文章编号:1006-9941(2017)04-0273-09

稠环类 1,2,4,5-四嗪衍生物结构和性能的理论研究

张 驰¹,陈 沫¹,陈 湘¹,张 聪¹,宋纪蓉^{1,2},马海霞¹ (1. 西北大学化工学院,陕西 西安 710069;2. 北京故宫博物院文保科技部,北京 100080)

摘 要:运用密度泛函理论 DFT-wB97/6-31+G**方法研究了 14 种稠环类 1,2,4,5-四嗪衍生物的几何结构、前线轨道能量和生成焓(ΔH_{f})。在此基础上运用 Kamlet-Jacobs 方程估算衍生物的爆轰性能;运用统计热力学,计算了标题化合物在 200~800 K 的 热力学性质;比较了 1,2,4,5-四嗪衍生物的生成焓和爆轰性能。结果表明,稠环四嗪衍生物爆速(D)和爆压(p)每所含 N 原子数 具有良好的一次线性相关关系,其生成焓为 527.49~1122.53 kJ·mol⁻¹,爆速为 5.59~8.65 km·s⁻¹;随温度升高,标准摩尔热 容($C_{p,m}$)、标准摩尔熵(S_{m})和标准摩尔焓(H_{m})逐渐增大。化合物 T7($C_{2}N_{7}H_{2}$)和 T72($C_{2}N_{10}H_{2}$)可以作为高能量密度材料 (HEDM)候选物。

关键词:密度泛函理论(DFT);1,2,4,5-四嗪衍生物;生成焓;爆轰性能;热力学性质
 中图分类号:TJ55;O64
 文献标志码:A
 DOI: 10.11943/j.issn.1006-9941.2017.04.002

1 引 言

高氮含能化合物是近年来发展起来的并具有良好 应用前景的高能量密度材料(HEDM),它具有很高的 正生成焓,感度较低,热稳定性好,闪点温度高,且分子 结构中的高氮低碳氢含量使其具有较高的密度,也更 容易达到氧平衡^[1-2]。四嗪类高氮化合物分子结构中 含有较多的 N-N 和 C-N 键,四嗪环的含氮量高达 68.3%,具有能量高、热稳定性好、特征信号低、燃烧 无残渣及无污染等优点,广泛应用于推进剂、新型高能 钝感炸药和烟火剂等含能材料领域[3-4]。而稠环含能 化合物一般都具有较高的密度和能量,是目前高能量 密度材料重要研究方向之一[5-6]。3-肼基-6-(3,5-二 甲基吡唑)-s-四嗪可以发生成环反应形成稠环类四嗪含 能化合物^[7],如 s-四嗪并三唑的衍生物 1,2,4-三唑[4, 3-b]并 s-四嗪(TTZ)、6-氨基-1,2,4-三唑[4,3-b]并 s-四嗪(ATZ)和3,6-二氨基-1,2,4-三唑[4,3-b]并 s-四 嗪(AATZ)。其后,研究者合成了许多稠环类四嗪衍生 物[8-14],但有关该类化合物的研究大多集中在该类物质

收稿日期:2016-09-23;修回日期:2016-12-16 基金项目:国家自然科学基金项目(21673179)资助 作者简介:张驰(1990-),男,硕士,主要从事含能材料理论研究。 e-mail:243250303@qq.com 通信联系人:马海霞(1974-),女,教授,主要从事新型功能材料的设计

及开发、热化学、量子化学研究。e-mail: mahx@ nwu.edu.cn

的制备及机理方面的研究,而有关性能研究相对较少。

基于此,本研究选取了一系列五元氮杂环与母体 1,2,4,5-四嗪连接组成稠环化合物,设计了 14 种 1,2,4,5-四嗪衍生物,在wB97/6-31+G**水平下获 得此类化合物的稳定构型,在此基础上计算了其生成 焓及爆轰性能,从理论上研究五元氮杂环作为取代基 构成的稠环化合物对1,2,4,5-四嗪的影响,考察性能 与结构之间的对应关系。

2 计算方法

运用 DFT 方法,在 B3LYP/(6-31G*,6-311G*, 6-31+G*,6-31G**,6-311G**,6-31+G**,6-311++G**, cc-pVDZ,cc-pVTZ)水平下计算分析 1,2,4,5-四嗪,3,6-二 氨基-1,2,4,5-四嗪(DAT)、3,6-二肼基-1,2,4,5-四嗪 (DHT)和 3,6-二叠氮基-1,2,4,5-四嗪(DIAT)4种化 合物的生成焓,通过与实验值^[15]进行对比拟合,在 B3LYP/6-31+G**水平下计算的结果与实验值线性相 关性最好,达到 0.9863,因此选择基组 6-31+G**和 不同方法(B3PW91,M05,M05-2X,M06,M06-2X,wB97) 组合计算上述4种化合物生成焓,通过与实验值进行对比 拟合,在 wB97/6-31+G**水平下计算的结果与实验值线性 相关性最好,达到 0.9896,因此在 wB97/6-31+G**水平下 对所设计的 14种 1,2,4,5-四嗪衍生物的几何结构进 行全优化,经振动频率分析表明优化构型为势能面上 极小点(无虚频),得到的热力学数据采用原子化方案 (atomization scheme)^[16-20] 预测目标化合物的标准 生成焓。具体方法是将分子分解为原子:

