2012-10-10

基金项目:国家自然科学基金面上项目(No.11072225),中物院发展 基金 面上项目(No. 2010B0302040)和中国博士后基金(No. 2012M511944)资助

作者简介:杨宗伟(1982-),男,博士后,主要从事含能材料晶体制备 及改性研究。e-mail: yzw_019@163.com

通讯联系人: 黄辉(1961-),男,研究员,主要从事高效毁伤弹药技术 研究。e-mail: huangh0816@163.com

定性和生物利用度^[9-12]。但是共晶技术在含能材料领 域的研究应用目前较少^[13-15],国内外尚处于探索阶段。 依据共晶原理,如能在分子水平上实现具有不同性能炸 药组分之间(如高能炸药分子和低感炸药分子)的非 共价键作用,即通过共晶技术,使其结合在同一晶格 中,形成独特结构,可以有效克服原炸药的缺陷,赋予 共晶炸药新的性能,为炸药改性提供一条新的更有效 途径。六硝基六氮杂异伍兹烷^[16](CL-20)是目前能 量最高的单质炸药之一,具有广阔应用前景。但是,由 于 CL-20 感度高,不能很好满足现代战争和更多新型 武器对安全性的更高要求;而2,4,6-三硝基甲苯^[17] (TNT)感度较低,安全性好,但其能量严重制约其在 高能武器弹药中应用。采用共晶技术,若能将 CL-20 与 TNT 实现共晶,形成具有特殊结构且同时拥有高能 和低感度特性的共晶炸药,将为解决现有单质含能材 料能量和安全性矛盾,大大拓展 CL-20 和 TNT 的应用 范围。

本研究将共晶技术引入含能材料研究领域,采用 溶液共结晶技术,制备了 CL-20/TNT 共晶炸药及其单 晶,运用扫描电镜和 X 射线单晶衍射仪分别对其形貌 和结构进行了表征;通过 DSC 和感度测试研究了共 晶的热分解行为和感度性能。

2 实验部分

2.1 仪器与试剂

日本 Hitachi TM-1000 型扫描电镜; 深圳时代超 声设备 TEA-1 型超声机;上海跃进医疗器械厂

HH・B11・360BS-Ⅱ型电热恒温培养箱;荷兰
ENRAF NON US CAD 4型四圆单晶 X-射线衍射仪;
美国 TA 公司 Q-100型差示扫描量热仪; ML-1型撞击感度仪; BUCHI B-545 熔点测试仪。

ε-CL-20(辽宁庆阳化工有限公司), TNT(东方化 学工业公司), 乙酸乙酯为分析纯试剂。

2.2 CL-20/TNT 共晶制备

分别将适量的 CL-20 和 TNT 溶解于乙酸乙酯,配 置得到 1 mol/L 的炸药溶液。分别取 100 mL 上述 CL-20 溶液和 TNT 溶液相互混合,室温下超声振荡混 合均匀,形成略带黄色透明结晶液,置于 30 ℃恒温培 养箱,缓慢挥发溶剂,5 d 后得到无色棱柱状 CL-20/ TNT 共晶炸药及其单晶。

2.3 晶体结构测定

选取尺寸为0.40 mm ×0.35 mm ×0.35 mm 的共 晶单晶,在四圆单晶衍射仪上,以石墨单色化的 MoKa 射线($\lambda = 0.071073$ nm)辐射,在 293 K 温度下,用 $\omega/2\theta$ 方式扫描,在 6.04° $\leq \theta \leq 26.37$ °收集衍射点 12659 个($-6 \leq h \leq 12$, $-24 \leq k \leq 23$, $-30 \leq l \leq 17$), 其中独立衍射点 4892 个($R_{int} = 0.0298$),4468 个 [$I > 2\sigma(I)$]可观测衍射点用于结构计算,全部强度数 据均经过 Lp 因子校正和多次扫描吸收校正。晶体结 构测定中,非氢原子坐标由直接法得到,氢原子坐标由 差值 Fourier 合成法得到。结构由全矩阵最小二乘法 优化,氢原子采用各向同性热参数修正,非氢原子采用 各向异性热参数修正。晶体结构的解析和结构修正分 别用 SHELXS-97^[18]和 SHELXL-97^[19]程序完成。

