文章编号:1006-9941(2018)05-0404-06

4-硝基吡唑的一锅两步法合成及其晶体结构

李永祥,党 鑫,曹端林,柴笑笑 (中北大学化工与环境学院,山西太原 030051)

大きには15.0rg.cn 当基吡唑/ 摘 要: 以吡唑为原料,在 98%发烟硝酸/20%发烟硫酸体系下通过一锅两步法合成了 4-硝基吡唑(4-NP),采用红外光谱、核磁共振 波谱、高分辨质谱、元素分析等手段对目标产物进行了结构表征。用 X-射线单晶衍射仪测定了其单晶结构。研究了物料比、反应温度、 反应时间对产品收率的影响。结果表明,较佳的合成工艺为: n(发烟硝酸) : n(发烟硫酸): n(浓硫酸): n(吡唑) = 1.5:3:2.1:1, 反应温度为 50 ℃,反应时间 1.5 h,收率最高为 85%。4-NP 的单晶结构属于三斜晶系,空间群为 P-1, 晶胞参数为 a=8.0329(11) Å, b=9.6305(8) Å, c=9.9036(8) Å, $\alpha=74.393(7)^{\circ}$, $\beta=81.560(9)^{\circ}$, $\gamma=83.196(9)^{\circ}$, V=727.40(13) Å³, Z=6, $\rho=1.549$ mg \cdot mm⁻³, $\mu = 0.132 \text{ mm}^{-1}$, $F(000) = 348_{\odot}$

关键词: 4-硝基吡唑; 一锅两步法; 硝化; 晶体结构 中图分类号: TJ55; O62 文献标志码: A

DOI: 10.11943/j.issn.1006-9941.2018.05.005

1 引 言

硝基吡唑类化合物是一种典型的五元氮杂环化合 物,其结构中含有大量的碳氮键和氮氮键,具有高能 量、高密度、低感度等特性,已成为含能材料领域的研 究热点^[1]。4-硝基吡唑是医药、农药中间体,也是合成 硝基吡唑类含能化合物的重要中间体,其继续进行 C-硝化比较困难,经过 N-硝化可合成 1,4-二硝基吡 唑,重排可得到3,4-二硝基吡唑和3,5-二硝基吡唑, 进一步硝化可得到 3,4,5-三硝基吡唑^[2-5]。经过其他 取代反应还可获得更多硝基吡唑类衍生物[6]。

Huttel^[7]等以 N-硝基吡唑为原料在浓硫酸中于 90 ℃重排 24 h 得到了 4-硝基吡唑。Rao^[8] 以 N-硝基 吡唑在浓硫酸中室温下重排 20 h 得到 4-硝基吡唑。 Ravi 等^[9-10]以 4-碘代吡唑为原料, 八面沸石或二氧化 硅为固体催化剂在四氢呋喃溶液中以发烟硝酸为硝化 剂制备了 4-硝基吡唑。直接硝化吡唑制备 4-硝基吡 唑的报道^[11-12]是在硝硫混酸 90 ℃下反应 6 h 得到, 但此方法得率只有56%。经过重排或间接硝化吡唑 制备4-硝基吡唑的反应存在原料成本高、反应时间 长、反应温度较高等不足,且4-硝基吡唑的晶体结构

收稿日期: 2017-09-22; 修回日期: 2017-11-17

数据也未见文献报道。

本研究以吡唑为原料,首次采用一锅两步法,首先 将吡唑与浓硫酸反应形成吡唑硫酸盐,再以98%发烟 硝酸/20%发烟硫酸为硝化剂直接硝化得到了 4-硝基 吡唑,并对其工艺进行优化。采用溶剂蒸发法制备了 4-硝基吡唑的单晶,测定了其晶体结构,获得了晶体空 间群、晶体参数等信息。

2 实验部分

2.1 试剂与仪器

〇,"试剂:吡唑(纯度 99%),武进康达化工有限公 司;20%发烟硫酸,北京市李遂化工厂;浓硫酸(w= 98%)、发烟硝酸(w=98%),天津市化学试剂三厂: 乙醚、己烷,均为分析纯,天津市北辰方正试剂厂。