 $C_{a}H_{b}O_{c}N_{d}(g) \rightarrow aC(g) + bH(g) + cO(g) + dN(g)(1)$ 则该反应在 298K 时的标准反应焓 ΔH_{298} 由下式计算: $\Delta H_{298} = \Sigma \Delta H_{f,P} - \Sigma \Delta H_{f,R}$

= $a\Delta H_{f,C}$ + $b\Delta H_{f,H}$ + $c\Delta H_{f,O}$ + $d\Delta H_{f,N}$ - $\Delta H_{f,C_{a}H_{b}O_{c}N_{d}}$ (2) 式中, $\Delta H_{f,R}$ 和 $\Delta H_{f,P}$ 分别表示反应物和生成物在298 K 的标 准 生 成 焓, kJ · mol⁻¹; $\Delta H_{f,C}$ 、 $\Delta H_{f,H}$ 、 $\Delta H_{f,O}$ 和 $\Delta H_{f,N}$ 分别为原子 C、H、O 和 N 在 298 K 的标准生成 焓,可从手册^[21]中查得; $\Delta H_{f,C_{a}H_{b}O_{c}N_{d}}$ 为分子 C_aH_bO_cN_d 在 298 K 的标准生成焓,为待求项。同时存在下列关 系式:

$$\Delta H_{298} = \Delta E_{298} + \Delta (pV)$$

= $\Delta E_0 + \Delta E_{ZPE} + \Delta E_T + \Delta nRT$
= $E_{0,C} + E_{0,H} + E_{0,O} + E_{0,N} - E_{0,C_aH_bO_cN_d} - E_{ZPE,C_aH_bO_cN_d} - \Delta E_{T,C_aH_bO_cN_d} + \Delta nRT$

式中, $E_{0,C}$ 、 $E_{0,H}$ 、 $E_{0,O}$ 、 $E_{0,N}$ 和 $E_{0,C_aH_bO_cN_d}$ 分别为wB97/6-31+G^{**} 水平下计算得到的原子 C、H、O、N和分子 C_aH_bO_cN_d在 0 K的总能量, a. u.; $E_{ZPE,C_aH_bO_cN_d}$ 和 $\Delta E_{T,C_aH_bO_cN_d}$ 分别为分 子 C_aH_bO_cN_d 的零点能和热校正值, a. u.,可从振动 分析获得的热力学数据得到,对原子而言, E_{ZPE} 和 ΔE_{T} 项均为 0; Δn 表示气体产物和反应物的物质的量之

表 1 $C_a H_b O_c N_d$ 中的参数 N M 和 Q的计算方法

差,mol; *R* 是气体常数,8.314 J·mol⁻¹·K⁻¹; *T*表示 绝对温度,K。综合上式,化合物 $C_aH_bO_cN_d$ 在 298 K 的标准生成焓 $\Delta H_{f,C_aH_bO_cN_d}$ 即可求得。

运用半经验 K-J 方程^[22-25]估算其爆速(D)、爆压(p)值:

$D = \Phi^{0.5} (1.011 + 1.312\rho)$	(4)
$p=1.558 \Phi \rho^2$	(5)
其中 $\Phi = NM^{0.5}Q^{0.5}$	(6)

式中,p为爆压,GPa; D为爆速,km · s⁻¹; ρ 为密度, g · cm⁻³; ϕ 为炸药的特性值,N 为每克炸药气体爆轰产 物摩尔数,mol · g⁻¹; M 为气体产物的平均摩尔质量, g · mol⁻¹; Q 为每克炸药的爆轰化学能,kJ · g⁻¹; 结合原 子化方案所得的生成焓,参照文献[18]的方法求得 N, M和 Q,具体方法如表 1 所示。

研究中所有化合物密度均采用摩尔体积法(ρ = *M*/*V*_m)计算得到,其中 *M* 为化合物的摩尔质量,*V*_m为化 合物的摩尔体积,是在稳定构型下,基于0.001 e・bohr⁻³ 等电子密度面所包围的体积空间,用 Monte-Carlo 方 法对每一个优化的稳定构型进行了 100 次单点计算 取其平均值求得。所有计算使用 Gaussian09^[26]量子 化学软件包在 wB97/6-31+G^{**} 水平下完成。

components of $C_a H_b O_c N_d$ parameters $c \ge 2a + \frac{b}{c}$ $\frac{b}{2} > c$ $>c \ge \frac{b}{2}$ b+2c+2d b+db+2c+2aΝ 4M4 M2M56*d*+88*c*-8*b* 4M2b+28d+32c М b+2c+2db+2c+2db+d $28.9b+47.04a+0.239\Lambda H$ 28.9*b*+94.05 57.8c+0.239 $\Delta H_{\rm f}$ $+0.239\Lambda H$ QΜ Μ

(3)

Note: *M* is the molar mass of a compound, ΔH_{f} is the calculated heat of formation

Table 1 The calculated methods of the parameters $N_{\lambda}M$ and Q of $C_{a}H_{b}O_{c}N_{d}$

3 结果与讨论

3.1 几何结构

在wB97/6-31+G**水平下对1,2,4,5-四嗪衍生物进行几何结构全优化,图1列出了其优化结构图,标注了部分优化几何参数(键长、键角)。计算结果表明,与1,2,4,5-四嗪相比四嗪环上N(1)—N(2)键长均缩短,除了T2靠近五元环一侧的N(4)—N(5)键长,其