2.4 DSC 测试

在 DSC 测试过程中,将 1.1 mg 左右样品置于敞 口铝坩埚内,流动氮气气氛,流速 20 mL · min⁻¹,以 10.0 ℃ · min⁻¹的升温速率从室温升至 300 ℃。

2.5 撞击感度测试

按照 GJB772A - 97《炸药实验方法》方法 601.2 的规定测试:药量(30 ±1)mg,落锤质量 2 kg,环境温度 10 ~ 35 ℃,相对湿度不大于 80%。

3 结果与讨论

3.1 共晶形貌

CL-20、TNT和CL-20/TNT共晶炸药的SEM图片 分别如图1(a)、图1(b)和图1(c)所示。由图1可 知,原料与CL-20/TNT共晶炸药晶体形貌明显不同, CL-20的晶体呈纺锤状,TNT呈不规则块状结晶,而 CL-20/TNT共晶为棱柱状晶体,表面光滑完整,大小均 匀,平均粒径为 270 µm 左右。结果表明:共晶可有效 改变炸药晶体形貌和尺寸大小。

b. TNT

c. CL-20/TNT cocrystal

图1 炸药晶体 SEM 照片

Fig. 1 SEM photographs of explosives

3.2 共晶的晶体结构

CL-20/TNT 共晶炸药晶体的非氢原子坐标和等效温度因子列于表 1,部分键长和键角数据列于表 2。 CL-20/TNT 共晶分子结构和分子在晶胞中的堆积分别见图 2,图 3。

675

atom	x	у	Ζ	$U_{ m eq}$	atom	X	у	z 0.01	$U_{ m eq}$
O(1)	8794(17)	2745(12)	4408(7)	61(6)	N(5)	5558(2)	2123(9)	4070(7)	34(5)
O(2)	8338(17)	2471(11)	5028(7)	49(5)	N(6)	5905(3)	1480(12)	4135(10)	68(8)
O(3)	9527(16)	2163(9)	3082(7)	46(5)	N(7)	4336(17)	2999(9)	3778(7)	27(4)
O(4)	7883(19)	1926(1)	2520(7)	52(5)	N(8)	2911(19)	2997(12)	3900(8)	39(5)
O(5)	6740(4)	1347(14)	4501(12)	65(9)	N(9)	6142(19)	3775(9)	3953(7)	28(4)
O(5A)	5786(13)	1413(5)	4679(4)	65(9)	N(10)	5930(2)	4455(10)	4069(8)	37(5)
O(6)	5586(4)	1086(13)	3771(12)	69(10)	N(11)	6177(18)	3285(9)	3046(7)	28(4)
O(6A)	4624(16)	1189(5)	3957(5)	69(10)	N(12)	5082(2)	3648(11)	2841(7)	34(5)
O(7)	2231(18)	2550(12)	3705(9)	67(6)	N(13)	5475(2)	613(12)	6296(9)	46(6)
O(8)	2517(17)	3470(10)	4167(7)	47(5)	N(14)	8799(3)	1074(11)	-5580(9)	52(6)
O(9)	5069(2)	4576(9)	4411(8)	55(5)	N(15)	8685(3)	-511(12)	7493(9)	51(6)
O(10)	6648(2)	4853(9)	3836(8)	56(5)	C(1)	7858(2)	2952(11)	3669(8)	28(5)
O(11)	4180(18)	3332(9)	2615(7)	45(7)	C(2)	6016(2)	2558(11)	3123(8)	28(5)
O(12)	5146(19)	4255(9)	2898(7)	47(5)	C(3)	6975(2)	3574(11)	3500(8)	27(5)
O(13)	4659(2)	552(12)	5929(9)	69(6)	C(4)	4924(2)	2377(11)	3576(8)	28(5)
O(14)	5405(2)	1054(11)	6641(8)	66(6)	C(5)	6175(2)	2667(11)	4378(8)	26(5)
O(15)	8062(3)	-1254(11)	5208(8)	77(7)	C(6)	5266(2)	3276(11)	4193(8)	26(5)
O(16)	10001(2)	-1218(12)	5620(9)	78(7)	C(7)	8115(3)	-429(12)	6947(9)	37(6)
O(17)	8185(3)	-186(14)	7856(8)	91(9)	C(8)	8677(3)	-786(12)	6527(10)	39(6)
O(18)	9665(2)	-879(12)	7547(8)	75(7)	C(9)	8170(3)	-665(12)	6017(10)	38(6)
N(1)	7582(18)	2799(10)	4226(7)	29(4)	C(10)	7156(3)	-191(12)	5891(10)	37(6)
N(2)	8646(19)	2658(10)	4576(8)	35(5)	C(11)	6619(2)	129(12)	6348(10)	35(5)
N(3)	7372(18)	2392(9)	3323(7)	30(4)	C(12)	7072(2)	24(12)	6868(9)	37(6)
N(4)	8333(2)	2150(1)	2940(8)	36(5)	C(13)	6787(3)	-4.5(16)	5322(10)	55(8)

