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Abstract: Theoretical methods play significant parts in design and exploitation of advanced energetic materials. In this review, some important prob-
lems in the theoretical design of energetic materials in our study were introduced in detail, including evaluating the densities, heats of formation
(HOFs) , thermal decomposition mechanisms and detonation properties of usual energetic compounds. It was suggested that the combined ab initio
MD and ab intio MO study can successfully revealed the dissociation mechanisms for some simple hydronitrogen compounds. Additionally, the inter-
face interactions of the incompatible energetic copolymer blends in the presence of block copolymers and plasticizers were discussed. And the effect
of nanorods on the interface of immiscible A/B homopolymer blends was also indicated. Results show that Dissipative particle dynamics (DPD) are
useful analysis tools for studying the self-assembly of energetic polymers and can give physical insight into the problem. The calculation of the above

properties may provide useful information for the molecular design of novel high energetic density materials.
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1 Introduction

Energetic materials are essential for both military and civil
fields due to their wide applications as armaments, mining,

space exploration and fireworks" ~*.

Sensitivity to detonation
(by friction, impact or shock et al. ), detonation velocity, ther-
mal stability and crystal morphology are the stringent perform-
ance criteria to energetic formulations, so current energetic ma-
terials are based on a very small number of compounds. The
design and exploitation of advanced energetic materials is an in-
teresting and challenging problem. Theoretical methods play
significant parts in the development of advanced energetic ma-
terials. Densities and heats of formation ( HOFs) are well
known to evaluate the explosive performances of energetic ma-
terials. Computational approaches have shown their great ad-
vantages and been employed to obtain densities and HOFs of
demanding materials'*~®'. Thermal decomposition mechanisms
are very important for evaluating the safety and storage reliabili-
ty of energetic materials. Ab initio MD has obvious advantages
in studying thermal decomposition mechanisms of novel materi-

aIS 9-16]

. Recently, we have studied the thermal decomposition
mechanisms of high nitrogen content energetic materials such as
RDX"7 1! | tetrazine'” **' | Fox-7'* "' by combining ab initio
molecular dynamics ( AIMD) method with density functional
theory ( DFT). It requires no prior experimental knowledge or
intuitive assumptions about the decomposition.

The detonation velocity (v, ) and detonation pressure
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(pp) are the necessary factors for evaluating the detonation
properties of energetic compounds. We have used the VLW e-
quation of state (VLW EOS) to successfully obtain the value of
vp and p, for energetic compounds, which contain elements
such as C, H, N, O, Al, Cu, Zn, by modified VLW code.
What is more, properties of some systems are governed to a
large extent by the interfaces between unmixed phases, and
therefore the interfacial control is very important to tailor basic

properties of such systems'® 7?7

Dissipative particle dynamics
are capable of providing valuable microscopic and mesoscopic
insights into the interfacial behaviors of the immiscible polymer
blends, such as the interfacial width and tension'® /.

In this paper, the methodologies utilized to deal with the-
oretical designing of energetic materials in our work were in-
troduced in detail, including evaluating the densities, HOFs,
stability and detonation properties of usual energetic com-
pounds. The achievement methods of meso-scale parameters

for energetic polymers are also discussed.

2 Densities calculations
Monte-Carlo method is always a good method to calculate
140=421 " phut this method does

not carry conviction at all times, for example energetic metal

the densities of small molecules

complexes. Recently,we have employed a new, efficient and
convenient method, based on the DFT computations imple-
mented on Material Studio of SGI workstations in the China
Academy of Engineering Physics, to predict the densities of a
novel environmentally friendly octahedrally coordinated 2D
polymeric complexes bis(1,5-diaminotetrazole ) -dichlorozinc
() (Zn (DAT),Cl,)™", which was performed by the
DMol’ program. The exchange-correlation interaction was
treated by functional Perdew, Burke and Ernzerh of general-

44 -49]

ized gradient approximation ( PBE GGA)' , and applied
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basis set was double numerical basis set plus d-functions
(DND). The density was obtained from the enclosed volume
of electron cloud around the molecule divided by the molecu-
lar weight (Eq. 1). The enclosed volume (V,, ) of each mol-
ecule was yielded from on each optimized structure. Enclosed
volume shows the volume encloses by the isosurface, within a
single repeat unit. The volume is calculated by counting the
number of grid points whose value is above (or below) the
isovalue, That is to say the enclosed volume is visually that
which is on the gray side of the isosurface. Then p,, was ob-
tained by the following equation™®’ ;

M, M, .
V. +6.02-10" - (10°°)° V., -0.6028 ™
V., stands for the
enclosed volume of electron cloud around the molecule, A®.

e

Pen =

Where M, is the molecule weight, g - mol '.