余化合物的键长均增加,双环取代更明显;单环取代 四嗪衍生物 C(3)—N(4)键长均缩短,其他 C—N 键 长均增加,双环取代四嗪衍生物 C—N 键长均增加,且 大部分五元环的 C—N 键长小于未成五元环的;同分 异构体化合物中,五元环上 N 原子位置不同,使四嗪 环的上的键长和键角不同,但数值非常接近,因此 N 原子位置对四嗪环的键长和键角影响较小;除了衍 生物 T1 和 T12,其余化合物均不共面,说明随着 N 原 子数量的增加,稠环类四嗪衍生物的共面性反而降低。

图1 1,2,4,5-四嗪衍生物的分子优化结构图及部分键长(nm)和键角(°)

Fig. 1 Optimized molecular structures for the 1,2,4,5-tetrazine derivatives along with their selected bond lengths(nm) and bond $angles(^{\circ})$

3.2 生成焓

在 wB97/6-31+G^{**} 水平下采用原子化方案估算 稠环四嗪衍生物及传统含能材料 RDX 和 HMX 的生 成焓,表 2 列出了目标化合物的总能量(E_0)、零点能 (E_{ZPF})、N 原子数、温度校正值(H_T)及生成焓(ΔH_f)。

计算结果表明,所有1,2,4,5-四嗪衍生物生成焓 均大于传统含能材料 RDX 和 HMX,具有高正生成焓, 其中最高的生成焓值为1122.53 kJ·mol⁻¹。所有化 合物的生成焓均比未取代的1,2,4,5-四嗪生成焓高, 双环取代四嗪衍生物生成焓普遍大于相应单环取代的, 幅度为140~280 kJ·mol⁻¹。单环取代中,化合物T2 和T3,T4、T5和T6分别互为同分异构体,T2的生成焓 高于T3,T4的生成焓高于T5和T6,是因为T2中的 N—N键数量多于T3,T4中的N—N键数量多于T5和 T6,双环取代(T22、T42)和单环取代一致,结果表明, N—N键有助于增加1,2,4,5-四嗪衍生物的生成焓。

张驰,陈沫,陈湘,张聪,宋纪蓉,马海霞

表 2 均四嗪衍生物及 HMX 和 RDX 的总能量、零点能、温度校正值和生成焓

Table 2 Calculated E_0 , E_{ZPE} , H_T and ΔH_f of s-tetrazine derivatives together with HMX and RDX

compd.	formula	<i>E</i> ₀ /a.u.	E _{ZPE} /a.u.	<i>H</i> _T /a.u.	number of N	$\Delta H_{\rm f}/{\rm kJ}\cdot{\rm mol}^{-1}$
Т	$C_2 H_2 N_4$	-296.2857	0.0527	0.0051	4	527.49
T1	$C_5 H_4 N_4$	-411.8001	0.0948	0.0067	4	606.69
T2	$C_4 H_5 N_5$	-428.9880	0.1061	0.0072	5	744.06
Т3	$C_4 H_5 N_5$	-429.0181	0.1059	0.0073	5	664.85
T4	$C_3 H_4 N_6$	-445.0106	0.0939	0.0070	6	825.63
T5	$C_3 H_4 N_6$	-445.0478	0.0944	0.0070	6	729.00
T6	$C_3 H_4 N_6$	-445.0361	0.0942	0.0070	6	759.44
Τ7	$C_2 H_3 N_7$	-461.0565	0.0819	0.0069	7	846.05
T12	$C_{8}H_{6}N_{4}$	-527.2902	0.1359	0.0089	4	749.08
T22	$C_{6}H_{8}N_{6}$	-561.6995	0.1601	0.0091	6	937.70
T32	C ₆ H ₈ N ₆	-561.7508	0.1597	0.0095	6	802.88
T42	$C_4 H_6 N_8$	-593.7402	0.1358	0.0089	8	1112.41
T52	$C_4 H_6 N_8$	-593.8079	0.1358	0.0094	8	936.04
T62	$C_4 H_6 N_8$	-593.8023	0.1372	0.0087	8	952.80
T72	$C_2 H_4 N_{10}$	-625.8442	0.1119	0.0087	10	1122.53
RDX	$C_{3}H_{6}N_{6}O_{6}$	-897.3532	0.1470	0.0134	6	244.21
НМХ	$C_4 H_8 N_8 O_8$	-1196.4750	0.1972	0.0178	8	317.19

Note: E_0 is total energy, E_{ZPE} is zero point energy, H_T is correction of temperature.

