文章编号: 1006-9941(2015)10-0964-07

液相连续制备挂式四氢双环戊二烯

陈华祥,李加荣,黎汉生,史大昕,孙克宁 (北京理工大学化工与环境学院,北京100081)

aterials.org.cn 摘 要: 挂式四氢双环戊二烯(exo-THDCPD)是重要的高密度液体烃类燃料。为提高 exo-THDCPD 的合成效率,研究了连续制备 exo-THDCPD 的新工艺,包括两个反应器(鼓泡式连续流加氢反应器和连续流异构化釜式反应器)的串联,即两个过程(Pd/C催化 环戊二烯二聚体(DCPD) 加氢制备桥式四氢双环戊二烯(endo-THDCPD)和 AlCl,催化 endo-THDCPD 异构合成 exo-THDCPD) 的 串联。结果表明,液相连续制备 exo-THDCPD 的较佳工艺条件为: 重时空速 2.4 h⁻¹,加氢压力 0.1 MPa,氢气流速 80 mL・min⁻¹, DCPD 浓度 0.76 mol・L⁻¹,加氢反应温度 30 ℃,异构化反应温度 70 ℃; DCPD 转化率 100%, exo-THDCPD 收率 92.5%。 关键词: 挂式四氢双环戊二烯(exo-THDCPD); 连续流; 催化加氢; 异构化工艺

中图分类号: TJ55; O62

文献标志码:A

DOI: 10.11943/j.issn.1006-9941.2015.10.009

引 1 言

作为一种性能优良的高密度液体烃燃料和高粘度 燃料稀释剂^[1-3],挂式四氢双环戊二烯(exo-THD-CPD),具有密度大(0.934 g・cm⁻³),燃烧热值高 (39.6 MJ·L⁻¹),冰点低(-79 ℃)等优点,广泛应用 于高性能巡航导弹、超音速飞机和火箭推进剂[4-5]。 同时, exo-THDCPD 也是一种精细化工中间体, 用于 金刚烷的合成^[6]。exo-THDCPD 的合成通常包括两 步反应:首先,二聚环戊二烯(DCPD)催化加氢得桥 式四氢双环戊二烯 (endo-THDCPD), 然后, endo-THDCPD 经酸催化异构得到 exo-THDCPD^[7],传统的《 合成工艺为釜式,间歇操作过程,效率不高。

为提高 exo-THDCPD 的合成效率,国内外研究人 员对加氢和异构工艺进行了大量研究。加氢工艺中, 负载型镍催化剂成本低,技术成熟[8],天津大学设计 了以 Ni/γ-A1₂O₃为催化剂的连续加氢装置^[9],实现 DCPD 连续加氢,但加氢压力要求高;贵金属钯、铂催 化剂活性高、选择性好,米镇涛^[10]设计了准绝热滴流 床反应器(TBR),其直径 24 mm,长度 850 mm,装载

收稿日期: 2014-10-29; 修回日期: 2014-01-16

基金项目:国家国际科技合作项目基金资助(2012DFR40240) 作者简介: 陈华祥(1989-), 男, 硕士研究生, 主要从事高能燃料挂式四 氢双环戊二烯的合成研究。e-mail: 2120121292@bit.edu.cn 通信联系人: 史大昕(1975-), 男, 讲师, 主要从事有机合成新试剂新方 法研究。e-mail: shidaxin@ bit. edu. cn

Pd/Al₂O₃催化剂,实现 DCPD 连续加氢,转化率和选 择性都很高;离子液体类催化剂性能高,但使用成本 高,工业化难度大^[11];负载金催化剂存在制备技术要 求高等问题^[12]。

异构工艺中,最早使用浓 H,SO,为催化剂,但催 化效率低、腐蚀严重^[13]:酸性介孔分子筛催化剂也应 用于 endo-THDCPD 的异构反应, 吕剑等^[14]以改性的 USY 型分子筛为催化剂, 在催化精馏塔中, 实现了 exo-THDCPD 的连续制备; 孙聪明^[15]等在固定床反 应器中,采用不同型号的分子筛催化剂(HY, H-USY, H-beta, HZSM-5 和 HMOR), 实现了 endo-THDCPD 在气态条件下连续合成 exo-THDCPD, 产率达到 98%。分子筛催化 endo-THDCPD 异构反应温度高, 能耗高^[16-17]; 而 AlCl₃催化剂,虽然存在环境污染等 问题,但具有异构活性高、选择性好,工业生产应用广 泛^[18];将AlCl。固载化能有效提高其使用性能,纪敏 等^[19],采用固载 AlCl。催化剂,在液固-多相搅拌反应 器或固定床反应器中,得到 99% 以上的 exo-THD-CPD。黄明宇等^[20],采用离子液体-Lewis 酸催化剂, 实现连续高效合成 exo-THDCPD,但该方法成本高。

