文章编号:1006-9941(2013)02-0180-14

从不同升温速率下的 DSC 曲线数据计算/确定含能材料放热分解反应 Arrhenius/非 Arrhenius 动力学参数的方法

胡荣祖^{1,3},马海霞²,严 彪²,张 海³,韩 路³,高红旭¹,赵凤起¹,姚二岗¹,赵宏安⁴

(1. 西安近代化学研究所燃烧与爆炸技术重点实验室,陕西 西安 710065;2. 西北大学化工学院,陕西 西安 710069;3. 西北大 学数学系/数据分析和计算化学研究所,陕西 西安 710069;4. 西北大学信息科学与工程学院,陕西 西安 710069)

摘 要:提出了从不同恒速升温速率(β)条件下的 DSC 曲线起始温度(T_0)、onset 温度(T_e)、峰温(T_p)、 T_e 和 T_p 处的反应转化率 α_e 和 α_p 及相应各等转化率 α_i 的 β_i 、 $T_{\alpha,i}$ (*i*=1,2,…,*L*)数据计算/确定含能材料放热分解反应 Arrhenius/非 Arrhenius 动力学参数 的方法。用该法得到了四水双(3-(5-硝基-1,2,4-三唑))钠[Na₂(BNT)(H₂O)₄]放热分解反应的 Arrhenius/非 Arrhenius 动力学 参数。用所得非 Arrhenius 动力学参数计算了[Na₂(BNT)(H₂O)₄]的热爆炸临界温度(T_b),并与用 Arrhenius 动力学参数所得的 T_b 值作了比较。验证了本工作所得[Na₂(BNT)(H₂O)₄]非 Arrhenius 动力学参数的有效性和可靠性。

关键词:物理化学;放热分解反应;非 Arrhenius 动力学参数;含能材料;恒速加热速率;DSC;热爆炸临界温度

中图分类号: TJ55; O64 文献标识码: A DOI: 10.3969/j.issn.1006-9941.2013.02.006

1 引 言

图 1 为含 DSC 曲线起始温度(T_0)的反应速率常数(k)的通式及其派生式。图中,式(1)为描述 k-T关系的 通式,式(2)~式(10)为式(1)在特定条件下的派生式。式(2)中的 A_0 和 E分别为 Arrhenius 动力学参数——表 观指前因子和表观活化能。式(3)~式(10)中 A_0 、a、b、E为非 Arrhenius 动力学参数。本工作报道了这些非 Arrhenius 动力学参数的计算方法,计算了四水双(3-(5-硝基-1,2,4-三唑))钠[Na₂(BNT)(H₂O)₄]放热分解反应 的 Arrhenius/非 Arrhenius 动力学参数,用所得的非 Arrhenius 动力学参数计算了热爆炸临界温度(T_b),并与用 Arrhenius动力学参数所得的 T_b 值作比较,借此验证本工作所得非 Arrhenius 动力学参数的有效性和可靠性。

2 计算非 Arrhenius 动力学参数的理论和方法

由含初始温度(T₀)的非等温动力学方程的微分式^[1]

$$\frac{d\alpha}{dT} = \frac{A_0}{\beta} T^3 \exp\left[bT - \frac{dE}{R(T+c)}\right] \cdot \left\{1 + (T - T_0) \left[\frac{a}{T} + \left[b + \frac{dE}{R(T+c)^2}\right]\right]\right\} f(\alpha)$$

$$f(\alpha)$$

$$f(\alpha$$

$$\begin{aligned} G(\alpha) &= \int_{0}^{\alpha} \frac{d\alpha}{f(\alpha)} = \frac{A_{0}}{\beta} \int_{T_{0}}^{T} T^{a} \exp\left[bT - \frac{dE}{R(T+c)}\right] \left\{1 + (T-T_{0})\left[\frac{a}{T} + \left[b + \frac{dE}{R(T+c)^{2}}\right]\right] \right\} dT \\ &= \frac{A_{0}}{\beta} \int_{T_{0}}^{T} T^{a} \exp\left[bT - \frac{dE}{R(T+c)}\right] \left\{1 + a + T\left[b + \frac{dE}{R(T+c)^{2}}\right] - \frac{T}{T_{0}}a - T_{0}\left[b + \frac{dE}{R(T+c)^{2}}\right] \right\} dT \\ &= \int_{T_{0}}^{T} \left\{(1+a)\frac{A_{0}}{\beta}T^{a} \exp\left[bT - \frac{dE}{R(T+c)}\right] + T\left[b + \frac{dE}{R(T+c)^{2}}\right] \frac{A_{0}}{\beta}T^{a} \exp\left[bT - \frac{dE}{R(T+c)}\right] \right\} dT \\ &- T_{0} \int_{T_{0}}^{T} \left\{\frac{A_{0}}{\beta}T^{a-1} \exp\left[b - \frac{dE}{R(T+c)}\right]a + \frac{A_{0}}{\beta}T^{a} \exp\left[bT - \frac{dE}{R(T+c)}\right]\left[b + \frac{dE}{R(T+c)^{2}}\right] \right\} dT \end{aligned}$$

收稿日期: 2013-01-28; 修回日期: 2013-03-11

作者简介: 胡荣祖(1938 -), 男, 研究员, 从事含能材料热化学、热分析研究。e-mail: hurongzu88@163.com

基金项目:国家自然科学基金(No.21173163, No.21073141, No.11171272)

- 图1 含 DSC 曲线起始温度(T₀)的反应速率常数(k)的通式及其派生式
- Fig. 1 The general expression and its derived formulae with initial temperature (T_0) of DSC curve for the reaction rate constant (k)

$$= \int_{T_{0}}^{T} d\left\{\frac{A_{0}}{\beta}T^{a+1}\exp\left[bT - \frac{dE}{R(T+c)}\right]\right\} - T_{0}\int_{T_{0}}^{T} d\left\{\frac{A_{0}}{\beta}T^{a}\exp\left[bT - \frac{dE}{R(T+c)}\right]\right\}$$

$$= \frac{A_{0}}{\beta}T^{a+1}\exp\left[bT - \frac{dE}{R(T+c)}\right]\Big|_{T_{0}}^{T} - T_{0}\frac{A_{0}}{\beta}T^{a}\exp\left[bT - \frac{dE}{R(T+c)}\right]\Big|_{T_{0}}^{T}$$

$$= \frac{A_{0}}{\beta}T^{a+1}\exp\left[bT - \frac{dE}{R(T+c)}\right] - \frac{A_{0}}{\beta}T^{a+1}\exp\left[bT_{0} - \frac{dE}{R(T_{0}+c)}\right] - T_{0}\frac{A_{0}}{\beta}T^{a}\exp\left[bT - \frac{dE}{R(T+c)}\right] + \frac{A_{0}}{\beta}T^{a+1}\exp\left[bT_{0} - \frac{dE}{R(T_{0}+c)}\right]$$

$$= \frac{A_{0}}{\beta}T^{a}\exp\left[bT - \frac{dE}{R(T+c)}\right] \cdot (T-T_{0}) \qquad (12)$$

由式(12)两边取对数、重排,定义 T为 T_{eorp} , α 为 α_{eorp} , 得对数形式的积分表达式

$$\ln\left(\frac{\beta_{i}}{T_{ei\,or\,pi}-T_{0i}}\right) = \ln\left[\frac{A_{0}}{G(\alpha_{ei\,or\,pi})}\right] + a\ln T_{ei\,or\,pi} + bT_{ei\,or\,pi} - \frac{dE}{R(T_{ei\,or\,pi}+c)}$$

$$\text{Is } \mu, \, \mathcal{H}$$

$$(13)$$

(1) *a* = *b* = *c* = 0, *d* = 1 时的表达式

$$\ln\left(\frac{\beta_{i}}{T_{e^{i} \text{ or } p^{i}} - T_{0i}}\right) = \ln\left[\frac{A_{0}}{G(\alpha_{e^{i} \text{ or } p^{i}})}\right] - \frac{E}{RT_{e^{i} \text{ or } p^{i}}}$$
(14)

$$\text{tg} A_{0} \text{ fb} R E D R E D R 4$$

$$\begin{split} \sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\,or\,pi}-T_{0i}}\right) &= \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\,or\,pi})}\right] - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei\,or\,pi}}\right) \\ \sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\,or\,pi}-T_{0i}}\right) \left(\frac{1}{T_{ei\,or\,pi}}\right) &= \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\,or\,pi})}\right] \left(\frac{1}{T_{ei\,or\,pi}}\right) - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei\,or\,pi}}\right)^{2} \\ \text{代原始数据} \beta_{i}, T_{0i}, T_{ei\,or\,pi}, \alpha_{ei\,or\,pi}, i=1,2,\cdots,L, \text{人超定方程组}, \text{\textit{\mathcal{H}}} A_{0} \text{ \mathcal{T}} E field . \end{split}$$