表 1	CL-20/TNT 共晶炸药的非氢原子坐标(×10 ⁴)和等效温度因子(×10 ⁵ nr	m ²)
			,

Table 1 Atomic coordinates (x10⁴) and equivalent isotropic displacement parameters (x10⁵ nm²) of CL-20/TNT cocrystal explosive

表2 CL-20/TNT 共晶炸药的部分键长和键角

Table 2	Bond	lengths	and	angles	of	CL-20/TNT	cocr	ystal	explosive	•
---------	------	---------	-----	--------	----	-----------	------	-------	-----------	---

bond	length/nm	bond	angle/(°)	bond	angle/(°)
O(1)-N(2)	0.1204(2)	N(2) - N(1) - C(1)	120.3(17)	O(12)-N(12)-N(11)	115.8(2)
O(2) - N(2)	0.1215(2)	N(2) - N(1) - C(5)	120.8(17)	O(13) - N(13) - O(14)	123.8(2)
O(17)-N(15)	0.1208(3)	C(1) - N(1) - C(5)	117.7(16)	O(13) - N(13) - C(11)	119.4(2)
O(18)-N(15)	0.1210(3)	O(1) - N(2) - O(2)	126.2(19)	O(14) - N(13) - C(11)	116.8(2)
N(1) - N(2)	0.1378(2)	O(1) - N(2) - N(1)	116.7(18)	O(15) - N(14) - C(9)	117.8(2)
N(1) - C(1)	0.1434(3)	O(2) - N(2) - N(1)	116,9(18)	O(16) - N(14) - O(15)	124.2(2)
N(1) - C(5)	0.1445(3)	N(4) - N(3) - C(1)	115.5(17)	O(16) - N(14) - C(9)	118.0(2)
N(3) - N(4)	0.1414(2)	N(4) - N(3) - C(2)	117.0(17)	O(17) - N(15) - O(18)	124.1(2)
N(3) - C(1)	0.1483(3)	C(2) - N(3) - C(1)	108.3(16)	O(17) - N(15) - C(7)	118.0(2)
N(3) - C(2)	0.1448(3)	O(3) - N(4) - N(3)	115.6(19)	O(18) - N(15) - C(7)	117.8(2)
N(5) - N(6)	0.1333(3)	O(4) - N(4) - O(3)	126.9(2)	N(1) - C(1) - N(3)	109.4(18)
N(5) - C(4)	0.1457(3)	O(4) - N(4) - N(3)	117.3(19)	N(1) - C(1) - C(3)	108.7(17)
N(5) - C(5)	0.1455(3)	C(5) - N(5) - N(4)	110.7(17)	N(3) - C(1) - C(3)	105.5(16)
N(7) - N(8)	0.1421(2)	O(6) - N(6) - O(5)	123.9(3)	N(3) - C(2) - N(11)	99.8(17)
N(7) - C(4)	0.1452(3)	N(8) - N(7) - C(4)	117.1(18)	N(3) - C(2) - C(4)	108.6(17)
N(7) - C(6)	0.1478(3)	N(8) - N(7) - C(6)	116.6(16)	N(7) - C(4) - N(5)	100.3(16)
N(9) - N(10)	0.1400(3)	C(4) - N(7) - C(6)	108.3(16)	N(7) - C(4) - C(2)	107.9(17)
N(9) - C(3)	0.1438(3)	O(7) - N(8) - O(8)	128.0(2)	N(7) - C(6) - C(5)	105.0(17)
N(9) - C(6)	0.1437(3)	O(7) - N(8) - N(7)	116.8(2)	C(7) - C(8) - C(9)	117.4(2)
N(11)-N(12)	0.1383(3)	O(8) - N(8) - N(7)	115.1(2)	C(8) - C(9) - N(14)	115.0(2)
N(11) - C(2)	0.1469(3)	O(10) - N(10) - O(9)	127.1(2)	C(8) - C(9) - C(10)	125.1(2)
N(11) - C(3)	0.1480(3)	O(10) - N(10) - N(9)	116.9(19)	C(10) - C(9) - N(14)	119.9(2)
N(13)-C(11)	0.1479(3)	N(12) - N(11) - C(2)	118.6(17)	C(9) - C(10) - C(13)	123.0(2)
N(14) - C(9)	0.1484(3)	N(12) - N(11) - C(3)	109.9(16)	C(11) - C(10) - C(9)	113.1(2)
N(15)-C(7)	0.1467(3)	O(11) - N(12) - O(12)	127.1(2)	C(7) - C(12) - C(11)	118.1(2)