连续制备 exo-THDCPD 可有效解决釜式间歇操 作中存在的问题,提高合成效率。陕西师范大学采用 固定床管式反应器,以 DCPD 为原料,通过气-固接触 催化反应,实现加氢、异构同时完成,连续制备 exo-THDCPD^[21],但反应温度高(160 ℃),加氢压力大 (0.5~4 MPa),产品选择性一般(70%),而且对设备

要求严格,生产成本提高。

为解决连续制备 exo-THDCPD 工艺设备投资高, 选择性不高的问题,本研究实现了连续流制备 exo-THDCPD的新工艺,将加氢和异构化两个过程有 效串联,实现了 exo-THDCPD 的连续高效生产。其 中,循环式连续流鼓泡加氢反应器具有催化剂自分离 功能,催化剂与加氢液在反应器内自动分离,采用高活 性的 Pd/C 催化剂,实现常温常压下连续流加氢;连续 流釜式异构化反应器,以催化活性高的 AlCl₃为催化 剂,通过出口过滤装置实现催化剂与溶液的高效分离, 合成了 exo-THDCPD。 NNN. 实现连续流异构化。

2 实验部分

2.1 试剂与仪器

试剂:环己烷(分析纯)、双环戊二烯(95%)、无 水 AICl₃、5% Pd/C,均购自百灵威科技有限公司。

仪器: 2PB-05 平流泵(北京卫星制造厂); 氢气 发生器;氮气发生器;恒温水浴槽;鼓泡式连续流加 氢反应器(自制);釜式连续流异构反应器(自制);岛 津 GC-2014 型号气相色谱仪(日本); HP-5 毛细管色 谱柱(30 m×0.32 mm×0.25 μm)(日本)。

2.2 实验过程

本研究以二聚环戊二烯为原料,Pd/C催化加氢合 成 endo-THDCPD,然后加氢产物经 AICI,催化异构为 exo-THDCPD,反应路线如 Scheme 1 所示。在液相 连续反应装置上,考察挂式四氢双环戊二烯连续制备 的工艺条件,首先对连续加氢工艺和连续异构工艺分 别研究,在获得各自工艺参数的基础上,进行加氢-异 构连续进行合成 exo-THDCPD。采用岛津 GC-2014 型号气相色谱仪(HP-5 气相色谱柱)分析反应原料与 产物组成。

Sheme 1 Synthetic route of exo-THDCPD

2.2.1 DCPD 连续加氢制备 endo-THDCPD

设计了循环式连续流鼓泡加氢反应器(20,图1), 催化剂与加氢液在反应器末端自动分离,实现了加氢 过程的连续化;采用 Pd/C 为加氢催化剂,连续流加氢 过程在常温常压下进行。

双环戊二烯溶液和氢气分别经下口10、9连续流 入,向上并流,加氢催化剂随溶液循环流动,氢气经出 口18 排除,在出口11 处,催化剂与加氢液分离回到 反应,通过溢流得到加氢产物溶液。原料、产物组成采 用气相色谱分析。

连续流加氢反应部分条件是: $p_{\rm H}$, 0.1 MPa,5% Pd/C, 1.5 g(4%); DCPD 浓度 0.76 mol · L⁻¹。

2.2.2 endo-THDCPD 连续异构制备 exo-THDCPD ●设计了釜式连续流反应器(21,如图1),连续高效

endo-THDCPD 溶液连续流入釜式异构反应器 21 中, AlCl。催化异构化, 并经上口13 过滤装置, 催化 剂与溶液分离,溢流得到挂式四氢双环戊二烯溶液。 原料、产物组成采用气相色谱分析。

连续异构化反应条件是: T_{异构}70 ℃; AlCl₃(无水) 1.5 g(1.5%); endo-THDCPD 浓度 0.76 mol · L⁻¹; 转 速,500 r · min⁻¹。