[ . 4

b. Cu(DAT),Cl,
Fig.1 Electron cloud of molecules Zn( DAT),Cl, and Cu( DAT),Cl,

In our work™*? | the isovalue of Cu(DAT),Cl, is 0.0166.
The crystal structures and the shap of Ven of Zn(DAT),Cl, and
Cu( DAT),Cl, are almost the same, so the isovalue of Zn
(DAT),Cl, is 0.0166, too (Fig. 1). Hence, we got the densi-
ty of Zn(DAT),Cl, easily by equation (1), 2.117 g - cm ™. It
is concluded that on the basis of the similar structure and the
same isovalue,a new analogues of an exsit compound could be
designed and developed. It should be noted that the experimen-
tal density of the basic compound must be known, unless we
do not need the exact density value.

3 Heats of formation (HOFs)

HOF is one of the most important quantities used to assess
the energetic properties of high energy high density materials,
because the heat release upon decomposition or combustion is
a radical factor to determine detonation or propellant perform-
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ance® ~**'. However, it is often difficult to measure HOF via

experiments due to the danger and difficulty. Quantum chemi-
cal calculation has been widely used to solve this problem.
The theoretically predicted values of HOFs can be in good a-
greement with experiments.

AHY (M,298 K)
cC + hH + nN + 0O + mMT + nCl

|2 X(H(0 K) = H{ (298 K))

M
H%, (298 K) = H%(0 K) 1
AH? (M, 298 K)

cC® + hH® + nN° + 00" + mMT® + nCl°
Scheme 1

The atomization scheme

The method of atomization scheme** ~**

"(scheme 1) has
been employed very successfully to calculate HOFs of energet-
ic compounds. We have efficiently obtained the HOFs of high-
nitrogen energetic substituted s-tetrazine compounds'*’, Cu
(DAT),Cl,, Zn ( DAT),Cl, et al. ™', by simplifying the
HOFs equations of molecule M at 298 K (Eg. 2). One
strength of Eq. 2 with respect to traditional atomization scheme
methods is that g, (M) is the only one parameter that needs to
be calculated, and it can be performed by soft packages such
as Gaussian.

In the present equation 2, both the HOF of atom X and
the corrected enthalpy of molecule M from 0 K (the standard
state) to 298 K (gaseous state) needed not to be calculated.

HOF of M at 298 K can be written as Equations:

AH; (M,298 K) =AH; (M0 K) + 3 x(H(0 K) —H(298 K)) +
(H,(298 K) =H (0 K))
=AH (M0 K) +a§mx(l-fx)(0 K) —H (298 K)) +
(Heorr =20 (M) (2)
= 3 XAH{ (X0 K) = 3 xg, (X) =
3 x(H; (298 K) —=H(0 K)) +(£,(M) +H,

atom

Where, £,(M) and g,( X) are the total energies of molecule

corr )

M and each element that makes up M at 0 K, and x stands for
the number of atoms of X in M. AH{ (M,298 K) is the enthal-
pies of formation of the radicals. AH} (X, 0 K) stands for the
HOFs of atoms X at OK which can be found from ref. [53].
And H

corr

is thermal correction to enthalpy from 0 to 298 K. Fi-
nally, the HOFs values can be calculated using our own com-
puter code.

4 Thermal decomposition mechanisms

The thermal decomposition mechanisms of high nitrogen
energetic compounds are of great interest. Recently, we have
studied the thermal decomposition mechanisms of RDX'"7 ="
tetrazine ™ ! and Fox-7" %7,

simulated theoretically with a molecule at high temperature in a

)

The reaction channels were

number of trajectories, using the DFT method in combination
with AIMD method with a plane wave basis set and pseudo po-
tentials. This method requires no prior experimental knowledge
or intuitive assumptions about the decomposition. Moreover,
various decomposition channels of the compounds studied can
be decided according to their occurrence frequency ™ .

The Vienna Ab Initio Simulation Package ( VASP) pro-

gram > *" is based on AIMD method. It can be used to study

>
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the thermal decomposition trajectories of energetic materials,
since it utilizes a traditional self-consistency scheme to evalu-
ate the instantaneous electronic ground state at each MD step
by conjugate gradient minimization of the total electronic ener-
gy. The detail calculation steps are described as follows: First-
ly, the molecule studied is put in a cubic box (with a length
of such as 8A) to imitate gas phase condition. Secondly, the

[58]

Perdew-Wang ™*' gradient correction will be added to the ex-

change-correlation functional ™’

the cut-off energy of such as 348.1 eV should be used for the

. A plane-wave basis set with

electron wave function. At last, the optimized Vanderbilt ul-
tra-soft pseudo potentials'®’ supplied with the VASP pack-
age'®'" ! are used for C, N and H atoms for the core region.