(2) d=1 时的表达式

$$\ln\left(\frac{\beta_{i}}{T_{ei\,or\,pi} - T_{0i}}\right) = \ln\left[\frac{A_{0}}{G(\alpha_{ei\,or\,pi})}\right] + a\ln T_{ei\,or\,pi} + bT_{ei\,or\,pi} - \frac{E}{R(T_{ei\,or\,pi} + c)}$$
(15)

计算
$$A_0$$
、 a 、 b 和 E 的超定方程组:

$$\sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{e_{i} \text{ or } p_{i}} - T_{0i}}\right) = \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{e_{i} \text{ or } p_{i}})}\right] + a \sum_{i=1}^{x} \ln T_{e_{i} \text{ or } p_{i}} + b \sum_{i=1}^{x} (T_{e_{i} \text{ or } p_{i}}) - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{e_{i} \text{ or } p_{i}} + c}\right)$$

(16)

$$\begin{split} \sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\,\sigma\,pi}-T_{0}}\right) \ln T_{ei\,\sigma\,pi} &= \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\,\sigma\,pi})}\right] \ln T_{ei\,\sigma\,pi} + a \sum_{i=1}^{x} (\ln T_{ei\,\sigma\,pi})^{2} + b \sum_{i=1}^{x} (T_{ei\,\sigma\,pi}) \ln T_{ei\,\sigma\,pi} - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) \ln T_{ei\,\sigma\,pi} \\ \sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\,\sigma\,pi}-T_{0}}\right) (T_{ei\,\sigma\,pi}) &= \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\,\sigma\,pi})}\right] (T_{ei\,\sigma\,pi}) + a \sum_{i=1}^{x} \ln T_{ei\,\sigma\,pi} (T_{ei\,\sigma\,pi}) + b \sum_{i=1}^{x} (T_{ei\,\sigma\,pi})^{2} - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) (T_{ei\,\sigma\,pi}) \\ \sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\,\sigma\,pi}-T_{0}}\right) \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) &= \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\,\sigma\,pi})}\right] \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) + a \sum_{i=1}^{x} \ln T_{ei\,\sigma\,pi} (T_{ei\,\sigma\,pi}) + b \sum_{i=1}^{x} (T_{ei\,\sigma\,pi})^{2} - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) (T_{ei\,\sigma\,pi}) \\ \sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\,\sigma\,pi}-T_{0}}\right) \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) &= \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\,\sigma\,pi})}\right] \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) + a \sum_{i=1}^{x} \ln T_{ei\,\sigma\,pi} \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) + b \sum_{i=1}^{x} (T_{ei\,\sigma\,pi}) \left(\frac{1}{T_{ei\,\sigma\,pi}} + c\right) - \left(\frac{E}{R}\sum_{i=1}^{x} \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right)^{2} \right) \\ \ll \int \left(\frac{\beta_{i}}{\beta_{i}}\right) \left(\frac{\beta_{i}}{T_{ei\,\sigma\,pi}-T_{0}}\right) \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) = \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\,\sigma\,pi})}\right] \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) + a \sum_{i=1}^{x} \ln T_{ei\,\sigma\,pi} \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) + b \sum_{i=1}^{x} (T_{ei\,\sigma\,pi}) \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right) - \left(\frac{E}{R}\sum_{i=1}^{x} \left(\frac{1}{T_{ei\,\sigma\,pi}+c}\right)^{2} \right) \\ \ll \int \left(\frac{\beta_{i}}{\beta_{i}}\right) \left(\frac{\beta_{i}}{\beta_{$$

$$\ln\left(\frac{\beta_{i}}{T_{e_{i} \text{ or } p_{i}} - T_{0i}}\right) = \ln\left[\frac{A_{0}}{G(\alpha_{e_{i} \text{ or } p_{i}})}\right] + a \ln T_{e_{i} \text{ or } p_{i}} - \frac{E}{RT_{e_{i} \text{ or } p_{i}}}$$

计算 $A_{0} \setminus a$ 和 E 的超定方程组:

$$\sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\ or\ pi} - T_{0i}}\right) = \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\ or\ pi})}\right] + a \sum_{i=1}^{x} \ln T_{ei\ or\ pi} - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei\ or\ pi}}\right)$$

$$\sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\ or\ pi} - T_{0i}}\right) \ln T_{ei\ or\ pi} = \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\ or\ pi})}\right] \ln T_{ei\ or\ pi} + a \sum_{i=1}^{x} (\ln T_{ei\ or\ pi})^{2} - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei\ or\ pi}}\right) \ln T_{ei\ or\ pi}$$

$$\sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\ or\ pi} - T_{0i}}\right) \left(\frac{1}{T_{ei\ or\ pi}}\right) = \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\ or\ pi})}\right] \left(\frac{1}{T_{ei\ or\ pi}}\right) + a \sum_{i=1}^{x} \ln T_{ei\ or\ pi} \left(\frac{1}{T_{ei\ or\ pi}}\right) - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei\ or\ pi}}\right) \ln T_{ei\ or\ pi}$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

代原始数据 β_i 、 T_{oi} 、 $T_{ei \text{ or } pi}$ 、 $\alpha_{ei \text{ or } pi}$, $i = 1, 2, \dots, L$, 人超定方程组, 得 A_0 、a和 E值。 (4)a = c = 0, d = 1时的表达式

$$\sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei \text{ or } pi} - T_{0i}}\right) = \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei \text{ or } pi})}\right] + b \sum_{i=1}^{x} \ln T_{ei \text{ or } pi} - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei \text{ or } pi}}\right)$$

$$\sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei \text{ or } pi} - T_{0i}}\right) (T_{ei \text{ or } pi}) = \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei \text{ or } pi})}\right] (T_{ei \text{ or } pi}) + b \sum_{i=1}^{x} (T_{ei \text{ or } pi})^{2} - \left(\frac{E}{R}\right) x$$

$$\sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei \text{ or } pi} - T_{0i}}\right) \left(\frac{1}{T_{ei \text{ or } pi}}\right) = \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei \text{ or } pi})}\right] \left(\frac{1}{T_{ei \text{ or } pi}}\right) + bx - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei \text{ or } pi}}\right)^{2}$$

$$E \ln b \pm \pi E \beta T T T = \alpha \qquad i=1,2, \dots, L \to E \oplus i$$

代原始数据 β_i 、 I_{oi} 、 I_{eiorpi} 、 α_{eiorpi} , $I=1,2,\cdots,L$, 人超定万程组, 得 A_0 、b相E值。 (5) d=0 时的表达式

$$\begin{split} \sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\,or\,pi}-T_{0i}}\right) &= \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\,or\,pi})}\right] + a \sum_{i=1}^{x} \ln T_{ei\,or\,pi} + b \sum_{i=1}^{x} \ln T_{ei\,or\,pi} \\ \sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\,or\,pi}-T_{0i}}\right) \ln T_{ei\,or\,pi} &= \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\,or\,pi})}\right] \ln T_{ei\,or\,pi} + a \sum_{i=1}^{x} (\ln T_{ei\,or\,pi})^{2} + b \sum_{i=1}^{x} (T_{ei\,or\,pi}) \ln T_{ei\,or\,pi} \\ \sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei\,or\,pi}-T_{0i}}\right) (T_{ei\,or\,pi}) &= \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei\,or\,pi})}\right] (T_{ei\,or\,pi}) + a \sum_{i=1}^{x} \ln T_{ei\,or\,pi} (T_{ei\,or\,pi}) + b \sum_{i=1}^{x} (T_{ei\,or\,pi})^{2} \\ \text{CFM bdy III} \beta_{i}, T_{0i}, T_{ei\,or\,pi}, \alpha_{ei\,or\,pi}, i=1,2,\cdots,L, \text{ABE} \text{FRed} \text{H}, \text{H} A_{0}, a \text{ An } b \text{ If } 0. \end{split}$$