选取相同 N 原子数中生成焓最大的化合物,对其 总能量(*E*₀)和生成焓(Δ*H*_i)与 N 原子数的关系作线 性拟合,由图 2 和图 3 可知,不论是单环取代还是双环 取代,随着 N 原子数的增加,分子总能量逐渐降低,且 具有很好的线性关系,生成焓则逐渐增大,表明N原 子数的增加有助于提升1,2,4,5-四嗪衍生物的生成

焓。综上所述, N-N 键及 N 原子数的增加在提升 1,2,4,5-四嗪衍生物的生成焓方面起了重要的作用。

Fig. 3 The relationship of ΔH_f and N atom numbers

3.3 前线轨道能量

分子轨道理论表明,化合物的稳定性与其分子轨 道能量有关,最高占据轨道能量(*E*_{HOMO})越低,最低空 轨道能量(E_{LUMO})越高,则其分子轨道能级差 ($\Delta E_{LUMO-HOMO} = E_{LUMO} - E_{HOMO}$)越大,化合物就越稳定。 运用量子化学的方法计算了1,2,4,5-四嗪衍生物的 E_{HOMO} 及 E_{LUMO} ,进一步分析得到 $\Delta E_{LUMO-HOMO}$,列于表 3。计算结果表明,单环取代衍生物的分子轨道能级 差与T比较均减小,双环取代衍生物除了T12和T32, 其它分子轨道能级差与T比较均增大,T62的分子轨 道能级差在所有体系中较高,使电子跃迁几率降低,预 示其反应活性最低,最稳定。

表3 目标化合物的前线轨道能量

Table 3 Calculated E_{HOMO} , E_{LUMO} 和 $\Delta E_{LUMO-HOMO}$ of the titlecompoundsa. u.

compd.	E _{HOMO}	E _{LUMO}	$\Delta E_{LUMO-HOMO}$
Т	-0.36881	-0.03200	0.33681
T1	-0.33947	-0.01807	0.32140
T2	-0.31633	0.01413	0.33046
Т3	-0.29805	0.00804	0.30609
T4	-0.32968	-0.00665	0.32303
T5	-0.33116	-0.01619	0.31497
T6	-0.32969	-0.00356	0.32613
T7	-0.34987	-0.02460	0.32527
T12	-0.31526	0.00235	0.31761
T22	-0.30943	0.05008	0.35951
T32	-0.27978	0.04773	0.32751
T42	-0.33636	0.01662	0.35298
T52	-0.31014	0.03408	0.34422
T62	-0.33228	0.03520	0.36748
T72	-0.34182	0.00303	0.34485

3.4 爆轰性能

爆速和爆压是研究爆轰性能的两个较为重要的参 数,本文在 wB97/6-31+G**水平下预测了1,2,4,5- 🔘 四嗪衍生物及 HMX 和 RDX 的爆速(D)和爆压(p), 如表4所示。无论是单环取代还是双环取代的衍生 物,D和p都是随着体系中N原子数的增加而增加; 除了单环取代的 T1、T2、T3 及双环取代的 T12、T22、 T32,其他衍生物的密度、爆速和爆压均高于未取代的 T;带有同一种环单取代和双取代,对 D 和 p 的影响 较小,且有些单环取代衍生物的 D 和 p 略偏高,如单 环取代化合物 T1、T2 和 T3 比相应双环取代的 T12、 T22、T32高,说明稠环四嗪衍生物 D 和 p 与所含 N 原 子数关系较大,与环的个数关系较小。化合物 T7 和 T72 的 D 接近于传统含能材料 RDX, p 略低于 RDX, ρ 则远远小于 RDX,从能量角度来看,提高四嗪衍生物 的密度,其爆轰性能也将提高,所以 T7 和 T72 可以作 为潜在的含能材料。

1,2,4,5-四嗪衍生物的 D 和 p 与 N 原子数的线 性拟合关系如图 4 所示,图 4a 与图 4c 为单环取代四 嗪衍生物的 D 和 p 与 N 原子数的线性关系,图4b 与 图4d 为双环取代四嗪衍生物的 D 和 p 与 N 原子数 的线性关系。从图 4 可以看出,无论是单环取代还是

compd.	$V/\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$	$M/g \cdot mol^{-1}$	ho/g·cm ⁻³	$Q/J \cdot g^{-1}$	$D/\mathrm{km} \cdot \mathrm{s}^{-1}$	p/GPa
Т	55.991	82.028	1.47	1536.917	7.36	21.08
T1	83.833	120.044	1.43	1207.885	6.11	14.29
T2	85.218	123.055	1.44	1445.135	7.09	19.33
T3	85.345	123.055	1.44	1291.291	6.90	18.27
T4	82.443	124.050	1.50	1590.697	7.74	23.64
T5	84.790	124.050	1.46	1404.525	7.37	21.05
T6	83.456	124.050	1.49	1463.172	7.54	22.37
T7	80.086	125.045	1.56	1617.066	8.22	27.40
T12	110.857	158.059	1.43	1132.677	5.59	11.94
T22	115.064	164.081	1.43	1365.851	6.90	18.21
T32	115.618	164.081	1.42	1169.473	6.61	16.62
T42	106.731	166.072	1.56	1600.912	8.05	26.25
T52	106.707	166.072	1.56	1347.092	7.71	24.08
T62	106.296	166.072	1.56	1371.211	7.74	24.30
T72	103.365	168.062	1.63	1596.343	8.65	31.24
RDX	129.53	222.04	$1.71(1.82^{[27]})$	1679.20	8.76(8.75 ^[27])	33.05(34.00 ^[27])
НМХ	162.87	296.05	$1.82(1.91^{[27]})$	1672.40	9.11(9.10 ^[27])	$37.08(39.00^{[27]})$

表 4 目标化合物及 RDX 和 HMX 的摩尔质量、平均摩尔体积、理论密度、爆热、爆速和爆压 **Table 4** Predicted *M*, *V*, ρ , *Q*, *D* and *p* of the title molecules together with RDX and HMX

Note: *M* is molar mass, *V* is average molar volume, ρ is theoretical density, *Q* is explosion heat, *D* is detonation velocity and ρ is detonation pressure.