2.2.3 DCPD 液相连续制备 exo-THDCPD

将加氢工艺和异构工艺串联(如图1),双环戊二

图1 液相连续流制备 exo-THDCPD 的工艺

1-氢气发生器,2,5-开关,3-气体流量计,4-单通阀, 6-三通阀,7-氯气发生器,8-平流泵(2PB-05),9,12-溶 液入口,10-氢气入口,11,13-溶液出口,14,15-温控I, 16,17-温控Ⅱ,18-氢气出口,19-取样口,20--鼓泡式连 续流加氢反应器,21-釜式连续流异构化反应器

Fig. 1 The liquid-phase continuous-flow preparation process for exo-THDCPD

 $1-H_2$ gas generator, 2, 5-on-off valve, 3-mass-flow gas meter, 4-one-way valve, 6-three-way valve, 7-N₂ gas generator, 8-Prep Pumps (2PB-05), 9, 12-liquid in-flow port, 10-H₂ inlet, 11, 13-liquid out-flow port, 14, 15temperature controller I, 16, 17-temperature controller II, 18-H₂ outlet, 19-samping port, 20-continuous-flow bubbling hydrogenation reactor, 21-tank type continuous-flow isomerization reactor

烯溶液流经加氢反应器,加氢液在出口11出溢流,直 接流入异构反应器,经酸催化异构后,由上口13流 出,得挂式四氢双环戊二烯溶液。原料、产物组成采用 气相色谱分析。图2中反应器规格见表1。

连续流加氢-异构制备 exo-THDCPD 的反应条件是: 加氢 T_{加氢} 30 ℃; p_H 0.1 MPa; H₂流量 80 mL・min⁻¹; 5% Pd/C, 1.5 g(4%); DCPD 浓度 0.76 mol・L⁻¹; 异构 T_{异构} 70 ℃; AlCl₃(无水)1.5 g(1.5%); 转速 500 r \cdot min⁻¹

表1 反应器规格

表 1 反应器 Table 1 Rea	规格 ctor specifications
symbol	size
h1	200 mm
h2	50 mm
d1	20 mm
d2	15 mm
d3	60 mm
h3	50 mm
d4	55 mm
V(20)	150 mL
V(21)	75 mL

2.2.4 分析方法

色谱仪为岛津 GC-2014 型色谱仪,面积归一法分析其 组成。色谱条件: HP-5 毛细管色谱柱(30 m×0.32 mm× 0.25 μm),氢火焰离子化检测器(FID),载气为氩气,柱 温 130 ℃,汽化室温度 200 ℃,检测器温度 250 ℃。

结果与讨论 3

3.1 DCPD 制备 endo-THDCPD 的连续流加氢工艺 3.1.1 加氢反应器中温度对加氢速率的影响

在加氢反应器中,温度 30~70℃,氢气流速 80 mL·min⁻¹, DCPD 加氢过程如图 2 所示: DCPD 加氢过程为典型的两步反应,即 DCPD 选择性加氢生 成中间产物 DHDCPD,继而 DHDCPD 加氢生成 endo-THDCPD,反应结束后,endo-THDCPD 产率达 99%以上。

图 2a 中, DCPD 浓度随反应进行不断降低, 反应 2.5 h, DCPD 转化率达 100%; 图 2b 显示, 反应液内 DHDCPD 浓度,反应2h内不断升高,2h 后浓度不断 下降,DHDCPD 含量在反应 2 h 时最高,达 95% 以 上,反应 5.5 h 后降至 1% 以下;图 2c 中, endo-THD-CPD 含量,在反应 2 h 内几乎为零, 2 h 后不断升高, 并在反应 5.5 h 达到 99%,其原因是 DCPD 加氢活性 比DHDCPD高。

提高温度,两步加氢速率均加快,然而反应速率提 升较小;氢气压力常压,不同反应温度,反应6h, endo-THDCPD收率都达 99%,反应温度对 endo-THDCPD 的最终收率没有影响。基于加氢反应的研 究,确定连续流加氢过程工艺条件: T_{ma} 30 ℃; p_H 0.1 MPa;反应的停留时间最小为6h。

