文章编号:1006-9941(2014)04-0454-04

1-氨基-2,4-二硝基咪唑的合成、晶体结构及热性能

景 梅^{1,2},舒远杰²,王 军²,马 卿²,张晓玉²,黄奕刚²

(1. 西南科技大学材料科学与工程学院,四川 绵阳 621010;2. 中国工程物理研究院化工材料研究所,四川 绵阳 621900)

摘 要:用三甲基苯磺酰羟胺(MSH)胺化 2,4-二硝基咪唑,合成了 1-氨基-2,4-二硝基咪唑(ADNI),得率 57.8%。用 IR、 ¹H NMR、LC-MS 及单晶 X-射线衍射对其分子和晶体结构进行了表征。结果表明,ADNI 属正交晶系,*Pca*2,空间群,*a*=10.0626(14) Å, *b*=55.684(8)Å,*c*=11.5639(15)Å,*Z*=4,*D_c*=1.774 g・cm⁻³。差示扫描量热法(DSC)测试表明,其熔点为 172.4 ℃,热分解峰 温为 265.6 ℃。

关键词:有机化学;含能化合物;1-氨基-2,4-二硝基咪唑;合成;结构和性能
中图分类号:TJ55;O62
文献标志码:A

DOI: 10.3969/j.issn.1006-9941.2014.04.005

1 引 言

硝基咪唑类含能材料具有高能低感、热性能良好的 特性,近年来成为含能材料领域研究的热点之一^[1-3], 但关于硝基咪唑氮氨化物的研究还较少。Ravi P等^[4] 通过密度泛函理论指出,硝基咪唑氮氨化物是一类具有 潜在应用前景的高能低感含能材料,引入氨基可形成 分子内和分子间氢键,从而可增大晶体密度,增强分子 稳定性,降低感度。并且,硝基咪唑氮氨化物还是合成 其偶氮和氧化偶氮衍生物的关键前驱体。因此,对硝 基咪唑氮氨化物的理论与实验研究具有重要意义。

目前1-氨基-2,4-二硝基咪唑(ADNI)的合成方 法有两种^[5-6],均以2,4-二硝基咪唑(2,4-DNI)为原 料。方法一是以三甲基苯磺酰羟胺(MSH)为氨化试 剂,与2,4-DNI的钾盐反应得到ADNI;方法二是以 对甲基苯磺酰羟胺为氨化试剂,与2,4-DNI的铵盐反 应得到ADNI。这两种方法均须采用过硅胶色谱柱分 离产物,且文献仅对其合成方法作了简单报导,并未对 其结构和性能作深入研究。本研究在国内首次合成出 ADNI,研究了其晶体结构及热性能,并对方法一进行 了改进:用蒸馏水代替了毒性反应溶剂甲醇;常温反

收稿日期: 2013-07-12; 修回日期: 2013-10-14

基金项目:中物院基金(2013B0302039,2012B0302036)

作者简介:景梅(1987-),女,硕士研究生,主要从事新型含能材料的合成及性能研究。e-mail:jingmei19871025@163.com 通信联系人:王军(1970-),男,副研究员,主要从事新型含能材料的设

计、合成及性能研究。e-mail: wj19701023@ sina.com

应得到 2,4-DNI 钾盐;后处理过程中,省去过硅胶色 谱柱而是直接水洗粗产物分离得到 ADNI,收率由文 献[5]的 45.0%提高至 57.8%;简化了分离过程,提 高了 ADNI 合成的安全性。

2 实验部分

2.1 仪器和试剂

2,4-DNI,自制^[7],MSH,自制^[8],N,N-二甲基 甲酰胺(DMF)、乙酸乙酯、KOH 均为分析纯(成都市 联合化工试剂研究所),蒸馏水。红外、质谱、核磁及 单晶结构分别用美国热电公司 Nicolet 6700 红外光谱 仪(KBr 压片)、美国瓦里安公司 Varian 325 LC-MS 液 相色谱-质谱联用仪、德国 Bruker AV II-400 MHz 核磁 共振波谱仪及德国 Bruker SMART APEX CCD II 型单 晶 X 射线衍射仪测定。热性能用美国 PE 公司差示扫 描量热仪(DSC)PE Diamond 测定。