图 2 CL-20/TNT 共晶分子结构图 Fig. 2 Molecular structure of CL-20/TNT cocrystal

图 3 CL-20/TNT 共晶分子的三维晶胞堆积图 Fig. 3 3D packing of CL-20/TNT cocrystal

晶体结构分析表明,CL-20/TNT 共晶炸药由 CL-20 与 TNT 以1:1(摩尔比)结合形成,该晶体属于正交晶 系, Pbca 空间群, 晶胞参数: a = 0.9735(2) nm, b = 1.9912(6) nm, c = 2.4695(6) nm, $\alpha = \beta = \gamma =$ 90°, V = 4.787(2) nm³, $D_c = 1.84$ g · cm⁻³, Z =8, $\mu = 0.173 \text{ mm}^{-1}$, F(000) = 2704, $R_1 = 0.0734$, ωR₂=0.1166。表1显示 CL-20/TNT 共晶炸药分子 中 CL-20 和 TNT 分子的非氢原子空间位置,与原料 CL-20/TNT 的非氢原子坐标明显不同^[20-21],说明共 晶产生了新结构。

由图 2 和表 2 可见, CL-20/TNT 共晶炸药分子中 所有键长和键角均可认为处于正常范围,并与CL-20、 TNT 的相应键长和键角相近^[20-21]。共晶炸药分子中 CL-20的 C-N 键长为 0.1434~0.1483 nm, 原料 CL-20 中 C-N 键长为 0.1432~0.1473 nm; 共晶分 子中 CL-20 的六个 N-N 键的平均键长为 0.1388 nm,较普通硝胺中 N-N 键长(0.1358 nm)^[22]长,这 是由于硝基相对于五元环和六元环的取向不同的缘故。 共晶炸药分子中 TNT 苯环 C 原子与硝基 N 原子形成 的 C(11)—N(13), C(19)—N(14), C(7)—N(5)平 均键长为0.1477 nm,较普通 C = N(0.1321 nm)^[23]

长,接近 C-N 单键,说明硝基与苯环骨架的共轭作用 较强。

CL-20/TNT 共晶炸药的晶体结构(见图 3), CL-20 分子中 O(3), H(5) 分别与 TNT 分子中 H(8), O (13)的非键距离为 0.231 nm, 0.244 nm, 小于它们 的范德华半径之和(0.272 nm)^[24],说明存在分子间 氢键。通过分子间 C—H…O 氢键相互作用(见图 4), CL-20 和 TNT 分子被连接成有序的锯齿链状结 构,并结合形成稳定结构的 CL-20/TNT 共晶炸药。研 究结果表明,分子间氢键,使得 CL-20 与 TNT 分子在 晶体中的排列比较规则,晶体的堆积系数 K 值升 高[25],分子堆积紧密,因此,其具有较高的晶体密度 $(1.84 \text{ g} \cdot \text{cm}^{-3})_{\circ}$