仪器: X-4 型数字显示熔点测定仪,北京泰克仪 器有限公司; FTIR-7600S 红外光谱仪, 天津分析仪器 厂: P230 型高效液相色谱仪,大连伊利特分析仪器 厂; Bruker 400 MPa 核磁共振仪,德国 Bruker 公司; Elementar Vario MICRO CUBE 型元素分析仪,德国 elementar 公司; Micromass GCT 高分辨 El 质谱仪, 美国 Waters 公司; Gemini E 单晶衍射仪, 安捷伦科技 有限公司。

2.2 合成路线

合成路线如 Scheme 1 所示。

作者简介:李永祥(1964-),男,教授,主要从事含能材料的合成与应用 研究。e-mail: liyongxiang@nuc.edu.cn

Scheme 1 Synthesis route of 4-nitropyrazole

2.3 合成方法步骤与表征

(1) 硝硫混酸的配制

量取 19.3 mL (0.30 mol) 20%发烟硫酸加入到 100 mL 的四口瓶中,冰水浴下边搅拌边用滴液漏斗将 6.3 mL(0.15 mol)发烟硝酸缓慢加入四口瓶中,控制 温度在 0~10 ℃。

(2)4-硝基吡唑的制备

第一步:室温下,向装有搅拌器和温度计的 100 mL 四口瓶中依次加入 11 mL(0.21 mol)浓硫酸和 6.8 g(0.1 mol)吡唑,加料完成后室温搅拌 30 min。

第二步:冰水浴下将 25 mL 硝硫混酸逐滴加入四 口瓶中,滴加完毕后升温至 50 ℃,反应 1.5 h。将反 应液倒入 200 mL 的冰水中,有大量白色固体析出。 经抽滤、冰水洗涤后真空干燥。用乙醚/己烷重结晶得 产物 4-硝基吡唑,收率 85%, m. p: 163-164 ℃,纯 度: 99.8%(HPCL); ¹H NMR (DMSO- d_6 ,400 MHz) δ : 8.292 (s, 5C—H), 8.808 (s, 3C—H), 13.924 (s, N—H); ¹³C NMR (DMSO- d_6 ,400 MHz) δ : 129.83 (3C, 5C), 135.84 (4C); IR(KBr, ν /cm⁻¹): 3186 (N—H), 1538, 1346 cm⁻¹(C—NO₂); HRMS calcd for C₃H₃N₃O₂Na 136.0123, C₃H₂N₃O₂Na₂ 157.9931, found 136.0120, 157.9938; 元素分析 (C₃H₃N₃O₂,%), 实测值: C 31.78, H 2.71, N 37.09; 计算值: C 31.85, H 2.68, N 37.17。

2.4 4-硝基吡唑单晶培养和晶体结构的测定

50 ℃下,将 4-硝基吡唑溶于乙酸乙酯中,过滤后 溶液置于干净的烧杯中,于室温(20~25 ℃)下静置缓 慢蒸发溶剂,30 天后得到白色透明块状单晶。选取尺 寸为 0.65 mm×0.45 mm×0.03 mm 的单晶,用单晶 衍射仪进行结构分析,结果表明 4-硝基吡唑的分子结 构比较规整,属三斜晶系 *P*-1 空间群。

3 结果与讨论

3.1 4-硝基吡唑合成工艺优化

3.1.1 发烟硝酸与吡唑摩尔比对产物收率的影响

在 n(发烟硫酸):n(浓硫酸):n(吡唑)=3:2.1:1,

反应温度 50 ℃,反应时间 1 h 的条件下,考察了发烟 硝酸与吡唑的摩尔比对产物收率的影响,结果如图 1 所示。从图 1 中可以看出,4-硝基吡唑的收率随着发 烟硝酸用量的增加先增加后基本不变,当 n(发烟硝 酸):n(吡唑)=1.5:1时,收率最大为 85%。在反 应前期硝酸起主要硝化作用,发烟硫酸一方面吸收硝 化生成的水,保持硝化体系的浓度,一方面起催化作用 促使硝酸转变为硝酰阳离子 NO²⁺。增加硝酸用量, 相当于提高硝酸的浓度,增加 NO²⁺的转化率,由于 NO²⁺的浓度增大硝化反应速度加快,产物收率增加。 根据硝化理论,在硫酸浓度为 90%以上时,硝酸的转 化率已达 100%,进一步增加硝化剂用量硫酸浓度稍 有增加,而将生成物转为其质子加成产物,这样硝化反 应的总值稍有减少。