Here, we would like to review some examples where the
applicability of VASP package is illustrated for a range of systems.

By VASP package, the thermal decomposition trajectories
of five simple hydronitrogen compounds ( N,H,, N,H,,
N,H, N,H, and N,H,) and six tetrazine compouds ( s-tet-
razine, 3, 6-diamino-1, 2, 4, 5-tetrazine ( DAT ), 3, 6-di-
hydrazino-1,2,4,5-tetrazine ( DHT), 3,6-diazino-1,2,4,5-
tetrazine ( DIiAT), 3, 6-bis ( 1H-tetrazol-5-amino)-1,2,4, 5-
tetrazine ( BTATz), and 3, 3’-Azobis ( 6-amino-1, 2, 4, 5-
tetrazine) ( DAAT)) were studied. The reaction channels
were studied by Gaussian03 ®’at B3LYP/6-311G(d,p) level
to locate the local minimum points and the transition struc-
tures. Vibrational frequencies were calculated at the same lev-
el to take account of the zero point energy and to identify the
transition structures. To obtain more accurate and reliable re-
action information, the high accuracy single point calculations
were further performed at CCSD(T) =full/6-311 + G(3df,2p)
level for these simple hydronitrogen compounds. For s-tet-
razine, the single point energy calculations at CCSD (T) /6-
311G(d,p), B3LYP/6-311 + G (2df,2p), G3MP2B3, G3B3
and CCSD(T) /6-311 + G(2df,2p) levels were performed and
compared, and G3MP2B3 was found both accurate and effi-
cient. So, G3MP3B3 was selected to calculate the larger tet-
razine derivatives, but the much larger BTATz and DAAT. For
the reaction pathways with similar energy barriers, the rate
constants were calculated with chemical reaction kinetics
method to verify the main thermal decomposition pathway.

Based on the results of the simple hydronitrogen com-
pounds and s-tetrazine without substituents, the thermal de-
composition mechanisms and rate-determining steps of five tet-
razine derivatives DAT, DHT, DiAT, BTATz, DAAT (Fig. 2)
were studied in detail to illuminate the influence of substituents
and bridge connecting units on stability of tetrazine rings.

2]

The conclusions were drawn (1) The tetrazine ring in

the tetrazine derivatives may be broken by three modes: con-
certed triple dissociation, concerted double dissociation or sin-
gle dissociation, however the concerted triple dissociation is
generally dominant. (2) The stability of the tetrazine ring can
evidently be strengthened by delocalization of these substituents
with nitrogen. (3) The reaction between the substituents and
tetrazine ring (such as H transfer) is not main thermal decom-
position pathway and the thermal decomposition mechanisms of
the substituent R are similar to that of its simple compound HR.
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(4) Tetrazines exhibit two principal modes of decomposition,
which are the ring dissociation and the reaction of substituent
groups. If the stability of the substituent is better than that of
the tetrazine ring, decomposition occurs first through breaking
of the ring. Moreover, some new conclusions about the effect
of intermolecular reaction on the thermal decomposition
mechanisms of tetrazines were achieved. The intermolecnlar
reaction can make the decomposition pathway of molecular in
crystal different from that of unimolecular.

N=N N—N N=—N
iN—C JoeohH, HAN—C o NHNH, Ne—C N
2 \\ // 2 2 \\ // 2 3 \\ // 3
N—N N—N N—N
DAT DHT DIAT
N¢N\ ~H
VAN N=N
N\C\N c'N:N‘c NH N=N N—C  o—nH
B u \ . / \ N A\ / 2
H N o= HN—C o N \
NG N N—N
BTATz N DAAT

Fig.2 The structures of the five tetrazine derivatives

On the other hand, some deficiencies for such a study still
exit. On the DFT part, a larger box and higher cutoff energy for
the plane-wave basis set would improve the accuracy. On the
MD trajectory part, longer simulation time, both for the sam-
pling of starting geometries and for the duration of each trajec-
tory, would be essential if accurate branching ratio is needed.
For the purpose of understanding the decomposition mecha-
nism, these deficiencies are compensated by a separate set of
calculations, using the conventional Gaussian-based molecular
orbital method to locate the reaction barrier and transition struc-
ture for each type of the reaction channels observed in the traj-
ectory study. In essence, the trajectory study based on ab initio
MD method provides a lead from first principles for the elucida-
tion of the reaction mechanisms by ab initio MO method.