双环取代,1,2,4,5-四嗪衍生物的 D 和 p 与 N 原子数 均有很好的线性关系,相关系数 r 分别为 0.987、 0.998(单取代 D、p)和 0.988、0.996(双取代 D、p)。

3.5 热力学性质

运用量子化学计算的方法,以分子统计热力学为 基础,计算了稠环类1,2,4,5-四嗪衍生物在200~ 800K的热力学性质,即标准摩尔热容(*C_{p,m}*)、标准摩 尔熵(*S_m*)和标准摩尔焓(*H_m*),列于表5。由表5可 以看出,*C_{p,m}、S_m及H_m均随T*的升高而增加,其中 $C_{p,m}$ 和 S_m 增大的比例均随着 T的升高而逐步减小,而 H_m 增大的比例则随着 T的升高而逐步增大。在 T 较 低时,分子的转动及平动对 $C_{p,m}$ 、 S_m 和 H_m 贡献相对较 大;但是随着温度升高到一定程度后,分子的振动增 强,对 $C_{p,m}$ 、 S_m 和 H_m 贡献大,而导致 $C_{p,m}$ 、 S_m 和 H_m 值 增加。在同一 T 下,随着 N 原子数的增加, $C_{p,m}$ 、 S_m 及 H_m 与温度之间没有线性的变化;同时,双取代环的 $C_{p,m}$ 、 S_m 和 H_m 明显大于相应的单取代环的,说明取代 环的增加有利于这些热力学函数值的增加。

表 5 目标化合物 200~800 K 时的 $C_{p,m}$ 、 S_m 和 H_m **Table 5** Calculated $C_{p,m}$, S_m and H_m at 200~800 K for the title molecules

		T1	15.	18 - 41-6		T12	
Т	$C_{p,\mathrm{m}}/\mathrm{J}\cdot\mathrm{mol}^{-1}\cdot\mathrm{K}^{-1}$	$S_{\rm m}/J \cdot {\rm mol}^{-1} \cdot {\rm K}^{-1}$	$H_{\rm m}/{\rm kJ}\cdot{\rm mol}^{-1}$	Т	$C_{p,\mathrm{m}}/\mathrm{J}\cdot\mathrm{mol}^{-1}\cdot\mathrm{K}^{-1}$	$S_{\rm m}/J \cdot {\rm mol}^{-1} \cdot {\rm K}^{-1}$	$H_{\rm m}/{\rm kJ}\cdot{\rm mol}^{-1}$
200	69.10	289.16	8.83	200	94.96	321.50	11.16
273.15	94.54	314.39	14.80	273.15	131.59	356.45	19.43
298.15	103.48	323.06	17.28	298.15	144.24	368.53	22.88
400	137.82	358.38	29.61	400	192.36	417.80	40.08
500	165.98	392.27	44.85	500	231.58	465.10	61.35
600	188.37	424.59	62.61	600	262.74	510.19	86.13
700	206.04	455.00	82.36	700	287.40	552.61	113.68
800	220.14	483.47	103.70	800	307.16	592.32	143.44
	N. N.	T2				T22	
Т	$C_{p,\mathrm{m}}/\mathrm{J}\cdot\mathrm{mol}^{-1}\cdot\mathrm{K}^{-1}$	$S_{\rm m}/{\rm J}\cdot{\rm mol^{-1}}\cdot{\rm K^{-1}}$	$H_{\rm m}/{\rm kJ}\cdot{\rm mol^{-1}}$	Т	$C_{p,\mathrm{m}}/\mathrm{J}\cdot\mathrm{mol}^{-1}\cdot\mathrm{K}^{-1}$	$S_{\rm m}/J \cdot {\rm mol^{-1}} \cdot {\rm K^{-1}}$	$H_{\rm m}/{\rm kJ}\cdot{\rm mol}^{-1}$
200	74.68	296.55	9.53	200	97.98	324.16	11.38
273.15	100.80	323.62	15.94	273.15	136.76	360.32	19.94
298.15	110.06	332.85	18.57	298.15	150.58	372.89	23.53
400	146.04	370.32	31.65	400	204.33	424.81	41.66
500	175.90	406.23	47.80	500	248.61	475.34	64.38
600	199.80	440.50	66.63	600	283.81	523.90	91.07
700	218.79	472.77	87.60	700	311.69	569.83	120.90
800	234.08	503.03	110.26	800	334.13	612.96	153.23