$$(6) c = 0, d = 1 时的表达式$$

$$\ln\left(\frac{\beta_{i}}{T_{ei \, or \, pi} - \overline{T_{0i}}}\right) = \ln\left[\frac{A_{0}}{G(\alpha_{ei \, or \, pi})}\right] + \ln T_{ei \, or \, pi} + bT_{ei \, or \, pi} - \frac{E}{R(T_{ei \, or \, pi})}$$

$$(19)$$

$$计算 A_{0} \setminus a \setminus b \, \pi E \, b \, \exists c \, \overline{f} \, d \, \exists :$$

$$\sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei \, or \, pi} - \overline{T_{0i}}}\right) = \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei \, or \, pi})}\right] + a \sum_{i=1}^{x} \ln T_{ei \, or \, pi} + b \sum_{i=1}^{x} \ln T_{ei \, or \, pi} - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei \, or \, pi}}\right)$$

$$\sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei \, or \, pi} - \overline{T_{0i}}}\right) = \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei \, or \, pi})}\right] + a \sum_{i=1}^{x} \ln T_{ei \, or \, pi} + a \sum_{i=1}^{x} \ln T_{ei \, or \, pi} - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei \, or \, pi}}\right) \ln T_{ei \, or \, pi}$$

$$\sum_{i=1}^{x} \ln\left(\frac{\beta_{i}}{T_{ei \, or \, pi} - \overline{T_{0i}}}\right) \ln T_{ei \, or \, pi} = \sum_{i=1}^{x} \ln\left[\frac{A_{0}}{G(\alpha_{ei \, or \, pi})}\right] \ln T_{ei \, or \, pi} + a \sum_{i=1}^{x} (\ln T_{ei \, or \, pi})^{2} + b \sum_{i=1}^{x} (T_{ei \, or \, pi}) \ln T_{ei \, or \, pi} - \left(\frac{E}{R}\right) \sum_{i=1}^{x} \left(\frac{1}{T_{ei \, or \, pi}}\right) \ln T_{ei \, or \, pi}$$

Chinese Journal of Energetic Materials, Vol. 21, No. 2, 2013 (180 – 193)

含能材料

计算用 Na₂(BNT)(H₂O)₄ 放热分解反应的 DSC 曲线、特征数据($\beta_i, T_{0i}, T_{ei}, \alpha_{ei}, T_{pi}, \alpha_{pi}$)和原始数据表: $\beta_1: T_{11}, T_{12}, \dots, T_{1k_1}$ $\alpha_{11}, \alpha_{12}, \dots, \alpha_{1k_1}$

$$\begin{array}{c} \alpha_{11}, \alpha_{12}, & , \alpha_{1k_{1}} \\ \beta_{2}: T_{21}, T_{22}, \cdots, T_{2k_{2}} \\ \alpha_{21}, \alpha_{22}, \cdots, \alpha_{2k_{2}} \\ \vdots \\ \beta_{L}: T_{L1}, T_{L2}, \cdots, T_{Lk_{L}} \\ \alpha_{L1}, \alpha_{L2}, \cdots, \alpha_{Lk_{L}} \end{array}$$

$$(23)$$

如图 2、表 1 和表 2 所示。其中, T_0 、 T_e 和 T_p 分别为初始分解温度、onset 温度和峰顶温度, α_e 和 α_p 分别是 T_e 和 T_p 时的反应转化率。 T_{ij} 和 α_{ij} ($i=1,2,\cdots,L; j=1,2,\cdots,k_i$)是互相对应的反应温度和反应转化率, 而 k_i 是升温速 率 β_i 时的实验中所取的数据点个数。

表 1 非等温 DSC 测得 Na₂(BNT)(H₂O)₄ 原始数据和 Kissinger 法、Ozawa 法和方程(27)、(28)所得放热分解反应的动力学参数 **Table 1** The original data of Na₂(BNT)(H₂O)₄ determined by non-isothermal DSC and kinetic parameters of exothermic decomposition reaction obtained by Kissinger's method, Ozawa's method and Eqs. (27)^[2] and (28)^[3]

	initial d	lata				calcula	ated valu	ues of ki	netic parame	ters ¹⁾						Eq. (2	27)		Eq. (2	28)	
β									Kissinger's r	nethod		Ozawa's i	method						20		
/K • min −1	<i>T</i> ₀ /K	T _e /K	α _e	Т _р /К	α _p	<i>T</i> ₀₀ /K	Т _{е0} /К	<i>Т</i> _{р0} /К	E _K ∕kJ • mol ^{−1}	$\log(A_k/s^{-1})$) r _K	E _{Op} ∕kJ • mol	-1 r _{Op}	E _{Oe} /kJ • mol =	^r Oe	b _{e0} ²⁾	r _{e0}	b _{p0} ²⁾ r _{p0}	a_{e0}^{3}	r _{e0} a _{p0}	³⁾ r _{p0}
5	649.96	666.87	0.1232	674.00	0.6880	643.26	652.10	656.79	191.31	12.46	0.9993	192.82	0.9993	189.97	0.9968	0.0516	0.9958	0.0513 0.9990	34.21	0.9963 34.3	9 0.9992
10	660.76	678.72	0.1028	686.86	0.6980											1.	C.			2	
15	677.29	685.51	0.0678	694.23	0.6652											2	-	N'ST.			
20	684.13	693.30	0.1127	701.22	0.6791										10	100	1.00	- SE			
25	687.17	697.90	0.1434	705.13	0.6050										600		B	P Dr			

Note; 1) E: apparent activation energy; A: pre-exponential constant; Subscript K, data obtained by Kissinger's method [4]; Subscript O: data obtained by Ozawa's method [5].

2) The value of $b_{e0 \text{ or } p0}$ is from $\ln \beta_i vs. T_{ei}$ or T_{pi} relation in Eq. (27). 3) The value of a_{e0} or p_0 is from $\ln \beta_i vs. T_{ei}$ or T_{pi} relation in Eq. (28).

表 2 不同升温速率(β)下由 DSC 数据和非线性等转化率法(NL-INT)^[6]得到的 Na₂(BNT)(H₂O)₄ 放热分解反应的表观活化能 **Table 2** Data of Na₂(BNT)(H₂O)₄ determined by DSC at different heating rates (β) and apparent activation energies (E_a) of thermal decomposition obtained by an integral isoconversional non-linear (NL-INT) method^[6]

data naint	initial data		E _{NL-INT-SY3}	Min				
data point	α	<i>T</i> ₅ / K	T_{10}/K	T ₁₅ /K	T ₂₀ /K	T ₂₅ /K	/kJ • mol ^{−1}	1 M III
0	0.000	649.96	660.76	677.29	684.13	687.17		
1	0.025	660.28	672.41	683.57	689.55	692.42	170.48	0.0064
2	0.050	662.97	675.47	684.82	690.98	694.16	180.88	0.0228
3	0.075	664.70	677.47	685.76	692.05	695.46	186.60	0.0089
4	0.100	665.96	678.62	686.55	692.91	696.49	189.58	0.0064
5	0.125	666.93	679.44	687.21	693.65	697.35	191.22	0.0064
6	0.150	667.67	680.12	687.80	694.29	698.08	191.99	0.0067
7	0.175	668.24	680.70	688.32	694.86	698.73	192.04	0.0070
8	0.200	668.73	681.21	688.80	695.37	699.31	191.94	0.0072
9	0.225	669.16	681.68	689.24	695.84	699.84	191.73	0.0073
10	0.250	669.54	682.10	689.64	696.28	700.33	191.39	0.0076
11	0.275	669.90	682.50	690.02	696.69	700.78	191.14	0.0077
12	0.300	670.23	682.86	690.38	697.07	701.21	190.81	0.0079
13	0.325	670.55	683.21	690.72	697.43	701.61	190.60	0.0081
14	0.350	670.85	683.53	691.05	697.77	701.99	190.35	0.0081
15	0.375	671.14	683.83	691.36	698.09	702.35	190.15	0.0083
16	0.400	671.42	684.12	691.66	698.41	702.69	189.95	0.0086
17	0.425	671.69	684.40	691.94	698.71	703.03	189.75	0.0089
18	0.450	671.94	684.66	692.21	699.00	703.35	189.50	0.0092
19	0.475	672.19	684.92	692.48	699.27	703.66	189.35	0.0093
20	0.500	672.43	685.17	692.73	699.54	703.96	189.17	0.0097
21	0.525	672.66	685.40	692.98	699.80	704.25	188.96	0.0099
22	0.550	672.89	685.63	693.22	700.04	704.54	188.82	0.0102
23	0.575	673.10	685.85	693.45	700.28	704.81	188.61	0.0104
24	0.600	673.31	686.07	693.68	700.52	705.08	188.42	0.0107
25	0.625	673.51	686.28	693.89	700.74	705.33	188.28	0.0110
26	0.650	673.71	686.48	694.11	700.96	705.58	188.13	0.0111
27	0.675	673.90	686.68	694.31	701.18	705.81	188.00	0.0114
28	0.700	674.09	686.87	694.51	701.40	706.04	187.86	0.0118
29	0.725	674.27	687.06	694.70	701.60	706.25	187.80	0.0119
30	0.750	674.45	687.25	694.89	701.81	706.46	187.71	0.0121
31	0.775	674.62	687.42	695.08	702.00	706.66	187.62	0.0121
32	0.800	674.79	687.59	695.25	702.19	706.85	187.58	0.0124
33	0.825	674.96	687.76	695.42	702.37	707.04	187.57	0.0127
34	0.850	675.12	687.91	695.58	702.55	707.21	187.54	0.0130
35	0.875	675.26	688.06	695.73	702.72	707.37	187.47	0.0131
36	0.900	675.40	688.20	695.86	702.88	707.51	187.50	0.0135
37	0.925	675.57	688.34	695.99	703.04	707.63	187.78	0.0140
38	0.950	675.81	688.46	696.10	703.18	707.71	188.67	0.0154
39	0.975	676.31	688.59	696.20	703.31	707.75	191.34	0.0201
40	1.000	682.74	689.34	696.77	703.63	708.29	230.92	0.2800

