文章编号:1006-9941(2015)07-0653-04

2-偕二硝甲基-5-硝基四唑羟胺盐的合成与性能

敏,毕福强,许 诚,葛忠学,朱 勇,刘 庆,王伯周 张 (西安近代化学研究所,陕西西安710065)

erials.org.ch 摘 要:用 2-偕二硝甲基-5-硝基四唑(HDNMNT)为原料, 与羟胺中和反应, 合成了 2-偕二硝甲基-5-硝基四唑羟胺盐 (HADNMNT),收率为98.4%。用 FTIR,¹H NMR,¹³C NMR,¹⁵N NMR 和元素分析表征了其结构。用 DSC 研究了 HADNMNT 的热稳定性。用密度泛函理论及 K-J 方程计算了 HADNMNT 的爆速和爆压。在标准状态下(压强为 6.86 MPa,膨胀比为 70/1), 采用最小自由能原理计算了 HADNMNT 单元推进剂的理论比冲。结果表明,升温速率为 10 ℃ · min⁻¹的 HADNMNT 的 DSC 曲 线的峰温为 145.3 ℃。它的爆速、爆压和比冲分别为 9、240 km・s⁻¹, 39.54 GPa 和 2639.8 N・s・kg⁻¹。 关键词:含能材料:2-偕二硝甲基-5-硝基四唑羟胺盐(HADNMNT);合成:能量性能

中图分类号: TJ55; O62

文献标志码:A

DOI: 10.11943/j.issn.1006-9941.2015.07.009

1 引言

唑类富氮化合物具有生成焓高、产气量大、爆轰产 物清洁等优点[1-4],在火炸药、高能推进剂、气体发生 剂等领域有很好的应用价值[5-6]。近年来,偕二硝甲 基唑类化合物的合成及性能研究引起了含能材料领域 的广泛关注^[7-9]。偕二硝甲基的引入提高了唑类富氮 化合物的密度,改善了氧平衡,同时使该类化合物易于 衍生化。Semenov等人^[7]首次报道了 2-偕二硝甲基-5-硝基四唑(HDNMNT)的合成,本研究组^[10]合成出 HDNMNT,并研究了其热稳定性和理论爆轰性能。该 化合物氮含量为44.76%,氧平衡为10.96%, HDNMNT的能量水平和 RDX 相当,热分解温度约为 120 ℃,热稳定性较差。HDNMNT 分子的强酸性^[7] 使其成为优良的含能阴离子, Semenov 等^[7]报道了 2-偕二硝甲基-5-硝基四唑肼盐(HyDNMNT)和铵盐 (ADNMNT)的合成,两种含能盐的热稳定性均优于 HDNMNT

为了探索具有更高能量水平且热稳定性得以改善 的含能盐,本研究以 HDNMNT 为原料,与羟胺进行中

收稿日期: 2014-05-15; 修回日期: 2014-07-25 **基金项目:**国家自然科学基金资助(21373157) 作者简介:张敏(1990-),女,助理工程师,主要从事含能材料合成研究 研究。e-mail: 631520072@qq.com

通信联系人: 毕福强(1982-), 男, 工程师, 主要从事含能材料合成与性 能研究。e-mail: bifuqiang@gmail.com

和反应,首次合成出2-偕二硝甲基-5-硝基四唑羟胺盐 (HADNMNT),并采用核磁共振谱、红外光谱以及元 素分析等对 HADNMNT 的结构进行了表征。利用差 示扫描量热(DSC)技术研究了 HADNMNT 的热稳定 性,理论研究了 HADNMNT 的能量性能,综合评价了 其应用前景。

2 实验部分

2.1 试剂与仪器

2-偕二硝甲基-5-硝基四唑,按照文献[10]方法制 备;盐酸羟胺、甲醇均为分析纯,成都科龙试剂厂;甲 醇钠-甲醇溶液,分析纯,南试化学试剂有限公司。

NEXUS 870型傅里叶变换红外光谱仪,美国 NICOLET 公司; AV500 型(500 MHz) 超导核磁共振 波谱仪,德国 BRUKER 公司; VARIO EL III 型有机元 素分析仪,德国 ELEMENTAR 公司; LC-2010A 型高效 液相色谱仪,日本岛津公司;901 s 差式扫描量热仪, 美国TA公司。