2.2 ADNI 的合成和表征

ADNI的合成路线如 Scheme 1。2,4-DNI(**I**) 和 KOH 发生中和反应,得到 K(2,4-DNI)(**I**);**I** 与 MSH 反应得到目标物 ADNI(**II**)和副产物三甲基 苯磺酸钾盐(**IV**)。具体步骤如下:

将I(1.58 g,0.01 mol)溶于 30 mL 蒸馏水中,分批 加入 KOH(0.60 g,0.01 mol),常温反应 1 h,干燥,得黄 色粉末 21.96 g。冰浴条件下,将II(1.96 g,0.01 mol) 溶于 35 mL 无水 DMF 中,搅拌,逐滴加入预先配制好 的 MSH (4.3 g,0.02 mol)无水 DMF(40 mL)溶液。

0 ℃反应 3.5 h,后升至室温反应 20 h,80~85 ℃减压 蒸馏,得Ⅲ和Ⅳ;用乙酸乙酯洗涤,析出沉淀Ⅳ,过滤,收 集滤液,40 ℃减压蒸馏,得粗产物Ⅲ;水洗,抽滤,干 燥,得浅黄色晶体 1.0 g,收率 57.8%,纯度 95.6%, 熔点 170~172 ℃。IR (KBr, *v*/cm⁻¹): 3342, 3265, $1628 (-NH_2)$, 3149, 754 (-CH), 1556 (C = C), 1547, 1360 ($-NO_2$), 1155 (-CN) $^{-1}_{\circ}H$ NMR $(DMSO-d_6) \delta: 7.049(s, 2H, -NH_2), 8.672(s,$ 1H, $-CH_{\circ}$ MS (ESI) m/z, 172.03 [M-H]⁻

2.3 ADNI 晶体的培育和测试

取适量 ADNI 溶解于无水乙醇中,置于 25 ℃恒温 培养箱中,缓慢挥发10d,得到淡黄色针状晶体。选 用尺寸为0.212 mm×0.156 mm×0.123 mm 的单晶, 在 X 射线单晶衍射仪上,以石墨单色化的 Mo K_α 射线 (λ=0.71073 Å)辐射,在293.15 K 下用ω/2θ方式扫 -12≤l≤14 范围内共收集到 3372 个衍射点,其中独 立衍射点 1236 个(Rint=0.0195),其中 I>2 σ(I)的 1171 个可观察点用于结构解析和修正。晶体结构的 解析和结构修正分别用 SHELXS-97(Sheldrick, 1990) 和 SHELXL-97(Sheldrick, 1997)程序完成。

结果与讨论 3

3.1 ADNI 的晶体结构

terials.0' ADNI 晶体的分子结构、分子间氢键和晶胞堆积图分 别见图1~图3。主要键长、键角及部分二面角、氢键参 数分别见表1~表3。单晶结构分析表明: ADNI 属正 交晶系, Pca2, 空间群, a=10.0626(14)Å, b=55.684 (8)Å, c = 11.5639(15)Å, Z = 4, V = 647.96(15)Å³ $F(000) = 352.0, S = 1.072, \mu$ (Mo K_a) = 0.163 mm⁻¹ $w=1/[s^2(F_0)^2 + (0.0447 P)^2 + 0.0244 P]$, 其中P= $(F_{c}^{2}+2F_{c}^{2})/3$ 。所有非氢原子做各向异性精修后,最终偏 离因子 R₁=0.0262, wR₂=0.0698。最终的差值 Fourier 合成图上电子密度峰的最小高度(ΔP)_{min} = -0.133 e・A⁻³, 最大高度(ΔP)_{max}=0.133 e · A⁻³。

表 1	AD	NI	的	键长		
Table	1	Во	nd	lengths	for	ADNI

bond	length/Å	bond	length / Å
N(1)-C(1)	1.342(2)	N(4) - O(2)	1.217(2)
N(1) - C(3)	1.360(2)	N(4) - C(2)	1.430(2)
N(1) - N(2)	1.410(2)	N(5)-O(4)	1.212(2)
N(2) - H(2)	0.87(3)	N(5)-O(3)	1.218(2)
N(2) - H(3)	0.86(3)	N(5)-C(3)	1.437(2)
N(3)-C(3)	1.295(2)	C(1) - C(2)	1.364(2)
N(3) - C(2)	1.347(2)	C(1)-H(1)	0.9300
N(4) - O(1)	1.215(2)	N(4) - O(2)	1.217(2)