续表5	
Table 5	continued

Т3 Т32	
$\frac{1}{T} \qquad C_{p,m}/J \cdot \text{mol}^{-1} \cdot \text{K}^{-1} S_m/J \cdot \text{mol}^{-1} \cdot \text{K}^{-1} H_m/kJ \cdot \text{mol}^{-1} \qquad T \qquad C_{p,m}/J \cdot \text{mol}^{-1} \cdot \text{K}^{-1} S_m/J$	$mol^{-1} \cdot K^{-1} H_m/kJ \cdot mol^{-1}$
200 76.23 296.60 9.58 200 101.65 329.8	7 11.93
273.15 102.76 324.23 16.12 273.15 140.49 367.2	.0 20.76
298.15 111.99 333.63 18.80 298.15 154.21 380.0	9 24.45
400 147.61 371.62 32.06 400 207.22 432.9	42.91
500 177.07 407.84 48.35 500 250.74 484.0	65.89
600 200.67 442.29 67.28 600 285.32 532.9	92.76
700 219.44 474.68 88.32 700 312.74 579.0	122.71
800 234.55 505.00 111.05 800 334.81 622.5	3 155.13
T4 T42	
$\frac{1}{T} \qquad C_{p,m}/J \cdot \text{mol}^{-1} \cdot \text{K}^{-1} S_m/J \cdot \text{mol}^{-1} \cdot \text{K}^{-1} H_m/kJ \cdot \text{mol}^{-1} \qquad T \qquad C_{p,m}/J \cdot \text{mol}^{-1} \cdot \text{K}^{-1} S_m/J$	$mol^{-1} \cdot K^{-1} H_m/kJ \cdot mol^{-1}$
200 72.99 296.01 9.49 200 95.30 322.4	9 11.29
273.15 97.41 322.31 15.70 273.15 130.60 357.3	2 19.53
298.15 106.05 331.21 18.2 298.15 143.09 369.3	0 22.95
400 139.59 367.15 30.79 400 191.50 418.2	40.04
500 167.33 401.39 46.18 500 231.31 465.4	61.25
600 189.45 433.93 64.07 600 262.88 510.5	0 86.03
700 206.93 464.50 83.92 700 287.74 552.9	6 113.61
800 220.89 493.08 105.34 800 307.58 592.7	3 143.40
T5 T52	
$T \qquad C_{p,m}/J \cdot \text{mol}^{-1} \cdot K^{-1} S_m/J \cdot \text{mol}^{-1} \cdot K^{-1} H_m/kJ \cdot \text{mol}^{-1} \qquad T \qquad C_{p,m}/J \cdot \text{mol}^{-1} \cdot K^{-1} S_m/J$	$\mathrm{mol}^{-1} \cdot \mathrm{K}^{-1} H_{\mathrm{m}}/\mathrm{kJ} \cdot \mathrm{mol}^{-1}$
200 73.16 295.33 9.44 200 100.87 334.7	0 12.28
273.15 97.64 321.70 15.68 273.15 135.22 371.1	5 20.90
298.15 106.22 330.62 18.23 298.15 147.26 383.5	1 24.43
400 139.46 366.58 30.77 400 193.93 433.4	4 41.85
500 167.00 400.76 46.14 500 232.54 481.0	63.24
600 189.02 433.23 63.99 600 263.37 526.2	.5 88.10
700 206.47 463.73 83.79 700 287.79 568.7	5 115.70
800 220.43 492.24 105.16 800 307.36 608.5	0 145.49
T6 T62	
$T = C_{p,m}/J \cdot \text{mol}^{-1} \cdot K^{-1} = S_m/J \cdot \text{mol}^{-1} \cdot K^{-1} = H_m/kJ \cdot \text{mol}^{-1} = T = C_{p,m}/J \cdot \text{mol}^{-1} \cdot K^{-1} = S_m/J$	$\mathrm{mol}^{-1} \cdot \mathrm{K}^{-1} H_{\mathrm{m}} / \mathrm{kJ} \cdot \mathrm{mol}^{-1}$
200 73.00 296.14 9.49 200 93.30 322.4	4 11.15
273.15 97.36 322.44 15.71 273.15 127.84 356.5	19.22
298.15 105.94 331.34 18.25 298.15 140.15 368.2	.5 22.56
400 139.26 367.22 30.77 400 188.30 416.2	.9 39.34
500 166.90 401.36 46.13 500 228.31 462.7	6 60.23
600 189.00 433.83 63.97 600 260.23 507.3	2 84.73
700 206.50 464.33 83.77 700 285.46 549.4	1 112.06
800 220.49 492.85 105.15 800 305.64 588.8	9 141.65
	$m = 1^{-1} K^{-1} I I (I m = 1^{-1})$
$\frac{1}{200} = \frac{1}{70} \frac{C_{p,m}}{100} + \frac{1}{100} C_{p,$	$\frac{\text{mol} \cdot K}{11 27} = \frac{11 27}{11 27}$
200 72.12 294.07 9.36 200 93.42 323.3 272.15 05.15 210.02 15.47 272.15 125.22 257.3	3 II.37
273.13 313.32 13.47 273.13 123.33 357.13 298.15 103.12 328.59 17.95 1208.15 136.45 268.15	1 19.00 6 77.67
400 133 81 363 28 30 05 400 179 25 414	22.02 '8 38.75
500 159 11 395 95 44 74 500 214 32 458.4	0 50.75 NB 58.49
600 179.27 426.82 61.70 600 242.03 500	1 81.37
700 195.13 455.69 80.45 700 263.70 539.3	1 106.70

Note: $C_{p,m}$ is standard molar heat capacity, S_m is standard molar entropy and H_m is standard molar enthalpy.