2.2 实验过程

合成路线见 Scheme 1。

Scheme 1

CHINESE JOURNAL OF ENERGETIC MATERIALS

20 ℃下,将 539 mg(3 mmol)质量分数为 30% 的 甲醇钠-甲醇溶液加入到 25 mL 的圆底烧瓶中,加入 227 mg(4 mmol)盐酸羟胺,搅拌反应 3 h 后,过滤, 将滤液收集,备用。20 ℃下,将 438 mg(2 mmol) HDNMNT分批加入上述滤液中,搅拌反应 2 h。反应 液经浓缩、干燥制得 498 mg 淡黄色固体 HADNMNT, 收率 98.4%。

IR (KBr, ν/cm^{-1}): 3425, 3150, 3057, 3005, 2716, 2663, 1585, 1516, 1493, 1479, 1459, 1398, 1373, 1300, 1276, 1266, 1173, 1157, 1096, 1044, 1006, 998, 843, 771, 735, 656, 544; ¹H NMR (DMSO- d_6 , 500MHz): 10. 22, 3. 41; ¹³C NMR(DMSO- d_6 , 125 MHz): 131. 25, 165. 95; ¹⁵N NMR (DMSO, 50 MHz): 19. 18, -30. 73, -36. 11, -50. 40, -69. 89, -103. 93, -298. 67; 元 素分析(%), C₂ H₄ N₈ O₇: 实测值(理论值)C 9. 57 (9.53), H 1.65(1.60), N 44.36(44.45)。

3 结果与讨论

3.1 HADNMNT的合成及结构表征

HDNMNT的酸性较强, 文献[7]采用 HDNMNT 和水合肼、醋酸铵反应合成 HyDNMNT 和 ADNMNT, 本研究首先利用盐酸羟胺和甲醇钠的中和反应以及羟 胺和氯化钠在甲醇中溶解性的差异, 制备出羟胺的甲 醇溶液, 然后将其和 HDNMNT 反应, 成功合成出 HADNMNT。由于 HADNMNT 溶于甲醇、水等极性 溶剂, 因此, 可采取浓缩的方式获得产物。

通过¹H NMR、¹³C NMR、¹⁵N NMR 对 HADNMNT 的结构进行表征, HADNMNT 原子编号如图 1 所 示。¹³C NMR 谱图上有两组碳信号,其化学位移分别 为 165.95 和 131.25,与未成盐之前 HDNMNT^[10] 的¹³C NMR 的化学位移(165.84,131.41)基本一致, 可推测,在氘代 DMSO 溶液中,HDNMNT 发生电离, 以 H⁺和 DNMNT⁻的形式存在。

HADNMNT 的¹⁵N 谱(图 2)中共出现 7 组信号, 化学位移分别为 19.18、-30.73、-36.11、-50.40、 -69.89、-103.93 和-298.67。其中,-298.67 处的 峰是 NH₂的特征信号,因此归属为羟胺阳离子的 N1⁷ 信号,其他六组信号则为 DNMNT⁻的信号。采用高斯 09 程序^[11],利用密度泛函理论的 B3LYP 方法,在 6-311+G(2d,p)基组水平上计算了 DNMNT⁻的 N 谱 化学位移,并以同样水平下的硝基甲烷为参比,结果列 于表1中,通过将实测值和理论值进行对照完成了 DNMNT⁻的¹⁵N信号归属。

图 2 HADNMNT 的¹⁵ N NMR 图谱

Fig. 2 ¹⁵N NMR spectrum of HADNMNT

表1 HADNMNT 的¹⁵N NMR 数据

Table 1 ¹⁵ N NMR data of HADNMNT

N atoms	N1	N2	N3	N4	N6	N8
chemical shift (Found)	-69.89	-103.93	19.18	-50.40	-30.73	-36.11
chemical shift (Calcd.) ¹⁾	-55.66	-90.52	34.55	-43.91	-23.19	-28.71

Note: 1)The ¹⁵N NMR chemical shifts of HADNMNT were calculated by GI-AO method, based on the geometry optimized at the DFT-B3LYP/6-311+G (2d,p) level by using Guassian09 program^[11].