表 2	ADNI	的部	分	▶键角	1和二	二面角	

Table 2 Select	ed bond ar	igles and	torsion	angles	for ADNI
----------------	------------	-----------	---------	--------	----------

		_
bond	angle / (°)	
C(1) - N(1) - C(3)	106.01(12)	
C(3) - N(1) - C(1) - C(2)	0.77(17)	
C(1) - N(1) - N(2)	122.13(14)	
N(2) - N(1) - C(1) - C(2)	176.29(15)	
C(3) - N(1) - N(2)	131.66(14)	
C(3) - N(3) - C(2) - C(1)	0.98(18)	
N(1) - N(2) - H(2)	108.4(16)	
C(3) - N(3) - C(2) - N(4)	-179.32(14)	
N(1) - N(2) - H(3)	110.2(17)	
N(1) - C(1) - C(2) - N(3)	-1.13(18)	
H(2) - N(2) - H(3)	99(2)	
N(1) - C(1) - C(2) - N(4)	179.20(14)	
C(3) - N(3) - C(2)	103.01(13)	
O(1) - N(4) - C(2) - N(3)	-177.93(15)	
O(1) - N(4) - O(2)	124.19(15)	
O(2) - N(4) - C(2) - N(3)	3.7(2)	
O(1) - N(4) - C(2)	117.49(14)	
O(1) - N(4) - C(2) - C(1)	1.7(2)	
O(4) - N(5) - O(3)	125.66(16)	
O(2) - N(4) - C(2) - C(1)	-176.64(17)	
O(4) - N(5) - C(3)	117.16(16)	
C(2) = N(3) = C(3) = N(1)	-0.47(17)	
N(1) - C(1) - C(2)	104.91(14)	
C(2) - N(3) - C(3) - N(5)	-179.33(14)	
N(1) - C(1) - H(1)	127.5	
C(1) - N(1) - C(3) - N(3)	-0.20(18)	
C(2) - C(1) - H(1)	127.5	
N(2) - N(1) - C(3) - N(3)	-175.12(16)	
N(3) - C(2) - C(1)	112.40(14)	
C(1) - N(1) - C(3) - N(5)	178.66(14)	
N(3) - C(2) - N(4)	120.98(14)	
N(2) - N(1) - C(3) - N(5)	3.7(3)	
C(1) - C(2) - N(4)	126.62(14)	
O(4) - N(5) - C(3) - N(3)	12.4(2)	
N(3) - C(3) - N(1)	113.64(14)	
O(3) - N(5) - C(3) - N(3)	-167.40(16)	
N(3) - C(3) - N(5)	123.24(14)	
O(4) - N(5) - C(3) - N(1)	-166.38(16)	
N(1) - C(3) - N(5)	123.10(15)	
O(3) - N(5) - C(3) - N(1)	13.8(2)	

表 3 ADNI 的氢键参数 Table 3 Hydrogen bond parameters of ADNI

D—H···A	d(D—H) ∕Å	d(H···A) ∕Å	<i>d</i> (D…A) ∕Å	(D—H—A) /(°)
$\overline{C(1)-H(1)\cdots O(1)}$	0.93(3)	2.71(3)	2.804(2)	86 (2)
$N(2) - H(2) \cdots O(3)$	0.87(3)	2.59(3)	2.794(2)	94(2)
$N(2) - H(3) \cdots O(3)$	0.85(2)	2.48(2)	2.794(2)	103(2)
$N(2) - H(3) \cdots O(1)$	0.86(3)	2.41(3)	3.198(2)	153(2)
$N(2) - H(2) \cdots N(3)$	0.87(3)	2.34(3)	3.202(2)	172(2)