3.2 用特征点数据计算动力学参数(*E*_{K or O}、*A*_K、*a*_{e0 or p0}和 *b*_{e0 or p0})

代表 1 中的特征数据: *β_i*、*T_{oi}*、*T_{pi}*(*i*=1,2,…,5),入方程(24),得表 1 中的 *T_{o0}*、*T_{e0}*和 *T_{p0}*值,入 Kissinger 方程(25)、Ozawa 方程(26)和方程(27)、(28),得表 1 中的 *E_{K or O}*、*A_K*、*a_{e0 or p0}</sub>和 <i>b_{e0 or p0}*值。

$$T_{0 \text{ or e or } p} = T_{00 \text{ or e0 or } p0} + b\beta_{i} + c\beta_{i}^{2} + d\beta_{i}^{3} \quad i = 1, 2, \dots, L$$

$$\ln\left(\frac{\beta_{i}}{T_{pi}^{2}}\right) = \ln\frac{A_{K}R}{E_{K}} - \frac{E_{K}}{R}\frac{1}{T_{pi}}$$

$$(24)$$

$$(25)$$

$$\lg\beta_{i} = \lg\left[\frac{A_{K}E_{\text{Oe or } \text{Op}}}{RG(\alpha)}\right] - 2.315 - 0.4567 \frac{E_{\text{Oe or } \text{Op}}}{RT_{ei \text{ or } pi}}$$

$$(26)$$

$$\ln\beta_{i} = \ln\left[\frac{A_{0}}{b_{e0 \text{ or } p0}G(\alpha)}\right] + b_{e0 \text{ or } p0}T_{ei \text{ or } pi}$$

$$(27)$$

$$\ln\beta_{i} = \ln\left[\frac{A_{0}}{(a_{e0 \text{ or } p0} + 1)G(\alpha)}\right] + (a_{e0 \text{ or } p0} + 1)\ln T_{ei \text{ or } pi}$$

$$(28)$$

3.3 用非线性等转化率积分法^[6]估算动力学参数 E_{NL-INT-SY3}

代表 2 中同一 α 处的原始数据 β_i 、 $T_{\alpha,i}$ (i=1,2,...,5), 入方程(29)和(30), 得表 2 中满足该方程最小(Min) 值的 $E_{\text{NL-INT-SY3}}$ 值。用 $E_{\text{NL-INT-SY3,i}}, \alpha_i$ (i=1,2,...,40)数据构筑 $E_{\text{NL-INT-SY3}}-\alpha$ 关系曲线,结果如图 3 所示。该曲线表明, α 在 0.100~0.975 范围内, $E_{\text{NL-INT-SY3}} =$ (189.34±0.51) kJ·mol⁻¹, E 随 α 变化甚微,意味 Na₂(*cis*-BNT)(H₂O)₄ 放热分解过程可用某一机理函数描述。

$$\Omega_{11}(E_{\alpha}) = \min \left| \sum_{i=1}^{n} \sum_{j \neq i}^{n} \frac{\beta_{j} \cdot I(E_{\alpha}, T_{\alpha,i})}{\beta_{j} \cdot I(E_{\alpha}, T_{\alpha,j})} - n(n-1) \right|$$
(29)

式中, $I(E_{\alpha}, T_{\alpha})$ 积分取 Senum-Yang 三级近似式(30)计算:

$$I_{SY3}(E,T) = \left[Te^{-u} \left(\frac{u^2 + 10u + 18}{u^3 + 12u^2 + 36u + 24} \right) \right]$$
(30)

式中, $u = E/RT_{\circ}$

3.4 用"y(α)-α"标准曲线推断最可几 f(α)^[7]

将人为数据: $\alpha_i, y(\alpha_i), i = 1, 2, \dots, j$ 和 $\alpha = 0.5, y(0.5)$ 代人关系式 $y(\alpha) = \frac{f(\alpha) \cdot G(\alpha)}{f(0.5) \cdot G(0.5)}$

作如图 4 所示的"y(α)-α"关系曲线,视该曲线为标准曲线。

将表 2 中原始数据:
$$\alpha_i, T_i, \left(\frac{d\alpha}{dt} = \frac{\beta}{60} \cdot \frac{d\alpha}{dT}\right)_i, i = 1, 2, \cdots j$$
和 $\alpha = 0.5, T_{0.5}, \left(\frac{d\alpha}{dt}\right)_{0.5}$ 代人关系式 $y(\alpha) = \left(\frac{T}{T_{0.5}}\right)^2 \frac{\left(\frac{d\alpha}{dt}\right)}{\left(\frac{d\alpha}{dt}\right)_{0.5}}$

作"y(α)-α"关系曲线,视该曲线为实验曲线。

 $\alpha = 0.100 \sim 0.975$ 范围内的实验数据点全部落在图 4 所示两条红线间,表明,可能的机理函数有 7 个,分别为:第1、22、23、24、25、26 和 27 号函数,它们有逻辑形式通式: $G(\alpha) = \alpha^{n} [n = 2(1D), 1/4, 1/3, 1/2, 1, 3/2, 2]$,因此,要明确指出哪个函数就是所求的 $f(\alpha)$ 是相当困难的。

3.5 用"w(α)-α"标准曲线推断最可几 f(α)^[7]

将人为数据: α_i , $w(\alpha_i)$, $i = 1, 2, \dots, j$ 和 $\alpha = 0.5$, w(0.5)代入关系式 $w(\alpha) = \frac{f(0.5) \cdot f'(\alpha)}{f'(0.5) \cdot f(\alpha)}$ 作如图 5 所示的" $w(\alpha)$ - α "关系曲线, 视该曲线为标准曲线。

将表 2 中原始数据:
$$\alpha_i$$
, T_i , $\left(\frac{d\alpha}{dT}\right)_i$, $i = 1, 2, \cdots j$ 和 $\alpha = 0.5, T_{0.5}, \left(\frac{d\alpha}{dT}\right)_{0.5}$ 代人关系式 $w(\alpha) = \frac{\left(\frac{d\alpha}{dT}\right)}{\left(\frac{d\alpha}{dT}\right)_{0.5}} \left(\frac{T_{0.5}}{T}\right)^2$

作" w(α)-α" 关系曲线,视该曲线为实验曲线。

 $\alpha = 0.100 \sim 0.975$ 范围内的实验数据点全部落在图 5 所示两条红线间,表明,可能的机理函数有 5 个,分别为:第1、22、23、24 和 27 号函数,它们有逻辑形式通式: $G(\alpha) = \alpha^n [n=2(1D), 1/4, 1/3, 1/2, 2],因此,要明确指出哪个函数就是所求的 f(\alpha) 也是相当困难的。$

CHINESE JOURNAL OF ENERGETIC MATERIALS

 $(d\alpha)$

图2 不同加热速率下 Na₂(BNT)(H₂O)₄ 放热分解反应的 DSC 曲线

Fig. 2 DSC curves of exothermic decomposition reaction of $Na_2(BNT)(H_2O)_4$ at different heating rates