图 4 CL-20/TNT 共晶分子间氢键 Fig. 4 Intermolecular hydrogen bond of CL-20/TNT cocrystal

3.3 共晶的热分解

为研究 CL-20/TNT 共晶炸药的热分解性能,对 CL-20/TNT共晶样品进行 DSC 测试。在 10 ℃・min⁻¹ 升温速率条件下,测试样品的 DSC 曲线如图 5 所示。

从图 5 可知,CL-20/TNT 共晶炸药的热分解过程 主要分为三个阶段,包括一个吸热熔化阶段和二个放 热分解阶段。CL-20/TNT 共晶的最大吸热峰顶温度 为143.5 ℃,其外推起始温度为134 ℃,较原料 TNT 熔点(81 ℃^[26])提高了50 ℃左右。随着温度升高,共

677

晶分子间氢键断裂^[27],分子结构被破坏,变得不稳定, 在180~275 ℃间发生二个集中放热分解过程,其峰 顶温度分别为222.6 ℃和250.1 ℃,与原料 CL-20 和 TNT 最大放热峰值(321.5 ℃^[26],245 ℃^[28])相比, 共晶放热峰值发生了偏移,说明共晶改变了原料组分 的热分解特性,并赋予共晶炸药独特的热分解行为。

3.4 共晶的撞击感度

为了研究 CL-20/TNT 共晶炸药的安全性,对 CL-20、TNT 和 CL-20/TNT 共晶样品进行了撞击感度 性能测试,以 50%爆炸的特性落高 H₅₀表征样品感度, 测试结果于表 3。

表3 样品的撞击感度测试结果

Table 3 Impact sensitivity results of samples

samples	H ₅₀ / cm
CL-20	15
TNT	102
CL-20/TNT cocrystal	28

由表 3 知, CL-20/TNT 共晶炸药的撞击感度值 H₅₀ = 28 cm,与 CL-20 相比(H₅₀ = 15 cm),共晶使 CL-20 撞击感度明显降低 87%,较原料 CL-20 显著降 低。低感度的 TNT 与高感度的 CL-20 通过共晶技术, 在分子尺度水平结合形成共晶,与传统降感方 法^[29-30]比,改变了炸药的内部组成和晶体结构;此 外,由于分子间氢键,一方面增加了共晶炸药分子体系 的稳定性,另一方面提高了共晶分子对机械外力的抗 振性,故降感效果明显,通过共晶技术可有效实现高 感炸药的降感,提高其安全性能。

4 结 论

制备得到新型 CL-20/TNT 共晶炸药,晶体结构分 析表明该共晶由 CL-20 与 TNT 以1:1(摩尔比)通过 氢键结合形成,属正交晶系,空间群 Pbca。热分解研 究发现该共晶的分解过程经历了一个吸热熔化和二个 放热分解阶段,其熔点比 TNT 提高 50 ℃左右。撞击 感度测试结果表明,CL-20/TNT 共晶炸药较 CL-20 感 度下降 87%。CL-20/TNT 共晶炸药不仅具有特殊结 构与性能,还有效改变了原料 CL-20 和 TNT 的性能。 因此,通过共晶技术可有效改善炸药性能,有望为炸药 改性研究提供一条新的有效途径。

参考文献:

- [1] Sikder A. K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military ans space application [J]. J Hazard Mater, 2004, 112 (2): 1-15.
- [2] Fischer N, Karaghiosoff K, KlapÖtke T M, et al. New energetic materials featuring tetrazoles and nitramines-synthesis, characterization and properties[J]. Z Amorg Allg Chem, 2010, 636(4): 735 – 749.
- [3] Van der Heijden A E, Bouma R H B. Crystallization and characterization of RDX, HMX, and CL-20 [J]. Crys Growth Des, 2004, 4(5): 999 1007.
- [4] Kim C K, Lee B C, Lee Y W, et al. Solvent effect on particle morphology in recrystallization of HMX using supercritical carbon dioxide as antisolvent[J]. *Korean J Chem Eng Technol*, 2009, 26(4): 1125 – 1129.
- [5] Kim K J, Kim H S. Coating of energetic materials using crystallization[J]. Chem Eng Technol, 2005, 28(8): 946-951.
- [6] 曾贵玉, 聂福德, 刘兰, 等. 聚氨酯原位结晶包覆 HMX 的研究
 [J]. 含能材料, 2011, 19(2):138-141.
 Zeng G Y, Nie F D, Liu L, et al. In-situ crystallization coating HMX by polyurethane[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2011, 19(2): 138-141.
- [7] Bond A D. What is a cocrystal? [J]. Cryst Eng Comm, 2007, 9
 (4): 833-834.
- [8] Dunitz J D. Crystal and co-crystal: a second opinion [J]. Cryst Eng Comm, 2003, 5(2): 506 – 507.
- [9] Weyna D R, Shattock T, Zaworotko M J. Robust supramolecular heterosynthons in chiral ammonium carboxylate salts [J]. Cryst Growth Des, 2008, 8(4): 1106 – 1109.
- [10] Alshahateet S F. Synthesis and X-ray crystallographic analysis of pharmaceutical model rac-ibuprofen cocrystal[J]. J Chem Crystallogr, 2011, 41(3):276 – 279.
- [11] Sheikh A Y, Rahim S A, Hammond R B, et al. Scalable solution cocrystallization: case of carbamazepine-nicotinamide[J]. Cryst Eng Comm, 2009, 11(3): 501 – 509.
- [12] Goud N R, Babu N J, Nangia A. Sulfonamide-pyridine-N-oxidecocrystals[J]. Cryst Growth Des2011, 11(5): 1930 – 1939.
- [13] Landenberger K B, Matzger A J. Cocystal engineering of a prototype energetic material: supramolecular chemistry of 2,4,6-trinitrotoluene[J]. Cryst Growth Des, 2010, 10(12): 5341 – 5347.
- [14] Shen J P, Duan X H, Luo Q P, et al. Preparation and characterization of a novel cocrystal explosive [J]. Cryst Growth Des, 2011, 11(5): 1759 – 1765.
- [15] Bolton O, Matzger A J. Improved stability and smart-material functionality realized in an energetic cocrystal[J]. Angew Chem Int Ed, 2011, 50(38): 8960 – 8963.
- [16] Bogdanova Y A, Gubin S A, Korsunskii B L. Detonation characteristics of powerful insensitivs[J]. Combust Expl Shock Waves, 2009, 45(6): 738-743.
- [17] Salunke M R B, Sikder A K, Agrawal J P. Synthesis and characterisation of PADNT: a new insensitive explosive [J]. J Hazard Mater, 2001, 84(2):117 – 122.
- [18] Sheldrick, G. M. SHELXS-97, Program for the Refining of Crystal Structure, University of GÖttingen, Germany, 1997.
- [19] Sheldrick, G. M. SHELXL-97, Program for the Solution of Crystal Structure, University of GÖttingen, Germany, 1997.
- [20] Wu Y K, Ou Y X, Liu J Q, et al. Synthesis, Crystal Structure and Theoretical Study of Tetranitrodiazidoacetylhexaazaisowurtzitane

(TNDAIW)[J]. Propell Explos Pyrot 2004, 29(3): 155-159.