5 Detonation properties calculations

All detonation properties were calculated by modified
VLW code basing on the VLW equation of state (VLW EOS)
(Scheme 2) **7**1 " law of mass conservation, law of momen-
tum conservation, law of energy conservation and C-J detona-
*”J. In the scheme 2, N, k and T" is Avogadro
Constant, Boltzmann constant and the nondimensional tem-

tion conditions'

perature, respectively. ¢ and ¢ are the Lennard-Jones potential
Y77 The VLW code only needs the
chemical compositions, heats of formation, and densities of

parameters ( Table 1

compounds as input, and can calculate the detonation veloci-
ties, pressures and heats of the solid, liquid and gaseous ex-
plosives and propellants.

pv 1 Rpp— B (T")m w"?V
—=1+B (T )yw+——=>——;
RT ( ) T*1/4 n=3(n 2)/7’
Scheme 2 The VLW equation of state

- v . g0l
Where, B (T") = S YT 7(2,+1)/4; b = _2 ' 1_[<2/ 1 )i

j=0 4j!

b
b, =%’1TN0’3; T =%r; W=T;
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Then with the calculated values of HOFs (Eq.2) and p,, ob-
tained by enclosed volume of electron cloud (Eq.1), the detona-
tion velocity (v, ) and pressure (p,) of tetrazole energetic metal
complexes (TEMCs) that contain Co, Cu and Zn were evaluated
with the modified VLW code (Table 2)™/. It should be noted
that the original VLW code can only deal with the compounds
that compose with C, H, N, O, F and Al.

The calculated v, of BNCP is closed to that of ref. [73 ],
which indicates the results calculated by the modified VLW
code to be credible. Accordingly, Cu ( DAT),Cl, and Zn
(DAT),Cl, are suggested to be energetic material candidates.

Table 1 Lennard-Jones potential parameters of Co, Cu and Zn metals
metals a/A e/(k-K™") by /mL - mol ™'
Co'®® 2.506 8591.286 19.855
Cul®! 2.549 4125.700 20.877
Zn'70! 2.000 2204.800 10.088

Note: In the detonation products Co and Cu are liquids, and Zn is gas.

Table 2 HOFs, p, vy and py of molecules Cu(DAT),Cl, and Zn(DAT),Cl,

compounds HOF/kcal - mol ™' p/g-cm™> vp/km s~ p,/GPa
Cu(DAT),Cl, 67.267 2.107° 7.773 24.948
Zn(DAT),Cl, 70.475 2.117 8.325 24.709
BNCP -167.970 2.05"° 8.030° 26.028

Note: a and b are from Ref. [71] and [72], respectively. c: the v, of BNCP
reported by Smirnov[73)is 8.1 km - s~ at a single crystal density of
1.97 g - cm 3.

6 Interface properties calculation

Dissipative particle dynamics (DPD) method is a coarse-
grained particle-based mesoscale dynamics simulation'”*'. It is
useful for investigating the interface properties of energetic ma-
terials, especially for the energetic polymers. In a word, this
method can give physical insight into the problem. Zhou'”
used DPD method to study the interface properties of the im-
miscible A/B homopolymer blend systems in the presence of
nanorods. All the calculations were based on the assumption
that the nanorods were constructed by a string of beads con-
nected through the spring forces. Then their rigidity was a-
chieved depending on the angle forces.

The interaction between non-bonded DPD particles can be
expressed by a conservative force FC, a dissipative force FD
and a random force FR, respectively (Eq.4). Additionally, the
interaction between bonded DPD particles can be described by
a harmonic spring force FS and a angle force FA. The total
force and three non-bonded interactions are as follows:

C D R -S A
fr=l_§/_Fi/+F/'j+Fi[+Fi,i+1+F/'1,l+1 (3)
C C
Fy=-a;w (ry)e;
D D
Fi/=_yW (r,j)(e,,' V,/>el/
R R -0.5
Fi=—-ow (ry)é At e, (4)
Where r,=r, —r;, r; = |r;| and v; = v, —v,. & is a random

number with zero mean and unit variance. «; stands for the

maximum repulsion which reflects the chemical characteristics
. . . o D R .

of interacting particles. w®, w”, and w" are three weight

. C . . C
functions. For w", a simple form is chosen as w (rv.) =1-r
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when r; <1, and w®(r;) = 0 when r;=1. On the other

hand, to satisfy the fluctuation-dissipation theorem, w” and
(761

w® have a certain relationship
w?(ry) =[wi(r) 1% o =29k, T (5)

Here they also utilized the same expressions as w® to de-
scribe w” and w*, and this method has been proved correct

771 In addition, the forces describing

by Groot and Warren
the connected particles were obtained by the differential of
spring and angle-potential;

Ff;,lm) ==V Ui Ufi,i+1) b 2[_40-5k5(l<f_f+1) _lo)z;

(iyi+1) 3

A
F(i—W,f+I)

==V U(Ai—l,i,iﬂ); U?i-],y,fﬂ)
=X ki[1 -cos(o, 1 i1 —¢0) ] (6)
Where | is the bond length between the connected two

particle i and i+1, ¢_, ;.,;, is the bond-angle of the adja-

(iyi+1)

cent three particle i—1, iand i+1.