图 2 DCPD, DHDCPD 和 endo-THDCPD 含量随反应时间变化曲线

Fig. 2 Curves of change in the content of DCPD, DHDCPD and endo-THDCPD with time

3.1.2 重时空速(WHSV)对连续流加氢反应结果的 影响

连续流加氢工艺采用 T_{m氧} 30 ℃, H₂ 流量 80 mL·min⁻¹条件,研究 WHSV(1.2~4.2 h⁻¹)对 DCPD 连续加氢制备 endo-THDCPD 过程的影响,结 果如图 3 所示。由图 3 可见,加氢工艺稳定后,DCPD

转化率不受 WHSV(1.2~4.2 h⁻¹)影响,保持 100%; WHSV 为 1.2~2.4 h⁻¹, endo-THDCPD 的收率 98% 以上,变化不大,WHSV 超过 2.7 h⁻¹,随 WHSV 增加, endo-THDCPD 的收率明显降低。

可见连续流加氢过程受 WHSV 影响较大,反应物 与催化剂接触时间越长,越有利于提高 endo-THD-

含能材料

CPD 的收率。连续流加氢工艺,最优 WHSV 为 2.4 h⁻¹,加氢效率高,且 endo-THDCPD 的产率达到 98%; WHSV 过大, endo-DHDCPD 加氢不充分,导致 endo-THDCPD 收率下降; WHSV 过低,加氢产物收 率高,但工艺加氢效率下降。

图 3 WHSV 与 endo-THDCPD 收率的关系

Fig. 3 Relationship between WHSV and the yield of endo-THDCPD

3.1.3 氢气流速对连续流加氢反应的影响

在 T_{max} 30 ℃, WHSV 2.4 h⁻¹条件下, 研究氢气流 速(60~140 mL·min⁻¹) 对 DCPD 连续流加氢过程 的影响,结果如图 4 所示。由图 4 可见, 加氢工艺稳定 后, 氢气流速在 60~140 mL·min⁻¹范围, DCPD 转化 率维持 100% 不变; 氢气流速低于 80 mL·min⁻¹, 中 间产物 DHDCPD 加氢不完全, 随氢气流速增大, endo-THDCPD收率升高; 流速高于 80 mL·min⁻¹ 时, endo-THDCPD 的收率稳定在 98%。

图 4 氢气流速与 endo-THDCPD 收率的关系

Fig. 4 Relationship between H₂ gas flow rate and the yield of endo-THDCPD

可能原因是鼓泡式连续流加氢反应器中,氢气鼓 泡向上流动,提供反应液的循环动力和传质动力;氢 气流速过低导致反应体系中的催化剂分布不均匀,传 质动力不足,反应速率降低;氢气流速过高,造成氢气 的浪费,并且加快催化剂的磨损。加氢工艺最优氢气 流速为 80 mL · min⁻¹,提供传质和循环动力,保证 endo-THDCPD收率 98%。

3.1.4 连续流加氢工艺运行时间对 endo-THDCPD 收率的影响

在 T_{max} 30 ℃, H₂流量 80 mL · min⁻¹, WHSV 2.4 h⁻¹ 条件, 研究连续流加氢工艺运行时间与 endo-THD-CPD 收率的关系, 结果如图 5 所示。由图 5 可见, 工 艺运行 40 h, Pd/C 催化性能稳定, DCPD 转化率 100%, endo-THDCPD 收率 98% 以上, 产物中有少量 中间产物 endo-DHDCPD。可见, Pd/C 催化 DCPD 连续加氢制备 endo-THDCPD,性能稳定, 满足加氢工 艺长时间、稳定运行的要求。

图 5 连续加氢工艺运行时间与 endo-THDCPD 收率的关系 Fig. 5 Relationship between continuous hydrogenation process run time and the yield of endo-THDCPD

endo-THDCPD 制备 exo-THDCPD 的连续流异 构工艺

3.2.1 AICI₃催化异构反应速率

在70℃下,研究 AICI₃催化 endo-THDCPD 异构化 合成 exo-THDCPD 的反应速率,结果图 6 所示。由图 6 可见,随反应进行,原料不断减少,产物不断增加,反应 3 h,endo-THDCPD 转化率达 99%,exo-THDCPD 产率 97%,且过程中有微量的副产物金刚烷生成。

图 6 AlCl₃催化 endo-THDCPD 的异构化反应速率 Fig. 6 The isomerization reaction rate of endo-THDCPD catalyzed by AlCl₃