Fig.4 $y(\alpha)$ vs. α relation

3.6 用" $Z(\alpha)$ - α "标准曲线推断最可几 $f(\alpha)^{[7]}$

将人为数据: $\alpha_i, Z(\alpha_i), i=1,2, \cdots, j$ 代人关系式 $Z(\alpha) = f(\alpha)G(\alpha)$ 作图 6 所示的"Z(α)-α"关系曲线,视该曲线为标准曲线。

将表 2 中原始数据: β , α_i , T_i , $\left(\frac{d\alpha}{dt} = \frac{\beta}{60} \cdot \frac{d\alpha}{dT}\right)_i$, i=1,2,…j和 Ozawa 法所得的 E 值,代入关系式

 $Z(\alpha) = \frac{\pi(u) \left(\frac{\mathrm{d}\alpha}{\mathrm{d}t}\right)^T}{\beta}$ 式中, $\pi(u) = \frac{u^2 + 10u + 18}{u^3 + 12u^2 + 36u + 24}, u = E/RT_{\circ}$

作" $Z(\alpha)$ - α "关系曲线,视该曲线为实验曲线。

α=0.100~0.975 范围内的实验数据点全部落 在图 6 所示两条红线附近,推断第 22、23、24 号函数 可能为最可几机理函数,至此,我们仍不能明确哪个函 数是最概然的,此处仅提供了很可能是第22号、23号 和24号函数中的一个这一信息。

图 3 由非线性等转化率法(NL-INT)得到的 Na₂(BNT) $(H_2O)_4$ 放热分解反应的 E_{α} - α 曲线

Fig. 3 E_{α} - α curve for the exothermic decomposition reaction of $Na_2(BNT)(H_2O)_4$ by an integral isoconversional non-linear (NL-INT) method

图 5 w(α)-α 关系 **Fig. 5** $w(\alpha)$ vs. α relation

图6 Z(α)-α关系 **Fig.6** $Z(\alpha)$ vs. α relation

186

3.7 用逻辑选择法推断最可几机理函数 $f(\alpha)^{[8]}$

为推断反应的最可几机理函数 f(α),进行了代α = 0.100~0.975范围内的数据: β_i、T_i和 α_i(i=1,2,…,36) 和文献[8]中41个积分形式机理函数,入Šatava-Šestók方程(方程式(31))

$$\log G(\alpha) = \log \frac{A_s E_s}{R\beta} - 2.315 - 0.4567 \frac{E_s}{RT}$$

求 E和 A的计算,结果如表 3~表 5 所示。

表 3 用 Šatava-Šesták 法分析表 1 中 5, 10 K・min⁻¹时 Na₂(BNT)(H₂O)₄ 热分解数据的结果

·果 (H₂O) **Table 3** Analysis results of the thermal decomposition data at 5, 10 K \cdot min⁻¹ of Na₂(BNT)(H₂O)₄ in Table 1 by Šatava-Šesták method NO

$\beta = 5 \text{ K} \cdot \text{m}$	in ⁻¹				ŀ	3 = 10 K · r	min ⁻¹				
Function	Ε	1 (A (-1))		0 103	1 106	Function	Ε	1 (A (-1))		0 103	1 106
No.	/kJ · mol $^{-1}$	$lg(A/s^{-1})$	r	$Q \cdot 10^3$	$d \cdot 10^{\circ}$	No.	/kJ · mol $^{-1}$	$lg(A/s^{-1})$	r	$Q \cdot 10^3$	$d \cdot 10^{\circ}$
22	202.11	13.28	0.9967	1.030	3.360	22	204.68	13.48	0.9980	0.6454	1.319
23	269.48	18.63	0.9967	1.830	5.974	23	272.91	18.79	0.9980	1.147	2.346
3	487.97	36.06	0.996	0.644	0.2268	3	493.20	36.04	0.9989	2.010	2.207
4	1951.9	154.2	0.996	10.31	3.629	4	1972.8	153.3	0.9989	32.16	35.32
5	520.91	38.65	0.9987	2.761	3.649	5	526.07	38.58	0.9971	5.985	17.16
10	297.58	20.96	0.9933	4.619	31.03	10	299.99	21.00	0.9900	6.874	68.85
7	1903.2	149.9	0.9997	7.320	1.924	7	1924.3	149.0	0.9934	18.29	12.01
8	1452.6	112.9	0.9945	89.27	487.4	8	1471.5	112.5	0.9960	65.00	258.2
35	2330.2	23.54	0.9188	77.30	6274	35	335.54	23.76	0.9231	73.40	5644.8
1	1616.9	127.4	0.9967	65.89	215.0	1	1637.5	126.9	0.9980	41.30	84.44
11	396.77	28.93	0.9933	8.211	55.16	11	399.99	28.88	0.9900	12.22	12.24
12	476.13	35.32	0.9933	11.82	79.43	12	479.99	35.21	0.9900	17.60	17.63
13	595.16	44.94	0.9933	18.47	124.1	13	599.99	44.72	0.9900	27.50	27.54
14	793.55	61.00	0.9933	32.84	220.6	14	799.98	60.61	0.9900	48.88	48.96
15	892.74	65.04	0.9933	41.57	279.2	15	899.98	68.57	0.9900	61.87	61.97
16	1190.3	93.19	0.9933	73.90	496.4	16	1200.0	92.46	0.9900	1099	1102
17	1785.5	141.6	0.9933	166.3	111.7	17	1800.0	140.3	0.9900	2475	2479
18	2380.6	190.0	0.9933	295.6	198.6	18	2400.0	188.2	0.9900	4400	4407
19	3571.0	286.9	0.9933	665.1	446.8	19	3600.0	284.2	0.9900	9899	9915
20	4761.3	383.9	0.9933	1182	794.3	20	4800.0	380.1	0.9900	1760	17.63
21	-	-	-	-	-	21	< - · · · · · · · · · · · · · · · · · ·	-	-	-	-
6	2083.6	154.7	0.9987	44.18	58.38	6	2104.3	163.5	0.9971	95.76	27.45
2	1816.0	143.4	0.9994	14.93	8.792	2	1837.2	142.7	0.9996	10.12	4.039
24	404.23	29.41	0.9967	4.118	13.44	24	409.36	29.50	0.9980	2.581	5.278
25	808.45	61.97	0.9967	16.47	53.76	25	818.73	61.86	0.9980	10.33	21.11
26	1212.7	94.65	0.9967	37.07	121.0	26	1228.1	94.34	0.9980	23.23	47.50
27	1616.9	127.4	0.9967	65.89	215.0	27	1637.5	126.9	0.9980	41.30	84.44
28	1076.8	83.30	0.9978	19.94	44.49	28	1087.0	82.79	0.9958	37.49	157.4
29	1041.8	80.57	0.9987	11.04	14.59	29	1052.1	80.12	0.9971	23.94	68.63
30	1041.8	81.04	0.9987	11.04	14.60	30	1052.1	80.59	0.9971	23.94	68.63
31	975.94	75.36	0.9996	2.578	0.9072	31	986.40	75.02	0.9989	8.040	8.830
32	975.94	75.66	0.9996	2.578	0.9072	32	986.40	75.32	0.9989	8.040	8.830
33	576.45	43.31	0.9755	6.481	1585	33	585.08	43.43	0.9789	55.95	1179
34	429.33	31.49	0.9474	8.077	4246	34	436.16	31.68	0.9516	74.56	3610
9	2723.5	217.2	0.9834	968.8	16056	9	3740.4	214.7	0.9783	1265	27.45
36	959.83	75.04	0.8463	1403	215706	36	954.20	73.44	0.8318	1523	256313
37	1768.3	140.5	0.9557	1140	50524	37	1772.9	138.5	0.9473	1349	71.08
38	479.92	35.91	0.8463	350.8	53926	38	477.10	35.26	0.8318	380.9	64.08
39	-	-	-	-	-	39	-	-	-	-	-
40	-	-	-	-	-	40	-	-	-	-	-
41	191.7	153.61	0.8463	5612	862823	41	1909.4	150.1	0.8318	6094	1025252

(31)

表 4 用 Šatava-Šesták 法分析表 1 中 15, 20 K・min⁻¹时 Na₂(BNT)(H₂O)₄ 热分解数据的结果

Table 4 Analysis results of the thermal decomposition data at 15, 20 K \cdot min⁻¹ of Na₂(BNT)(H₂O)₄ in Table 1 by Šatava-Šesták method