- 图1 ADNI的分子结构
- Fig. 1 Molecular structure of ADNI

- 图2 ADNI分子间氢键图
- Fig. 2 Intermolecular hydrogen bonds of ADNI

图 3 ADNI 沿 b 轴方向的晶胞堆积图

从图 1 和表 2 可见,在 ADNI 分子中,C(1)、 C(2)、C(3)、N(1)、N(3)在同一平面上,由于硝基 的影响, 咪唑环中键角 N(3)—C(2)—C(1) 和 N(3)-C(3)-N(1)比正五元环的内角 108°增大 4.40°~5.64°。表1键长结果显示,环上C-N键长在 1.295~1.360Å之间,与咪唑环上C-N键长1.300~ 1.357Å^[9]吻合。环上碳原子与硝基相连的 N (5)-C(3)、N(4)-C(2)键长分别为1.437(2)Å和1.430(2)Å, 比普通的 C—N 单键 (1.470~1.500Å^[9]) 短,说明 ○ 硝基与咪唑环的作用力比较强。从整个分子来看, N(5)-C(3)键长最长,预示着热分解过程中C(3)所 连接的硝基最易分解。这与研究者普遍认为炸药爆炸 首先是从 N-NO, 、C-NO, 基团上失去 NO, 是一致 的。N(1)—N(2)键长1.410(2)Å,比一般硝胺炸 药中 N-N 键 1.360Å^[10]长,推测为环上硝基影响所 致。事实上,2位硝基和4位硝基与环形成的扭角偏 大,分别为O(3)-N(5)-C(3)-N(1),13.8(2)° 和O(2)-N(4)-C(2)-N(3), 3.7(2)°, 与 2,4-DNI中对应的 0.7°和 7.9°^[11] 相差较多,也验证 了氨基和硝基之间的相互影响作用。整体上, ADNI 分子中氨基、硝基和咪唑环共面性较好,这预示着分子 具有良好的稳定性。

在 ADNI 分子中, H(1)和 O(1)的非键距离为 2.708 Å, 小于它们的范德华半径之和 2.720Å^[12], H(2)和 O(3), H(3)和 O(3)的非键距离为 2.587Å 和 2.480Å,也小于它们的范德华半径之和 2.750Å^[12],说明存在较微弱分子内氢键。从图 2 和 表 3 可以看出, ADNI 中氨基上 H 原子与相邻分子之 间形成较强的分子间氢键, N(2)—H(3)…O(1)和 N(2)—H(2)…N(3),这些氢键在一定程度上有助于 增加晶体稳定性, 从而降低分子的感度。在氢键及 $\pi-\pi$ 相互作用下, ADNI 分子在晶胞中以面对面错位 方式呈 W 型规整排列(如图 3 所示)。计算得出 ADNI在晶胞中的堆积系数为 0.756, 这说明 ADNI 晶 体内分子堆积较为紧密,密度为 1.774 g·cm⁻³。

3.2 热性能分析

在 N₂ 流速 30 mL · min⁻¹,升温速率 10 ℃ · min⁻¹, 温度范围 50 ~ 360 ℃条件下测试 ADNI 的热性能。 DSC 曲线(图 4)表明,在 171 ~ 173 ℃范围内有一个明 显尖锐吸热峰,峰值温度 172.4 ℃,为 ADNI 的熔点,与 熔点仪测试结果(170 ~ 172 ℃)一致。从 231.6 ℃到 312.3 ℃之间有两个分解放热峰,起始分解温度为 231.6 ℃,分解峰温为 265.6 ℃,推测分解过程中先是

环上硝基的断裂,然后是氨基和咪唑骨架环的分解,到 312.3 ℃时分解完全,表明 ADNI 热性能良好。

4 结 论

(1) 用 MSH 氨化 2, 4-DNI 合成了 ADNI, 以蒸 馏水代替了毒性溶剂甲醇;常温反应得到中间体 K(2, 4-DNI);采用直接水洗粗产物分离得到 ADNI, 得率提高至 57.8%, 简化了分离步骤, 提高了 ADNI 合成的安全性。

(2) 晶体结构测试结果表明, ADNI 属正交晶系, Pca2, 空间群,密度 1.774 g·cm⁻³,整个分子有较好共 面性,分子间氢键作用较强,分子结构稳定,感度较低。

(3) ADNI 熔点 172.4 ℃, 热分解起始温度 231.6 ℃,峰温 265.6 ℃,热稳定性良好。

参考文献:

- [1] Thottempudi V, Kim T K, Chung K H, et al. Synthesis and characterization of some polynitro imidazoles[J]. Bull Korean Chem Soc, 2009, 30(9): 2152-2154.
- [2] Novikov S S, Khmel'nitskii L I, Novikova T S, et al. Dinitroimidazole and derivatives [J]. Chem Heterocycl Compd (Engl Transl), 1979, 6: 614.