3.2.2 WHSV 对连续异构反应的影响

釜式连续流异构反应器中,研究 WHSV(0.9~ 3.9 h⁻¹)对 endo-THDCPD 连续异构制备 exo-THDCPD 过程的影响,结果如图 7 所示。由图 7 可见,异构化工 艺稳定后,WHSV 为 0.9~2.4 h⁻¹时, exo-THDCPD 的收率维持在 95%以上;WHSV 为 2.7~3.9 h⁻¹时, 随 WHSV 增 加, endo-THDCPD 的转化率和 exo-THDCPD的收率不断下降;反应过程中副产物金 刚烷含量为 1% 左右。可见,异构化工艺的最优 WHSV 为 2.4 h⁻¹, exo-THDCPD 的产率维持在 95%。

图 7 WHSV 与 exo-THDCPD 收率的关系

Fig. 7 Relationship between WHSV and the yield of exo-THDCPD

3.2.3 连续异构工艺运行时间对 exo-THDCPD 收率 的影响

釜式连续流异构反应器中,研究 AICI₃ 催化 endo-THDCPD 异构连续制备 exo-THDCPD 的性能,结果 如图 8 所示。由图 8 可见,异构化工艺稳定后,工艺运 行 6 h内,随反应时间增加,exo-THDCPD 收率保持 96%,变化不大; 6 h后,exo-THDCPD 收率不断下 降,在10h降至90.5%,可能原因是部分AICI₃与产

图 8 连续异构化工艺运行时间与 exo-THDCPD 的收率关系 Fig. 8 Relationship between continuous isomerization process run time reaction time and the yield of endo-THDCPD

物形成络合物,随溶液流出反应器,催化剂不断减少, 异构能力降低。

反应 10 h 后,向体系中补加 0.5 g AlCl₃,催化剂 量增加, exo-THDCPD 收率逐步回升,14 h 时升至稳 态 95%。连续异构过程中有1%左右的金刚烷生成。

3.3 连续加氢-异构制备挂式四氢双环戊二烯

根据加氢、异构反应速率不同,设计加氢反应器容积是异构反应器容积的两倍,将加氢和异构两步反应 串联,实现挂式四氢双环戊二烯液相条件下连续流制备,研究连续液相制备 exo-THDCPD 的影响因素。

3.3.1 WHSV 对连续加氢-异构工艺的影响

WHSV 对加氢、异构串联过程的影响结果如图 9 所示。由图 9 可见, DCPD 转化率恒定为 100%, WHSV 为 1.2~2.4 h⁻¹, exo-THDCPD 收率基本保持 92.5% 以上维持稳定; WHSV 超过 2.4 h⁻¹时, exo-THDCPD收率下降明显。原因是随着 WHSV 的 增大,加氢和异构两个过程反应的停留时间不足,导致 加氢和异构反应不完全,使 exo-THDCPD 的收率降低。

WHSV 对连续制备挂式四氢双环戊二烯的反应 影响较大,工艺的最优 WHSV 为 2.4 h⁻¹。

图9 连续加氢-异构化工艺中 WHSV 与 exo-THDCPD 收率 的关系

Fig. 9 Relationship between WHSV and the yield of exo-THDCPD in continuous-flow hydrogenation-isomerization process

3.3.2 连续加氢-异构工艺运行时间对产物收率的影响

液相连续加氢-异构制备 exo-THDCPD 的工艺, 每隔 6 h 补加 0.5 g AlCl₃,研究了运行时间对反应的 影响,结果如图 10 所示。由图 10 可见,工艺可连续 稳定运行,DCPD 转化率达 100%, exo-THDCPD 的收 率维持 92.5% 以上,其中,副产物金刚烷的含量 1%, DHDCPD 1%, endo-THDCPD 5%。

图 10 连续加氢-异构化工艺运行时间与 exo-THDCPD 收率 的关系

Fig. 10 Relationship between continuous-flow hydrogenationisomerization process run time and the yield of exo-THDCPD

4 结 论

为解决传统工艺中设备投资高,选择性不高问题, 将 DCPD 的催化加氢与 endo-THDCPD 的异构反应 串联,实现了液相连续制备 exo-THDCPD,采用的加 氢催化剂为 Pd/C,异构化催化剂为 AlCl₃。工艺主要 在三个方面有较大改进:

(1) DCPD 连续加氢制备 endo-THDCPD 的工艺 在低温常压下运行,且催化剂无需分离。加氢工艺参 数为:重时空速(WHSV) 2.4 h⁻¹, $p_{\rm H}$ 0.1 MPa,氢气 流速 80 mL・min⁻¹,DCPD 浓度 0.76 mol・L⁻¹, $T_{\rm max}$ 30 ℃,endo-THDCPD 的收率 98%。

(2) endo-THDCPD 连续异构制备 exo-THDCPD
 的工艺中,出口过滤装置可实现催化剂与溶液的高效
 分离。异构工艺为:重时空速(WHSV) 2.4 h⁻¹, T_{异构}
 70 ℃, exo-THDCPD 收率 95%。

(3) 串联加氢和异构反应的新工艺中,可液相连续制备 exo-THDCPD,合成效率高。加氢和异构工艺参数不变,DCPD 转化率 100%, exo-THDCPD 的收率 92.5%。该工艺设备投资低,有工业应用前景。

- 参考文献:
- Richard V N, Steven C H. Process for isomerization oftetrahydrodimethyldicyclopentadiene: US 4288644[P], 1981.
- [2] Norton R V, Dennis H F, Garry M G, et al. Method for preparing high density liquid hydrocarbon fuels: US 4355194[P], 1982.
- [3] Chenoweth K, VanDuin A C T, Dasgupta S. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel[J]. J Phys Chem A, 2009, 113 (9): 1740-1746.
- [4] 周劲松,冯渐超,张志勇.双环戊二烯合成巡航导弹用高密度烃燃料[J].化学推进剂与高分子材料,2003,1(2):17-21.

ZHOU Jin-song, FENG Jian-chao, ZHANG Zhi-yong. Synthesis of high density hydrocarbon fuel from cyclopentadiene for cruise missile[J]. *Chemical Propellants & Polymeric Materials*, 2003, 1(2): 17–21.

969

- [5] 熊中强,米镇涛,张香文.桥式四氢双环戊二烯异构化反应的研究
 [J].石油化工,2004,33(3):220-223.
 XIONG Zhong-qiang, MI Zhen-tao, ZHANG Xiang-wen. Study on the isomerization of endo-tetrahydrodicyclopentadiene [J]. *Petrochemical Technology*, 2004, 33(3): 220-223.
- [6] Markéta N, Karel S. Synthesis of adamantane on commercially available zeolitic catalysts[J]. Appl Catal A, 2000, 203: 127–132.
- [7] Chung H S, Chen C S H, Kremer R A. Recent development in high-energy density liquid hydrocarbon fuels[J]. Energy Fuels, 1999, 13: 641–649.
- [8]米镇涛,杨军.双环戊二烯加氢研究进展[J].化工新型材料, 1995(9):20-24.
 MI Zhen-tao, YANG Jun. Study on the hydrogenation of dicyclopentadien[J]. New Chemical Materials, 1995(9):20-24.
- [9] Liu G Z, Mi Z T, Wang L, et al. Hydrogenation of dicyclopentadiene into endo-tetrahydrodicyclopentadiene in trickle-bed reactor: experiments and modeling[J]. Ind Eng Chem Res, 2006,45 (26): 8807-8814.
- [10] 张呈平,程序,吕剑.双环戊二烯连续加氢[J].分子催化, 2007,21:491-492.
 ZHANG Cheng-ping, CHENG Xu, Lü Jian. Continuous hydrogenation of DCPD[J]. *Journal of molecular catalysis*(*China*), 2007,21:491-492.
- [11] 顾彦龙,杨宏洲,邓友全. 室温离子液体中双环戊二烯加氢以及 金刚烷合成[J]. 石油化工, 2002, 31(5): 345-348.
 GU Yan-long, YANG Hong-zhou, DENG You-quan. Hydrogenation of dicyclopentadiene and synthesis of adamantane in ionic liquid[J]. *Petrochemical Technology*, 2002, 31(5): 345-348.
- [12] Sibi M G, Singh B, Kumar R, et al. Single-step catalytic liquidphase hydroconversion of DCPD into high energy density fuel exo-THDCPD[J]. *Green Chem*, 2012, 14: 976–983.
- [13] Cohen C A, Muessig C W, Roselle N J. Jet and rocket fuel: US 3381046[P], 1968.
- [14] 吕剑,杨建明,杜咏梅,等,挂式四氢双环戊二烯的合成方法: CN 101260018[P],2008.
 - Lü Jian, YANG Jian-ming, DU Yong-mei, et al. The synthesis of exo-THDCPD: CN 101260018[P], 2008.
- [15] Sun C C, Li G. Vapor-phase isomerization of endo-tetrahydrodicyclopentadiene to its exo isomer over zeolite catalysts[J]. Applied Catalysis A: General, 2011, 402: 196–200.
- [16] Xing E H, Zhang X W, Wang L, et al. Greener synthesis route for Jet Propellant-10: the utilization of zeolites to replace AlCl₃[J]. *Green Chem*, 2007, 9: 589–593.
- [17] Wang L, Zou J J, Zhang X W, et al. Isomerization of tetrahydrdicyclopentadiene using ionic liquid: green alternative for Jet Propellant-10 and adamantine[J]. *Fuel*, 2012, 91: 164–169
- [18] Edward JJ, Abraham S, Richard E W. Isomerization of tetrahydropolycyclopentadienes to a missile fuel additive: US 4086286 [P], 1978.
- [19] 纪敏,蔡天锡,贺民,等. 一种在固体酸催化剂上制造挂式四氢双 环戊二烯的新方法: CN 101130471[P], 2008.
 JI Min, CAI Tian-xi, HE Min, et al. A new method for synthesis of exo-tetrahydropolycyclopentadienes over solid acid catalyst: CN 101130471[P], 2008.