$\beta = 15 \text{ K} \cdot \text{r}$	min ⁻¹					$\beta = 20 \text{ K} \cdot \text{r}$	nin ⁻¹				
Function No.	E ∕kJ•mol ⁻¹	$\lg(A/s^{-1})$	r	$Q \cdot 10^3$	$d \cdot 10^{6}$	Function No.	<i>E</i> ∕kJ • mol ^{−1}	$lg(A/s^{-1})$	1 0	$Q \cdot 10^3$	$d \cdot 10^{6}$
22	209.24	13.82	0.9959	1.303	5.382	22	220.74	13.14	0.9961	1.230	4.793
23	278.98	19.20	0.9959	2.316	9.567	23	267.65	18.24	0.9961	2.186	8.522
3	504.99	36.71	0.9984	2.871	4.503	3	484.61	34.85	0.9990	1.942	2.060
10	307.63	21.51	0.9910	6.173	55.50	4	1938.4	147.6	0.9990	31.07	32.96
5	538.92	39.30	0.9972	5.885	16.59	5	517.24	37.32	0.9978	4.559	9.953
6	2155.7	165.9	0.9972	94.16	265.4	10	295.34	20.45	0.9919	5.537	44.62
7	169.9	151.1	0.9987	37.38	50.19	28	1890.3	143.5	0.9991	24.87	22.21
8	1503.2	113.9	0.9933	1094	732.8	8	1442.2	168.1	0.9936	105.2	677.5
35	339.88	23.98	0.9128	82.80	7223	35	326.25	22.79	0.9135	82.18	7111
1	1673.9	128.5	0.9959	83.37	344.4	1	605.89	122.0	0.9961	78.69	306.8
11	410.17	29.50	0.9910	10.97	98.67	11	393.79	28.04	0.9919	9.843	79.32
12	492.21	35.92	0.9910	15.80	142.1	12	472.55	34.14	0.9919	14.17	114.2
13	615.26	45.57	0.9910	24.69	222.0	13	590.68	43.31	0.9919	21.15	178.5
14	820.34	61.68	0.9910	43.90	39.47	14	787.58	58.62	0.9919	29.37	317.3
15	922.89	69.75	0.9910	55.56	49.95	15	886.02	66.29	0.9919	49.83	401.6
16	1230.5	93.99	0.9910	98.77	88.80	16	1181.4	89.33	0.9919	88.58	713.9
17	1845.8	142.6	0.9910	222.2	1998	17	1772.1	135.5	0.9919	199.3	1606
18	2461.0	191.1	0.9910	395.1	3552	18	2362.7	181.7	0.9919	354.3	2855
19	3691.6	288.4	0.9910	889.0	7992	19	3544.1	274.1	0.9919	797.3	6425
20	4922.1	385.7	0.9910	1580	1421	20	4725.4	368.6	0.9919	1417	11422
21	-	-	-	-	-	21	-	-	-	-	-
2	1880.0	144.6	0.9985	37.78	56.30	6	2069.0	157.6	0.9978	72.95	159.3
4	2020.0	155.4	0.9984	45.93	72.06	2	1803.8	137.3	0.9989	28.71	32.50
24	418.47	30.03	0.9959	5.211	21.53	24	401.47	28.52	0.9961	4.918	19.17
25	836.94	62.75	0.9959	20.84	86.11	25	802.94	59.58	0.9961	19.67	76.70
26	1255.4	95.60	0.9959	46.90	193.7	26	1204.4	90.77	0.9961	44.26	172.6
27	1673.9	128.5	0.9959	83.37	344.4	27	1605.9	122.0	0.9961	78.69	306.8
28	1113.9	84.13	0.9961	34.81	135.7	28	1069.1	79.90	0.9968	28.52	91.05
29	1077.9	81.39	0.9972	23.54	66.35	29	1034.5	77.30	0.9978	18.24	39.81
30	1077.9	81.87	0.9972	23.54	66.35	30	1034.5	77.78	0.9978	18.24	39.81
31	1010.0	76.19	0.9984	11.48	18.01	31	969.22	72.34	0.9989	7.767	8.240
32	1010.0	76.48	0.9984	11.48	18.01	32	969.22	72.65	0.9989	7.767	8.240
33	598.13	43.96	0.9737	69.71	1835	33	571.85	41.73	0.9738	69.38	1818
34	443.03	32.01	0.9436	86.55	4885	34	425.09	30.40	0.9439	86.03	4825
9	2812.7	218.2	0.9802	1156	22.88	9	2701.2	207.40	0.9814	1083	20091
36	985.48	75.24	0.8386	1467	23685	36	948.42	71.72	0.8414	1444	228950
37	1822.4	141.0	0.9506	1268	62.65	37	1751.4	134.2	0.9524	1222	58125
38	492.74	36.24	0.8386	366.8	59.21	38	474.21	34.55	0.8414	360.9	57237
39	-	- ~ 9	_	-	-	39	-	-	-	-	-
40	-	-00	-	-	-	40	-	-	-	-	-
41	1971.0	153.6	0.8386	5869	947391	41	1896.9	146.4	0.9414	5774	915798

据此,发现 41 个机理函数中有 40 个机理函数计算的 *E* 值均在含能材料正常范围外,即使 *E* 值在正常范围内,如表 5 的 23 号函数, *E* = 246.40 kJ · mol⁻¹,也远离 $E_{NL-INT-SY3}$ = 189.34 kJ · mol⁻¹,属不合理,被排除。只有第 22 号函数计算的 *E* 和 *A* 值在含能材料的 *E* 和 *A* 的正常范围(80~250 kJ · mol⁻¹和 10⁷~10³⁰ s⁻¹)内,逻辑选择法所得的 \overline{E} = 200.31 kJ · mol⁻¹(表 6) 也接近 $E_{NL-INT-SY3}$ = 189.34 kJ · mol⁻¹,因此,逻辑上较合理的最可几机理函数是第 22 号函数: $G(\alpha) = \alpha^{1/4}$, $f(\alpha) = 4\alpha^{3/4}$ 。

据此,知在 α 从 0.100~0.975 的范围内,Na₂(BNT)(H₂O)₄ 放热分解反应的速率方程为: $\frac{d\alpha}{dt} = 10^{13.73} \alpha^{3/4} e^{-24093/T}$

表 5 用 Šatava-Šesták 法分析表 1 中 25 K・min⁻¹时Na₂(BNT)(H₂O)₄热分解数据的结果

Table 5Analysis results of the thermal decomposition data at 20 K \cdot min⁻¹ of Na₂(BNT)(H₂O)₄ in Table 1 by Šatava-Šesták method

Function No.	$E/kJ \cdot mol^{-1}$	$lg(A/s^{-1})$	r	$Q \cdot 10^3$	$d \cdot 10^6$
22	184.80	11.93	0.9973	0.850	2.290
23	246.40	16.58	0.9973	1.511	4.071
3	445.13	31.68	0.9979	3.893	8.284
4	270.56	18.50	0.9983	8.052	94.56
5	474.69	33.88	0.9959	8.552	35.05
6	1898.8	143.4	0.9959	136.8	560.8
7	1736.9	130.7	0.9984	44.31	70.54
8	1328.4	98.66	0.9953	77.48	367.0
35	302.36	20.90	0.9207	75.58	5994
1	1478.4	111.4	0.9973	54.41	146.6
11	360.75	25.41	0.9883	14.32	168.1
12	430.90	30.95	0.9883	20.61	242.1
13	541.12	39.29	0.9883	32.21	378.2
14	721.49	53.22	0.9883	57.26	672.4
15	811.68	60.19	0.9883	72.47	65.10
16	1082.2	81.15	0.9883	128.8	1513
17	1623.4	123.1	0.9883	289.9	3404
18	2164.5	165.2	0.9883	515.4	6052
19	3246.7	249.3	0.9883	1160	13616
20	4329.0	333.5	0.9883	2061	24207
21	-	-	-	-	-
4	1780.5	134.5	0.9979	62.28	132.5
2	1658.5	125.2	0.9988	30.27	36.14
20	369.60	25.97	0.9973	3.400	9.160
25	739.21	54.35	0.9973	13.60	36.64
26	1108.8	82.85	0.9973	30.60	82.44
27	1478.4	111.4	0.9973	54.41	146.6
28	980.75	72.61	0.9945	49.48	274.3
29	949.39	70.29	0.9959	34.21	140.2
30	949.39	70.76	0.9959	34.21	140.2
31	890.25	65.94	0.9979	15.57	33.14
32	890.25	66.14	0.9979	15.57	33.14
33	528.18	38.18	0.9782	57.96	1266
34	393.43	27.85	0.9501	76.80	3833
9	2470.1	188.2	0.9760	1396	33510
36	856.91	64.25	0.8268	1564	270984
37	1596.1	121.3	0.9440	1433	80241
38	428.46	20.89	0.8268	391.1	67746
39	-	G	-	-	-
40		_	-	-	-
41	1713.8	131.3	0.8268	6257	1083937