- [21] Kleiza V, Bekesiene S. Theoretical Investigation of Electronic Structure and Vibrational Spectra of Conformers of Trinitrotoluene and Trinitrophenol[J]. Acta Phys Pol A, 2011, 119(2): 189 – 192.
- [22] 欧育湘, 贾会平, 陈博仁, 等. 六硝基六氮杂异伍兹烷与二甲基 甲酰胺分子加合物的制备、性能及晶体结构[J]. 有机化学, 1999,19(4):500-507.
 Ou Y X, Jia H P, Chen B R, et al. Preparation, properties and crystal structure of adduct fromHexanitrohexaazaisowurtzitane and DMF[J]. Chin J Org Chem 1999, 19(4): 500-507.
- [23] 李海波, 聂福德, 李金山, 等. 2,6-二氨基-3,5-二硝基吡嗪-1-氧化物的合成及其晶体结构[J]. 合成化学, 2007, 15(3): 296-300.
 Li H B, Nie F D, Li J S, et al. Synthesis and crystal structure of 2,6-diamino-3,5-dinitropy -razine-1-oxide [J]. *Chin J Synthe Chem*, 2007, 15(3): 296-300.
- [24] 王军,董海山,黄奕刚,等. 3,4-二氨基呋咱基氧化呋咱的制备及晶体结构研究[J]. 化学学报,2006,64(2):158-162.
 Wang J, Dong H S, Huang Y G, et al. Study on the preparation and crystal structure of DAFF[J]. Acta Chim Sinica, 2006,64 (2):158-162.
- [25] 吕春绪. 耐热硝基芳烃化学[M]. 北京: 兵器工业出版社, 2006:56-58.

Lü C X. Chemistry of Heat Resistant Nitro-aromatic Compounds [M]. Beijing: Ordnance Industry Press, 2006: 56–58.

- [26] 董海山,胡荣祖,姚朴,等. 含能材料热谱分析[M]. 北京:国防 工业出版社,1999:53-54.
 Dong H S, Hu R Z, Yao P, et al. Thermogram analysis of Energetic Materials[M]. Beijing: National Defence Industrial Press, 1999:53-54.
- [27] 冯金玲, 张建国, 李志敏, 等. 高氯含能配合物 [Co(AZT)₂ (H₂O)₄](HTNR)₂ · 4H₂O 的合成、晶体结构及性质[J]. 化学 学报, 2010, 68(24): 2493 – 2499. Feng) L, Zhang J G, Li Z M, et al. Synthesis, crystal structure and properties of a novel high nitrogen energetic complex [Co
- (AZT)₂ (H₂O)₄] (HTNR)₂ · 4H₂O[J]. Acta Chim Sinica, 2010, 68(24): 2493 2499.
 Horne Hard Line (1998).
- [28] 欧育湘. 炸药学[M]. 北京:北京理工大学出版社,2006:264-270.

OU Yu-xiang. Explosive Science [M]. Beijing: Beijing Institute of Technology Press, 2006: 264 – 270.

- [29] Krober H, Teipel U. Crystallization of insensitive HMX[J]. Propell Explos Pyrot, 2008, 33(1): 33 – 36.
- [30] Creyghton Y L M, Marino E, Bouma R H B. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives[J]. *Propell Explos Pyrot*, 2008, 33(1): 25 – 32.

Preparation, Structure and Properties of CL-20/TNT Cocrystal

YANG Zong-wei, ZHANG Yan-li, LI Hong-zhen, ZHOU Xiao-qing, NIE Fu-de, LI Jin-shan, HUANG hui

(Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China)

Abstract: A novel CL-20/TNT cocrystal explosive was prepared by cocrystallization in solution, and its morphology was characterized by scaning electron microscopy (SEM), and the crystal structure was determined using single crystal X-ray. Results show that the crystal is orthorhombic, space group *Pbca* with crystal parameters of a = 0.9735(2) nm, b = 1.9912(6) nm, c = 2.4695(6) nm, $\alpha = \beta = \gamma = 90^{\circ}$, V = 4.787 nm³, Z = 8. The thermal decomposition and impact sensitivity of the product were measured by differential scanning calorimetry (DSC) and sensitivity test, respectively. The results reveal that the exothermic decomposition of CL-20/TNT cocrystal explosive occurs in the temperature range of $180 - 275 \,^{\circ}$ C, and the melting point of TNT significantly increases by about 50 $^{\circ}$ C. CL-20/TNT cocrystal has lower impact sensitivity and the impact sensitivity of CL-20 obviously reduces by 87%.

 Key words: physical chemistry; cocrystal explosive; CL-20; TNT; crystal structure; property

 CLC number: TJ55; O64
 Document code: A
 DOI: 10.3969/j.issn.1006-9941.2012.06.003

 Market
 Market
 Market
 Document code: A
 DOI: 10.3969/j.issn.1006-9941.2012.06.003