4 结 论

利用 wB97/6-31+G**方法对稠环类1,2,4,5-四 嗪衍生物的几何结构、前线轨道能量、生成焓、爆轰性 能及热力学性质进行计算研究。

(1) 计算结果表明,双环取代四嗪衍生物生成焓 普遍大于相应单环取代的,N—N 键及 N 原子数的增 加有助于提升1,2,4,5-四嗪衍生物的生成焓。

(2) 爆轰性能结果表明, 稠环四嗪衍生物 D 和 p 主要与所含 N 原子数有关, 与环的个数关系较小, 且 D 和 p 与 N 原子数均有良好的一次线性相关关系。

(3) 热容 $C_{p,m}$ 、熵 S_m 及焓 H_m 均随着 T的升高而 增加, $C_{p,m}$ 和 S_m 增大的比例均随着 T的升高而逐步减 小,而 H_m 增大的比例则随着 T的升高而逐步增大。

(4) 化合物 T7 和 T72 的爆速接近于传统含能材料 RDX,爆压略低于 RDX,可以作为备选的 HEDM。

致谢 感谢临沂大学化学化工学院夏其英教授在 Gaussian09 计算中提供的帮助。

参考文献:

- [1] Fair H D, Walker R F. EnergeticMaterials[M]. Springer Berlin, 2014.
- [2]张兴高,朱慧,张炜,等. 高氮化合物在含能材料中的应用研究 进展[J]. 含能材料,2004,12:48-53.
 ZHANG Xing-gao, ZHU Hui, ZHANG Wei, et al. Application development of poly-nitrogen compounds in energetic materials
 [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2004, 12:48-53.
- [3] 周阳, 龙新平, 王欣, 等. 高氮含能化合物的研究新进展[J]. 含能材料, 2006, 14(4): 315-320.
 ZHOU Yang, LONG Xin-ping, WANG Xin, et al. Review on high-nitrogen energetic materials[J]. *Chinese Journal of Energetic Materials*(Hanneng Cailiao), 2006, 14(4): 315-320.
- [4] 雷永鹏, 徐松林, 阳世清. 高氮含能化合物应用研究新进展[J]. 化学推进剂与高分子材料, 2007, 5(3): 1-14.
 LEI Yong-peng, XU Song-lin, YANG Shi-qing. New research progress in application of high-nitrogen energetic compound[J]. *Chemical Propellants & Polymeric Materials*, 2007, 5(3): 1 – 14.
- [5] 霍欢,王伯周,廉鹏,等.三种含能稠环化合物合成与表征研究 [C]//第二届全国危险物质与安全应急技术研讨会论文集,成 都,2013:41-45.

HUO Huan, WANG Bo-zhou, LIAN Peng, et al. Synthesis and characterization of 3 energetic fused ring compounds [C] // Proceedings of the 2nd national seminar of hazardos materials & security emergency technology, Chengdu, 2013: 41–45.

[6] 田均均,张庆华,李金山.含能分子合成最新进展[J].含能材料, 2016,24(1):1-9.

TIAN Jun-jun, ZHANG Ling-hua, LI Jin-shan. Recent advances in energetic molecule synthesis[J]. *Chinese Journal of Energetic*

Materials(Hanneng Cailiao), 2016, 24(1): 1-9.

- [7] Chavez D E, Hiskey M A. Synthesis of the bi-heterocyclic parent ring system 1,2,4-triazolo[4,3-b][1,2,4,5] tetrazine and some 3,6-disubstituted derivatives[J]. *Journal of Heterocyclic Chemistry*, 1998, 35(6): 1329–1332.
- [8] Palysaeva N V, Kumpan K P, Struchkova M I, et al. A direct approach to a 6-hetarylamino[1,2,4]triazolo[4,3-b][1,2,4,5] tetrazine library[J]. Organic Letters, 2014, 16: 406–409.
- [9] Tolshchina S G, VyakhirevaA G, Ignatenko N K, et al. Cyclization of (1,2,4,5-tetrazin-3-yl) hydrazones to 3,7-dihydro-1,2, 4-triazolo[4,3-b]-1,2,4,5-tetrazines [J]. Russian Chemical Bulletin(International Edition), 2009, 58(6): 1281–1290.
- [10] Myers T W, Bjorgaard J A, Brown K E, et al. Energetic chromophores: low-energy laser initiation in explosive Fe(II) tetrazine complexes [J]. *Journal of the American Chemical Society*, 2016, 138: 4685–4692.
- [11] Sheremetev A B, Palysaeva N V, Suponitskii K Y, et al. Synthesis of [1,2,4] triazolo [4,3-b]-s-tetrazines with incorporated furazan ring [J]. Russian Chemical Bulletin (International Edition), 2012, 61(1): 121–130.
- [12] Novák Z, Csámpai A, Kotschy A. Synthesis and alkylation of some [1,2,4] triazolo [4,3-b] tetrazines [J]. Arkivoc, 2000 (iii): 259-265.
- [13] Rudakov G F, Borodavina A D, Efimova P A, et al. Synthesis of energetic materials based on 1,2,4-triazolo[4,3-b]-1,2,4,5tetrazine[C] // 10th International Autumn Seminar on Propellants, Explosives & Pyrotechnics, Chengdu, 2013.
- [14] Ganebnykh I N, Tolshchina S G, Ishmetova R I, et al. Unusual expansion of the 1,2,4,5-tetrazine ring in [1,2,4]triazolo[4,3-b]-[1,2,4,5] tetrazines leading to [1,2,4,6] tetrazepine systems[J]. European Journal of Organic Chemistry, 2011, 2011 (12): 2309–2318.
- [15] WEI Tao, ZHU Wei-hua, ZHANG Xiao-wen, et al. Molecular design of 1,2,4,5-tetrazine-based high-energy materials [J]. J Phy Chem A, 2009, 113: 9404–9412.
- [16] 邱丽美,贡雪东,郑剑,等.由原子化反应法求算高能化合物的 生成热[J].含能材料,2008,16(6):647-668.
 QIU Li-mei, GONG Xue-dong, ZHENG Jian, et al. Heats of formation for energetic compounds calculated using atomization reactions [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2008, 16(6): 647-668.
- [17] ZHOU Yang, LONG Xin-ping, SHU Yuan-jie. Theoretical studies on the heats of formation, densities, and detonation properties of substituted s-tetrazine compounds[J]. *Journal of Molecular Modeling*, 2010, 16: 1021–1027.
- [18] PAN Yong, ZHU Wei-hua, XIAO He-ming. Theoretical studies on the structures, heats of formation, energetic properties and pyrolysis mechanisms of nitrogen-rich difurazano [3,4-b:3',4'-e] piperazine derivatives and their analogues[J]. *Structural Chemistry*, 2013, 24: 1071–1087.
- [19] WANG Fang, WANG Gui-xiang, DU Hong-chen, et al. Theoretical Studies on the Heats of Formation, Detonation properties, and pyrolysis mechanisms of energetic cyclic nitramines [J]. *Journal of Physical Chemistry A*, 2011, 115: 13858–13864.
- [20] LI Xiao-hong, ZHANG Rui-zhou, ZHANG Xian-zhou. Theoretical studies of 1, 2, 4, 5-tetrazine-based energetic nitrogen-rich compounds[J]. Structural Chemistry, 2013, 24: 393-400.
- [21] David R L. CRC Handbook of Chemistry and Physics[M], LLC: CRC Press, 2005: 5-1,2.