- [3] 舒远杰, 霍冀川. 炸药学概论[M]. 北京: 化学工业出版, 2011. SHU Yuan-jie, HUO Ji-chuan. Explosive Outline[M]. Beijing: Chemical Industry Press, 2011.
- [4] Ravi P, Gore G M, Tewari S P. A DFT study of aminonitroimidazoles[J]. J Mol Model, 2012, 18: 597-605.
- [5] Duddu R, Dave P R, Damavarapu R, et al. Synthesis of Namino- and N-nitramino-nitroimidazoles [J]. Tetrahedron Letters, 2010, 51: 399-401.
- [6] YIN P, Zhang Q H, Zhang J H, et al. N-Trinitroethylamino
- - 能[J]. 含能材料, 2013, 21(1): 133-134. MA Qing, WANG Jun, ZHANG Xiao-yu, et al. Synthesis and properties of 2, 4, 6-trimethylbenzenesulfonic hydroxylamine [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013, 21(1): 133-134.
 - [9] 陈小明, 蔡继文. 单晶结构的分析原理与实践(第二版)[M]. 北 京:科学出版社,2007. CHEN Xiao-ming, CAI Ji-wen. Analytic Theory and Practice of Single Crystal Structure (Second Edition) [M]. Beijing: Science Press. 2007. [10] 欧育湘, 贾会平, 陈博仁, 等. 六硝基六氮杂异伍兹烷与二甲基
 - 甲酰胺分子加合物的制备、性能及晶体结构[J]. 有机化学, 1999, 19(4): 500-507.OU Yu- xiang, JIA Hui- ping, CHEN Bo-ren, et al. Preparation, properties and crystal structure of addut from hexanitrohexaazaisowurtzitane and DMF[J]. Chin J Org Chem, 1999, 19(4):
 - [11] Bracuti A J. Crystal structure of 2, 4-dinitroimidazole[J]. Journal of Chemical Crystallography, 1995, 25(10): 625-627.
 - [12] 胡盛志, 周朝晖, 蔡启瑞. 晶体中原子的平均范德华半径[J]. 物 理化学学报,2003,19(11):1073-1077.
 - HU Sheng-zhi, ZHOU Zhao-hui, CAI Qi-rui. Average van der Waals Radii of atoms in crystals [J]. Acta Phys Chim Sin, 2003, 19(11): 1073-1077.

Synthesis, Crystal Structure and Thermal Property of 1-Amino-2, 4-dinitroimidazole

JING Mei^{1,2}, SHU Yuan-jie², WANG Jun², MA Qing², ZHANG Xiao-yu², HUANG Yi-gang²

(1. Department of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 62010, China; 2. Institute of Chemical Materials, CAEP, Mianyang 621900, China)

500 - 507.

Abstract: 1-Amino-2, 4-dinitroimidazole (ADNI) was synthesized by amination of 2, 4-dinitroimidazole with 2, 4, 6-trimethylbenzenesulfonic hydroxylamine (MSH) in a total yield of 57.8%. The structure of ADNI was characterized by IR, ¹H NMR, LC-MS and single crystal X-ray diffraction. Results show that ADNI belongs to orthorhombic system, space group $Pca2_1$ with a =10.0626(14) Å, b=55.684(8) Å, c=11.5639(15) Å, Z=4, $D_c=1.774$ g · cm⁻³, and DSC test results reveal that ADNI has good thermal stability.

Key words: organic chemistry; energetic compound; 1-amino-2, 4-dinitroimidazole; synthesis; structure and property CLC number: TJ55; O62 Document code: A DOI: 10.3969/j.issn.1006-9941.2014.04.005

457