3.2 HADNMNT 的热稳定性

升温速率为 10 ℃ · min⁻¹, 氮气气氛中, 采用 DSC 对 HADNMNT 的热稳定性进行了分析, DSC 曲 线见图 3。由图 3 可见, 在 0~300 ℃的温度范围内,

图 3 HADNMNT 的 DSC 曲线

Fig. 3 DSC curve of HADNMNT

HADNMNT的 DSC 曲线没有明显的吸热峰,表明在 此温度范围内没有熔化过程,在温度 145.3 ℃处出现 一个放热峰,可以判断其为分解峰,分解过程为放热过 程。与 HDNMNT 的热分解温度 120 ℃相比^[10], HADNMNT 的热分解温度有所提高,热稳定性增强。

3.3 HADNMNT 的性能

采用密度泛函理论(DFT)的 B3LYP 方法^[12-13],在 6-31G^{**}基组水平上获得了阴阳离子的稳定构型,对离

在 子型化合物的理论密度进行计算^[14]。采用原子化方 聚^[15-17],利用完全基组方法(CBS-4M)^[18-19]计算了阴 阳离子的气相生成焓,再依据 Born-Haber 能量循环^[14] 计算出固相生成焓。进而利用 K-J 方程^[20]计算出理论 爆速和爆压,采用美国 NASA-CEA 软件^[21],在标准状态 下(压强为6.86 MPa,膨胀比为70/1)计算出含能化合 牧的单元比冲,结果列于表 2 中。为比较,表 2 同时给 离 出了高氯酸铵(AP),二硝酰胺铵(ADN)的文献结果。

表2 几种含能化合物的性能

Table 2	The performance	for some	energetic	compounds	9
---------	-----------------	----------	-----------	-----------	---

			. 17 .				
compd.	N^{1} / %	<i>OB</i> ²) /%	ρ^{3} /g · cm ⁻³	$\Delta_{\rm f} H^{4 m)}/{\rm kJ} \cdot {\rm mol}^{-1}$	D^{5} / km · s ⁻¹	p^{6} / GPa	$I_{\rm sp}^{7)}/{\rm N}\cdot{\rm s}\cdot{\rm kg}^{-1}$
HDNMNT	44.76	10.95	1.88	273.04	8.977	35.37	2488.3
Hydnmnt	50.20	-3.19	1.81(1.82)	390.00	9.236	38.72	2739.3
ADNMNT	47.46	0	1.84(1.78)	242.30	9.181	38.56	2649.8
HADNMNT	44.45	6.35	1.87	299.40	9.240	39.54	2639.8
RDX	37.80	-21.60	1.82 ^[22]	92.6 ^[22]	8.748 ^[22]	34.80 ^[22]	2636.7
НМХ	37.80	-21.60	1.91 ^[22]	104.8 ^[22]	9.059 ^[22]	39.20 ^[22]	2624.2
AP ^[23]	11.92	34.04	1.95	-290.45	-	-	1554.2
ADN	45.14	25.79	1.82 ^[23]	-149.80 ^[23]	7.726	27.18	2008.5

Note: 1) nitrogen content; 2) oxgen balance; 3) density; 4) enthalpy of formation; 5) detonation velocity; 6) detonation pressure; 7) specific impulse.