表 6 用逻辑选择法分析表 3 ~表 5 中 Na₂(BNT)(H₂O)₄ 热分解动力学数据的结果

Table 6	Analysis results of the therma	decomposition kinet	c data of $Na_2(BNT)(H_2O)$	$_4$ in Tables 3 – 5 by le	ogical choice method
---------	--------------------------------	---------------------	-----------------------------	----------------------------	----------------------

	ISPACE IN CONTRACTOR					
$\beta/K \cdot min^{-1}$	$E/kJ \cdot mol^{-1}$	$lg(A/s^{-1})$	r	$Q \cdot 10^3$	$d \cdot 10^6$	
5	202.11	13.28	0.9967	1.030	3.360	
10	204.68	13.48	0.9980	0.695	1.319	
15	209.24	13.82	0.9959	1.303	5.382	
20	200.74	13.14	0.9961	1.230	4.793	
25	184.80	11.39	0.9973	0.850	2.290	
Mean	200.31	13.13				

(32)

(33)

(34)

(35)

(36)

3.8 ΔG^{\neq} 、 ΔH^{\neq} 和 ΔS^{\neq} 值的估算

由热力学关系式(32)、(33)和(34)算得 $T = T_{p0} = 656.79 \text{ K}, E = E_a = 191.31 \text{ kJ} \cdot \text{mol}^{-1}, A = A_a = 10^{12.46} \text{ 时},$ Na, (BNT) (H,O), 放热分解反应的活化热力学学参数为: 活化自由能 ΔG^{*} = 199.81 kJ·mol⁻¹, 活化焓 ΔH^{*} =185.85 kJ・mol⁻¹,活化熵 ΔS[≠] = −21.26 J・(K・mol)⁻¹。

$$\Delta G^{\neq} = E - RT \ln\left(\frac{Ah}{k_{\rm B}T}\right)$$
$$\Delta H^{\neq} = E - RT_{\rm p0}$$
$$\Delta S^{\neq} = \frac{\Delta H^{\neq} - \Delta G^{\neq}}{T_{\rm p0}}$$

26 × 10⁻³⁴ 式中, *k*_B 为 Boltzman 常数, 1.3807 × 10⁻²³ J · K⁻¹; *h* 为 plank 常数, 6.626 × 10⁻³⁴ J 负 ΔS^{\neq} 值,正 ΔH^{\neq} 和 ΔG^{\neq} 值,表明Na₂(BNT)(H₂O)₄ 有较好的对热抵抗能力。

3.9 动力学补偿效应

InA 与 E 呈线性关系的现象,谓之动力学补偿效应。其数学表达式为:

 $\ln A = aE + b$

式中,a和 b 为补偿参数,a的单位为 mol·kJ⁻¹。

代表6中E和A值,入方程(35),得Na,(BNT)(H,O)。放热分解反应的动力学补偿效应方程

 $\ln A = 0.1790E - 5.5953$

该方程表明,A 对 E 变化效应得到部分补偿。通过方程(36),可从已知 E_{NLINT-SY3} = 189.34 kJ・mol⁻¹,预测 $A = 10^{12.92} \text{ s}^{-1}$,从而知,Na₂(BNT)(H₂O)₄放热分解反应速率方程: $\frac{d\alpha}{dt} = 10^{13.52} \alpha^{3/4} \text{ e}^{-22774/T}$

3.10 C_aB反应动力学参数的估算

代表 2 中 α = 0.100 到 α_{P} 的数据: β , α_{i} , T_{i} , $\left(\frac{d\alpha}{dt} = \frac{\beta}{60} \cdot \frac{d\alpha}{dT}\right)$, $i = 1, 2, \dots j$,人自催化 n 级反应(C_nB)速率方程: $\frac{\mathrm{d}\alpha}{\mathrm{d}t} = A\mathrm{e}^{-E/RT}(1-\alpha)^{n}(1+K_{\mathrm{cat}}\alpha)$ (37)

得表7中的动力学参数。

据此,知 Na₂(BNT)(H₂O)₄的 C_nB速率方程为: $\frac{d\alpha}{dt}$ = 10^{10.45}e^{-20433/RT}(1- α)^{0.34}(1+11.4 α)

表7 $Na_2(BNT)(H_2O)_4$ 自催化 n 级反应(C_nB)的动力学参数

Table 7	The kinetic	parameters of	f the <i>n</i> -order	autocataly	tic reaction ($(C_n B)$	for the thermal	decomposition of	of Na ₂	(BNT)($(H_2O)_4$
---------	-------------	---------------	-----------------------	------------	----------------	-----------	-----------------	------------------	--------------------	--------	------------

		1 (2) 15			
$\beta/K \cdot min^{-1}$	$E/kJ \cdot mol^{-1}$	$lg(A/s^{-1})$	п	$K_{\rm cat}$	
5.0	169.84	10.37	0.299	12.30	
10.0	170.55	10.48	0.251	11.43	
15.0	169.66 G	10.52	0.366	9.97	
20.0	169.62	10.50	0.305	9.37	
25.0	169.72	10.38	0.495	13.95	
Mean	169.88	10.45	0.34	11.40	

考虑起始温度(T_0)的 Na₂(BNT)(H₂O)₄的非等温放热分解反应的动力学行为

代表1中的特征数据(β_i、T_{oi}、T_{ei or pi}、α_{ei or pi}, i=1,2,…,5), 人方程(14)~(22), 得表8中相应方程的非 Arrhenius动力学参数: $lg(A_0/s^{-1})$ 、a、b、E值,代这些a、b、E值,入图7中方程(39)~(47)^[9],得表9中的热爆炸 临界温度值。用方程(39)得到的 T_{be}、T_{bo}值与方程(40)~(47)所得的 T_{be}、T_{bo}值相吻合, 佐证本工作提出的"从 不同升温速率下的 DSC 曲线数据计算/确定含能材料放热分解反应 Arrhenius/非 Arrhenius 动力学参数的方法" 有效、可靠。

表 8 用超定系统法得到的 $Na_2(BNT)(H_2O)_4$ 放热分解反应的非 Arrhenius 动力学参数¹⁾

Table 8 The non-Arrhenius kinetic parameters of the exothermic decomposition reaction of $Na_2(BNT)(H_2O)_4$ obtained by an overdetermined system method¹⁾

kinetic parameters	Eq. (14)	Eq. (15)	Eq. (16)	Eq. (17)	Eq. (18)	Eq. (19)	Eq. (20)	Eq. (21)	Eq. (22)
values of kinetic para	ameters obtain	ed by data $(\beta_i,$	$T_{0i}, T_{ei}, \alpha_{ei},$	$i=1,2,\cdots,L$	in Table 1 and	<i>c</i> =0		" CL	
$lg(A_0/s^{-1})$	19.66		18.03	17.88	-245.95	16.25	10	-23.75	-143.7
а			0.5		0.5	0.5	219.	XXX	49.98
b				0.003	0.0725	0.003	Vo1	0.0732	
$E/kJ \cdot mol^{-1}$	283.54		280.70	271.93		269.10	Ph	0	
values of kinetic para	ameters obtaine	ed by data $(\beta_i,$	$T_{0i}, T_{pi}, \alpha_{pi},$	$i=1,\!2,\cdots,L)$	in Table 1 and	c = 0			
$lg(A_0/s^{-1})$	16.90		15.26	15.10	-22.28	13.46		-21.08	-126.2
а			0.5	0	0.5	0.5			43.72
b				0.003	0.0627	0.003		0.0634	
$E/kJ \cdot mol^{-1}$	250.50		247.64	238.65		235.79			
values of kinetic para	ameters obtain	ed by data $(\beta_i,$	$T_{0i}, T_{pi}, \alpha_{pi},$	$i=1,2,\cdots,L$	in Table 1 and	<i>c</i> =0.15			
$lg(A_0/s^{-1})$		16.25	1.				19.67		
а		0.5							
b		0.003							
$E/kJ \cdot mol^{-1}$		269.21					283.66		
values of kinetic para	ameters obtain	ed by data $(\beta_i,$	$T_{0i}, T_{pi}, \alpha_{pi},$	$i=1,\!2,\cdots,L)$	in Table 1 and	<i>c</i> =0.15			
$lg(A_0/s^{-1})$		13.47					16.90		
а		0.5							
b		0.003							
$E/kJ \cdot mol^{-1}$		235.89					250.61		

Note: 1) a = 0.5 and b = 0.003 in Table 5 are setting values^[10].