含能材料

[20] Huang M Y, Chang J C, Lin J C, Lin K H, Wu J C. Method for producing exo-THDCPD and adamantane using pseudo-fixed bed ionic liquid reactor: US 8049050[P], 2011.

[21] Wang W, Chen J G, Song L P, et al. One-step, continuous-

flow, highly catalytic hydrogenation-isomerization of dicyclopentadiene to exo-tetrahydrodicyclopentadiene over Ni-supported catalysts for the production of high-energy-density fuel [J]. JCPD rials.org.cn.sity 入名をrials.org.ch.状料 Energy Fuels, 2013, 27(11): 6339-6347.

Liquid-phase Continuous-flow Preparation of High Energy Fuel Exo-THDCPD

CHEN Hua-xiang, LI Jia-rong, LI Han-sheng, SHI Da-xin, SUN Ke-ning

(School of Chemical Engineering & Environment, Beijing Institute of Technology, Beijing 100081, China)

Abstract: Exo-tetrahydrodicyclopentadiene (exo-THDCPD) is an important high density liquid hydrocarbon fuel. To improve the synthesis efficiency of exo-THDCPD, a new process of continuous preparation of exo-THDCPD, including the cascade of two reactors (continuous-flow bubbling hydrogenation reactor and continuous-flow isomerization tank reactor), namely the cascade of two processes (dicyclopentadiene (DCPD) was hydrogenated to endo-THDCPD over Pd/C catalyst and the endo-THDCPD was isomerized to exo-THDCPD over AlCl₃ catalyst) was studied. The liquid-phase continuous-flow preparation of exo-THDCPD was realized. Results show that the optimum liquid-phase continuous-flow process conditions of preparing exo-THDCPD are determined as: weight hourly space velocity (WHSV), 2.4 h⁻¹; hydrogenation pressure ($p_{\rm H}$), 0.1 MPa; H₂ gas flow rate, 80 mL \cdot min⁻¹; DCPD concentration (C_{DCPD}), 0.76 mol · L⁻¹; hydrogenation reaction temperature: 30 °C; isomerization; reaction temperature, 70 ℃; conversion of DCPD, 100% and yield of exo-THDCPD, 92.5%.

Key words: exo-tetrahydrodicyclopentadiene(exo-THDCPD),; continuous-flow; hydrogenation; isomerization; process CLC number: TJ55; O62 Document code: A DOI: 10.11943/j.issn.1006-9941.2015.10.009

读者・作者・编者

《含能材料》固体推进剂专栏征稿

高能量、低特征信号、低易损、低成本、低污染、灵活能量管理和高可靠性成为当前固体推进剂面临的紧迫课题,为促进 其研究,本刊将于2015年开设推进剂研究专栏,以专题报道固体推进剂研究的最新研究进展。欢迎广大学者投稿,来稿时

《含能材料》编辑部