由表 2 数据可见, HyDNMNT 和 ADNMNT 密度的 计算值和实测值基本一致,误差小于 5%,表明计算方法 可靠。HADNMNT 的理论密度为 1.87 g·cm⁻³,固相生 成焓为 299.40 kJ·mol⁻¹,能量水平高于 HDNMNT。 HADNMNT、HyDNMNT 及 ADNMNT 等三种含能离 子盐中,HADNMNT 的能量水平为最高,与 HMX 基 本相当,是一种高能量密度化合物。HADNMNT 的氧 平衡为正,理论计算得 HADNMNT 的单元比冲为 2639.8 N·s·kg⁻¹,远高于推进剂中常用的氧化剂 AP 和 ADN,可以作为高能氧化剂用于推进剂领域。

4 结 论

(1) 以 HDNMNT 为原料, 与羟胺的甲醇溶液进行中和反应, 合成出 HADNMNT, 产率高达 98.4%。

(2) DSC 分析结果表明, HADNMNT 的热分解峰温为145.3 ℃, 热稳定性优于 HDNMNT。

(3)理论计算结果表明: HADNMNT 的密度为
1.87 g·cm⁻³, 爆速为 9.240 km·s⁻¹, 爆压为
39.54 GPa,能量水平与 HMX 相当; HADNMNT 单元比冲为 2639.8 N·s·kg⁻¹。

参考文献:

[1] 董海山. 高能量密度材料的发展及对策[J]. 含能材料, 2004(增 刊): 1-12. DONG Hai-shan. The development and countermeasure of high energy density materials[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2004(Suppl.): 1–12.

- [2] 李志敏, 张建国, 张同来, 等. 硝基四唑及其高氮化合物[J]. 化 学进展, 2010, 22(4): 639-647.
- LI Zhi-min, ZHANG Jian-guo, ZHANG Tong-lai, et al. Nitrotetrazole and its high nitrogen-contented compounds[J]. *Progress in Chemistry*, 2010,22(4): 639–647.
- [3] Singh R P, Gao H X, Meshri D T, et al. Nitrogen-rich heterocycles[J]. Structure and Bonding, 2007, 125: 35-83.
- [4] Jadhaw H S, Talawar M B, Sivabalan R, et al. Synthesis, characterization and thermolysis studies on new derivatives of 2,4,5-trinitroimidazoles:Potential insensitive high energy materials [J]. *Journal of Hazardous Materials*, 2007, 143: 192–197.
- [5] 徐抗震,赵凤起,仪建华,等. 5-(偕二硝基)-四唑盐及制备方法 和用途: CN101805305 A[P], 2010.
- [6] Klapötke T M, Stierstorfer J, Wallek A U. Nitrogen rich salts of 1-methyl-5-nitriminotetrazole: an auspicious class of thermally stable energetic materials [J]. *Chemical Material*, 2008, 20: 4519-4530.
- Semenov V V, Kanischev M I, Shevelev S A. Thermal ring-opening reaction of N-polynitromethyl tetrazoles: facile generation of nitrilimines and their reactivity[J]. *Tetrahedron*, 2009, 65: 3441 -3445.
- [8] Semenov V V, Shevelev S A. Reactivity of the low-nucleophilic N-dinitromethyl carbanion center in polynitromethylazoles [J]. Mendeleev Communications, 2010, 20: 332-334.
- [9] 毕福强,许诚,葛忠学,等.二硝甲基唑类含能化合物的研究进展[J].化学推进剂与高分子材料,2013,11(1):10-15.
 BI Fu-qiang, XU Cheng, GE Zhong-xue, et al. Research progress in dinitromethylazole-based energetic compounds[J]. *Chemical Propellants & Polymeric Materials*, 2013, 11(1):10-15.