表9 用表8和表1中数据得到的Na₂(BNT)(H₂O)₄的热爆炸临界温度

Table 9 The critical temperature of thermal explosion of $Na_2(BNT)(H_2O)_4$ obtained by data in Tables 8 and Tables 1

<i>T</i>	Eq. with T_0)								Eq. withou	t <i>T</i> ₀	
I be or b	^p Arrhenius	non-Arrhe	nius							Arrhenius	non-Arrher	nius
/ K	Eq. (39)	Eq. (40)	Eq. (41)	Eq. (42)	Eq. (43)	Eq. (44)	Eq. (45)	Eq. (46)	Eq. (47)	Eq. (48)	Eq. (49)	Eq. (50)
T _{be}	661.31	661.32	661.30	661.32	661.68	661.32	661.30	661.68	661.49	671.86	671.49	671.74
$T_{\rm bp}$	666.56	667.78	667.76	667.78	668.15	667.78	667.76	663.53	663.37	676.52	676.28	676.47
						0.	#1-C					

为考察 T₀ 对 T_b 值的影响,进行了代表 1 中的 E_{Oe or Op}、T_{e0 or p0}、b_{e0 or p0} 和 a_{e0 or p0} 值,人方程(48)~(50)计算 T_{be or bp}值的计算,结果如表 6 所示。由此可见,计算中,不考虑 T₀ 的 T_{be or bp}值要比考虑 T₀ 的 T_{be or bp}值高 10 K 左右。

$T_{ m be0~or~bp0}$	$=\frac{E_{\text{Oe or Op}} - \sqrt{E_{\text{Oe or Op}}^2 - 4E_{\text{Oe or Op}}RT_{\text{e0 or p0}}}}{2R}$	(48)
Ŧ		(40)

$$T_{be0 \text{ or } bp0} = T_{e0 \text{ or } p0} + \frac{1}{B_{e0 \text{ or } p0}}$$

$$T_{be0 \text{ or } bp0} = \frac{a_{e0 \text{ or } p0}}{a_{e0 \text{ or } p0} - 1} T_{e0 \text{ or } p0}$$
(50)

5 结 论

(1)提出了从不同升温速率下的 DSC 曲线数据计算/确定含能材料放热分解反应 Arrhenius/非 Arrhenius 动力学参数的方法。

(2) 在 α 从 0.100 到 0.975 的范围内, Na₂(BNT)(H₂O)₄ 放热分解反应的速率遵循方程: $\frac{d\alpha}{dt} = 10^{13.73} \alpha^{3/4} e^{-24093/T}$

(5)对于 Na₂(BNT)(H₂O)₄,不考虑 T₀ 的 T_{be or bp} 值要比考虑 T₀ 的 T_{be or bp} 值高 10 K 左右。

参考文献:

- [1] 胡荣祖,赵凤起,高红旭,等.量热学基础与应用[M].北京:科学出版社,2011.
 HU Rong-zu, ZHAO Feng-qi, GAO Hong-xu, et al. Fundamentals and application of calorimetry [M]. Beijing: Science Press, 2011.
- [2] XUE Liang, ZHAO Feng-qi, HU Rong-zu, et al. A simple method to estimate the critical temperature of thermal explosion for energetic materials using non-isothermal DSC [J]. *Journal of Energetic Materials*, 2010,28: 17 – 34.
- [3] ZHAO Feng-qi, HU Rong-zu, GAO Hong-xu. A simple method based on Harcourt-Esson's equation to estimate the critical temperature of thermal explosion for energetic materials using non-isothermal DSC [J]. Chin J Chem, 2009, 27: 1067 – 1072.
- [4] Kissinger H E. Reaction kinetics on differential thermal analysis[J]. Anal Chem, 1957, 29(11): 1702 1706.
- [5] Ozawa T. A new method of analyzing thermogravimetric data[J]. Bull Chem Soc Jpn, 1965, 38(1): 1881 1886.
- [6] 胡荣祖,赵凤起,高红旭,等.非线性等转化率的微、积分法及其 在含能材料物理化学研究中的应用(1)——理论和数值方法[J]. 含能材料,2007,15(2):97-100.

HU Rong-zu, ZHAO Feng-qi, GAO Hong-xu, et. al. Differential and integral isoconversional non-linear methods and their application in physical chemistry study of energetic materials-I. Theory and method [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2007, 15(2): 97 – 100.

- [7] 胡荣祖,史启祯. 热分析动力学. 北京:科学出版社,2001.
 HU Rong-zu, Shi Qi-zheng. Thermal analysis kinetics [M].
 Beijing: Science Press, 2001.
- [8] 胡荣祖,高胜利,赵凤起,等. 热分析动力学. 北京:科学出版 社,2008.
- HU Rong-zu, GAO Sheng-li, Zhao Feng-qi, et al. Thermal analysis kinetics [M]. Beijing: Science Press, 2008.
- [9] 胡荣祖,赵凤起,高红旭,等.通用热分析动力学微、积分式的导出途径和非等温条件下小药量含能材料热爆炸临界温度的估算方法[C] //2010 南京国际热分析动力学论坛文集,南京:南京理工大学出版社,2010,83-161.
 HU Rong-zu, ZHAO Feng-qi, GAO Hong-xu. et. al. Derivation process of differential and integral forms for general thermal analysis kinetic equations and estimation methods of critical temperature of thermal explosion for small-scale energetic materials under non-isothermal DSC condition[C] // Thesis compilation on 2010

Nanjing international thermal analysis kinetics forum. Nanjing:

Nanjing university of science & technology press, 2010, 83 -

[10] HU Rong-zu, GAO Hong-xu, ZHAO Feng-qi, et al. Theory and numerical method of calculating the kinetic parameters of exothermic decomposition reaction of energetic materials from peak temperature of DSC cures at constant heating rates[J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2009, 17 (6): 643 – 648.

A Method of Computing/Determining the Arrhenius/non-Arrhenius Kinetic Parameters of the Exothermic Decomposition Reaction of Energetic Materials from Data of DSC Curves at Different Heating Rate

161.

HU Rong-zu^{1,3}, MA Hai-xia², YAN Biao², ZHANG Hai³, HAN Lu³, GAO Hong-xu¹, ZHAO Feng-qi¹, YAO Er-gang¹, ZHAO Hong-an⁴

(1. Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China; 2. College of Chemistry, Northwest University, Xi'an 710069, China; 3. Department of Mathematics/Institute of Data analysis and Computation Chemistry, Northwest University, Xi' an 710069, China; 4. College of Communication Science and Engineering, Northwest University, Xi'an 710069, China)

Abstract: A method of computing/determining the Arrhenius/non-Arrhenius kinetic parameters of the exothermic decomposition reaction of energetic materials (EMs) was presented from initial temperature (T_e), peak temperature (T_p), conversion degree (α_{ei} or pi) at T_{ei} or pi and data ($\beta_i \ T_{\alpha,i}$, $i = 1, 2, \dots, L$) corresponding to isoconversation degree (α_i) for DSC curves under different constant heating rate (β) conditions. The Arrhenius/non-Arrhenius kinetic parameters of the exothermic decomposition reaction of sodium cis-bis(3-(5-nitro-1,2,4-triazolate tetrahydrate) [Na₂ (BNT) (H₂O)₄] were obtained by this method. The critical temperature of thermal explosion (T_b) of [Na₂ (BNT) (H₂O)₄] was calculated by the non-Arrhenius kinetic parameters obtained and compared with the value of T_b obtained by Arrhenius kinetic parameters. The validity and reliability of non-Arrhenius kinetic parameters of [Na₂ (BNT) (H₂O)₄] obtained in this work were verified.

Key words: physical chemistry; exothermic decomposition reaction; non-Arrhenius kinetic parameters; energetic materials; constant heat rate; DSC; critical temperature of thermal explosion

CLC number: TJ55; O64 Document code: A

DOI: 10.3969/j.issn.1006-9941.2013.02.006