含能材料

- [22] Kamlet M J, Jacobs S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives[J]. Journal of Chemical Physics, 1968, 48(1): 23-25.
- [23] 王桂香,肖鹤鸣,居学海,等.含能材料的密度、爆速、爆压和静 电感度的理论研究[J].化学学报,2007,65(6):517-524. WANG Gui-xiang, XIAO He-ming, JU Xue-hai, et al. Theoretical studies on densities, detonation velocities and pressures and electric spark sensitivities of energetic materials[J]. Acta Chimica Sinica, 2007, 65(6): 517-524.
- [24] 李志敏, 严英俊, 冀慧莹, 等. 苦味酸含能离子盐的结构、生成热 及爆炸性能理论研究[J].火炸药学报,2009,32(6):6-10. LI Zhi-min, YAN Ying-jun, JI Hui-ying, et al. Theoretical study

on structure, heat of formation and detonation properties of picrate-based energetic ionic salts[J]. Chinese Journal of Explosives & Propellants, 2009, 32(6): 6-10.

[25] 张熙和, 云主慧. 爆炸化学[M]. 北京: 国防工业出版社, 1989: 222-241.

ZHANG Xi-he, YUN Zhu-hui. Explosion chemistry [M]. Beijing: National Defence Industry Press, 1989: 222-241.

- [26] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A.02[CP]. Gaussian, Inc.: Wallingford, CT, 2009.
- [27] Talawar M B, Sivabalan B, Mukundan T, et al. Environmentally compatible next generation of 'green' energetic materials (GEMs) [J]. Journal of Hazardous Materials, 2009, 161(2-3): 589 - 607.

Theoretial Study on Structure and Properties of Polycyclic Derivatives of 1, 2, 4, 5-Tetrazine Based High Energy **Density Materials**

ZHANG Chi¹, CHEN Mo¹, CHEN Xiang¹, ZHANG Cong¹, SONG Ji-rong^{1,2}, MA Hai-xia¹

(1. School of Chemical Engineering, Northwest University, Xi'an 710069, China; 2. Conservation Technology Department, the Palace Museum, Beijing 100080. China)

Abstract: The geometrical structures, front orbital energies and enthalpies of formation (ΔH_f) of 14 kinds of 1,2,4,5-tetrazine polycyclic ring derivatives were studied using density functional theory (DFT) and wB97/6-31+G** basis set level. The detonation performances of these derivatives were estimated by Kamlet-Jacobs equation. The thermodynamic properties of these compounds at different temperatures from 200K to 800K were obtained by statistic thermodynamics. The detonation properties and heat of formation of these 1, 2, 4, 5-tetrazine derivatives were also compared. Results show that the detonation velocity (D) and detonation pressure (p) have good linear correlation with the numbers of nitrogen, and their ΔH_i are between 527.49 kJ \cdot mol⁻¹ and 1122.53 kJ \cdot mol⁻¹ and the detonation velocities are between 5.59 and 8.65 km \cdot s⁻¹. The values of the standard heat capacity $(C_{n,m})$, standard molar entropy (S_m) and the standard enthalpy (H_m) gradually increase with the temperature. The compounds $T7(C_2N_7H_2)$ and $T72(C_2N_{10}H_2)$ may be considered as potential candidates for energetic materials.

Key words: density functional theory (DFT); 1,2,4,5-tetrazine derivatives; enthalpies of formation; detonation performance; www.energetic-materials.org.cn 各能材料 thermodynamic properties

CLC number: TJ55; O64

DOI: 10.11943/j.issn.1006-9941.2017.04.002