含能材料

- [10] 张敏, 葛忠学, 毕福强, 等. 2-偕二硝甲基-5-硝基四唑的合成与 性能[J].含能材料,2013,21(5):688-690. ZHANG Min, GE Zhong-xue, BI Fu-qiang, et al. Synthesis and performance of 2-dinitromethyl-5 -nitrotetrazole [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013, 21(5): 688-690
- [11] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[CP]. Gaussian, Inc, Wallingford CT, 2009.
- [12] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652.
- [13] Lee C, Yang W, Parr R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B: Condensed Matter, 1988, 37: 785-789.
- [14] GAO Hai-xiang, Ye Cheng-feng, Piekarski C M, et al. Computational charaterization of energetic salts [J]. Journal of Physical Chemistry C, 2007, 111: 10718-10731.
- [15] Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation [J]. Journal of Chemical Physics, 1997, 106(3): 1063.
- [16] Byrd E F C, Rice B M. Improved prediction of heats of formation of energetic materials using quantum chemical methods[J]. Journal of Physical Chemistry A, 2006, 110(3): 1005-1013.
- [17] Rice B M, Pai S V, Hare J. Predicting heats of formation of ener-

getic materials using quantum chemical calculations [J]. Combustion and Flame, 1999, 118(3): 445-458.

- [18] Ochterski J W, Petersson G A, Montgomery J A. A complete basis set model chemistry V. extension to six or more heavy atoms [J]. Journal of Chemical Physics, 1996, 104(7): 2598–2619.
- [19] Montgomery J A, Frisch M J, Ochterski J W, et al. A complete basis set model chemistry VII. Use of the minimum population localization method [J]. Journal of Chemical Physics, 2000, 112 (15): 6532-6542.
- [20] Kamlet M J. Jacobs S J. Chemistry of detonation I. a simple method for calculating detonation properties of CHNO explosives [J]. Journal of Chemical Physics, 1968, 48(1): 23-25.
- [21] Gordon S, McBride B J. Computer program for calculation chemical equilibrium compositions and applications: I Analysis, NASA RP-1311[R]. Washington D C: NASA, 1994.
- [22] SONG Jin-hong, ZHOU Zhi-ming, DONG Xiao, et al. Superhigh-energy materials based on bis(2, 2-binitroethyl) nitramine [J]. Journal of Materials Chemistry, 2012, 22: 3201-3209.
- [23] 刘晶如,杨寅,辛伟.含1,3,3-三硝基氮杂环丁烷(TNAZ) 推进 剂能量特性计算研究[J]. 固体火箭技术, 2009, 32(3): 318-322.

LIU Jing-ru, YANG Yin, XIN Wei. Computational investigation of energy characteristics of propellant containing 1, 3, 3-trinitroazetidine(TNAZ)[J]. Journal of Solid Rocket Technology, 2009, 32(3): 318-322.

Synthesis and Properties of Hydroxylammonium 2-Dinitromethyl-5-nitrotetrazolate

ZHANG Min, BI Fu-qiang, XU Cheng, GE Zhong-xue, ZHU Yong, LIU Qing, WANG Bo-zhou

(Xi'an Modern Chemistry Research Institute, Xi'an 710065, China)

Abstract: Hydroxylammonium 2-dinitromethyl-5-nitrotetrazolate (HADNMNT) was synthesized via neutralization reaction with hydroxylamine, using 2-dinitromethyl-5-nitrotetrazole (HDNMNT) as raw material. Its structure was characterized by FTIR, ¹H NMR, ¹³C NMR, ¹⁵N NMR and elemental analysis. The thermal stability of HADNMNT was studied by DSC. The detonation velocity and detonation pressure of HADNMNT were calculated by a density function theory and K-J equation. The theoretical specific impulse of monopropellant HADNMNT was calculated by the principle of minimum free energy under the standard state (pressure is 68.9 MPa, expansion ratio is 70:1). Results show that the yield of HADNMNT is 98.4%, and the peak temperature of .s °C, .kg⁻¹, resp. .mmonium 2-dinitrc **Document code**: A DSC curve at a heating rate of 10 °C ⋅ min⁻¹ is 145.3 °C. Its detonation velocity, detonation pressure and specific impulse are 9.240 km · s⁻¹, 39.54 GPa and 2639.8 N · s · kg⁻¹, respectively.

Key words: energetic material; hydroxylammonium 2-dinitromethyl-5- nitrotetrazolate(HADNMNT); synthesis; energy characteristics

CLC number: TJ55; O62

DOI: 10.11943/j.issn.1006-9941.2015.07.009