In DPD, the polymers can be represented by the particles
connected with the spring force. If the angle force is intro-
duced additionally, those polymers containing rigidity or semi-
rigidity segments can be also described successfully. Recently,
we have used the two bonded forces to reinforce the stiffness
of nanorods. Firstly, the equilibrium bond length [, =0.5 was
fixed, and the fluctuation of bond lengths was confined by a
large spring coefficient k; =50. Secondly, we set the equilibri-
um angle ¢;,_, ;,,,, =m and chose a larger bending coefficient
k, =100. The angle, driven by the angle force between two
consecutive bonds, is hoped to be close to the value of «w pro-
viding satisfactory rod-like formation. Actually, the method
we used is similar to that Chou used®', except that they
mainly emphasized the function of the spring force. Therefore,
they utilized a larger spring coefficients (ks =100) and a com-
parative small bending constant ( k; =20).

In the present system, three DPD particles (A, B, and R)
were used to describe the homopolymer and nanorods. For the
two immiscible homopolymers (A, and B,), x=y =20, k,; =4
and I, =0 were fixed. Accordinglly, the unstretched bond

length of the nanorod was [, and its aspect ratio was approxi-

0
mately equal to (n—=1) x1I, ~f(n). Finally, the aspect ratio of
nanorods can be described by a simple parameter, n.

It should be noted that all the DPD simulations were per-
formed on the commercial molecular modeling software pack-
age Materials Studio (MS) program. The radius of interaction,
the particle mass and the temperature as r. =m =k, T =1,
o =3 were all on the basis of the defaults value of MS pro-
gram. We mainly focus on the effect of nanorods’ length and
volume fraction on the interface of the immiscible homopoly-
mer blends. Therefore, only one type of parameters were used
as x =y =20 and a,,; =50 according to the work of Qian et
al. 7*7. More details relationship between a; or [ and the inter-
facial characteristics has been reported by Zaman™’. We set
the repulsive parameters a,; = az; =25. Then the modified
nanorods have the function of block copolymer, which means
that nanorods can be immersed in both A and B phase at the
same time. Since the nanorod can be modified by different
functional groups, the interaction between nanorods and
blends can effectively be adjusted, and the hypothesis should

%
b))
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come out true"® ~*?',

A recent experimental work by Composto’s group'®’ on
gold nanorods implies that an experiment of surface-modified
nanorods in binary polymer blend may be devised very well.
The interaction between the nanorods and the two polymers
can be achieved through the surface modification. Then the

theoretical work of Hore et al. %%

! also point out that the
nanorods should be considered as a viable emulsifying agent

for immiscible polymer blends.

7 Conclusion

Improved theoretical methods are of significant impor-
tance for evaluating the properties of energetic materials. In
this review, the main methodologies, that our team members
usually utilized to perform several indispensable properties,
were introduced in detail.

(1) Based on each optimized structure, the enclosed vol-
ume (V) of electron cloud around the molecule was calcu-
lated. p,,, which can be used as the crystal density of a ener-
getic metal complex, was obtained by equation (1)

(2) The HOF of energetic compounds can be obtained
by atomization scheme 1;

(3) The combined ab initio MD and ab intio MO study
can successfully revealed the dissociation mechanisms for some
simple energetic materials. The deficiencies for decomposition
mechanism study are compensated by a separate set of calcula-
tions, using the conventional Gaussian-based molecular orbital
method to locate the reaction barrier and transition structure for
each type of the reaction channels observed in the trajectory
study. In essence, the trajectory study based on ab initio MD
method may provide the leads from first principles for the eluci-
dation of the reaction mechanisms by ab initio MO method;

(4) By the modified VLW code, the detonation properties
can be effectively calculated;

(5) Dissipative particle dynamics (DPD) are useful anal-
ysis tools for studying the self-assembly of energetic polymers
and can give physical insight into the problem. The nanorods
are mainly described by the angle force and interact favorably
with the two homopolymer through the three forces (FS, F°
and F*). The comparisons with the experimental and theoreti-
cal studies proved that DPD is intrinsically promising in the
simulations.
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