图 1 发烟硝酸与吡唑摩尔比对产物收率的影响 Fig. 1 Effect of molar ratio of fuming nitric acid and parazole on the yield of product

3.1.2 反应温度对产物收率的影响

在料比 n(发烟硝酸): n(发烟硫酸): n(浓硫酸): n(浓硫酸): n(吡唑) = 1.5:3:2.1:1,反应时间1h的条件下,考察反应温度对产物收率的影响,结果如图2 所示。由图2可见,反应温度对产物收率的影响较大。随着温度的升高,4-硝基吡唑的收率呈现出先增加后

图 2 反应温度对产物收率的影响

Fig. 2 Effect of temperature on the yield of product

减小的趋势,50 ℃时,收率最大为85%。随着温度的 继续升高,收率显著下降。根据Arrhenius 方程^[13],反 应温度的升高使得反应速度剧烈增大。当温度升高 时,硫酸粘度降低,分子动能增加,碰撞次数也增加; 同时,温度升高也使具有较高能量的活化分子数增多, 这些都促进了硝化反应的进行,从而促使产物的收率 增大。但是硝化温度只能提高一定的程度,因为4-硝 基吡唑在强酸体系下随着温度升高会发生部分分解, 这是引起4-硝基吡唑收率降低的主要原因。

3.1.3 反应时间对产物收率的影响

406

在料比 n(发烟硝酸): n(发烟硫酸): n(浓硫酸): n(浓硫酸): n(吡唑) = 1.5:3:2.1:1,反应温度 50 ℃ 的的条件下,探究反应时间对 4-硝基吡唑收率的影响,实验结果如图 3 所示。由图 3 可见,随着反应时间的延长,4-硝基吡唑的收率也随之增大,当反应时间为 1.5 h 时,收率达到最大值 85%,继续延长反应时间,反应体系水的增加导致硝化体系的硝化能力减弱,产物收率稍有下降。

图 3 反应时间对产物收率的影响

Fig. 3 Effect of reaction time on the yield of product

3.2 4-硝基吡唑的晶体结构分析

4-硝基吡唑的晶体结构数据见表 1,分子结构及 晶胞堆积图分别见图 4 和图 5,原子坐标和等效温度 因子、键长、键角和扭角数据分别见表 2~表 5。

由图 5 和表 3 可知,该化合物中,吡唑环上的 C(1)—C(2)、 C(2)—C(3)的键长分别为: 1.3870,1.3820 Å,介于 C—C 单、双键键长之间(1.5400,1.1340 Å), C(3)—N(2)、N(1)—C(1)的键长分别为: 1.3290, 1.3240 Å,介于 C—N 单、双键键长(1.4700,1.2700 Å) 之间,N(2)—N(1)的键长为: 1.3605 Å,介于 N—N 单、双键键长(1.4500,1.2500 Å),表明,吡唑环产生了 共轭效应。C(2)—N(3)的键长为 1.4240 Å,介于 C—N 单、双键键长之间,说明吡唑环与环外硝基的 N(3)原子形成了共轭。使得 4-硝基吡唑化合物的 稳定性增强。且在该分子结构中,C(2)—N(3)的 键长最长,可预知在热分解中 C(2)位所连的硝基 最先离去。

图 4 4-硝基吡唑的分子结构图

Fig. 4 Molecular structure of 4-nitropyrazole

图 5 4-硝基吡唑的晶胞堆积图

Fig. 5 The crystal packing of 4-nitropyrazole

表 1 4-硝基吡唑晶体结构数据

 Table 1
 Crystal structural data of 4-nitropyrazole

item	value	
empiric formula	$C_3H_3N_3O_2$	
formula mass	113.08	
temperature/K	100.8	
crystal system	triclinic	
space-group	<i>P</i> -1	
a/Å	8.0329(11)	
b/Å	9.6305(8)	
c/Å	9.9036(8)	
α/(°)	74.393(7)	
β/(°)	81.560(9)	
$\gamma/(\circ)$	83.196(9)	
V/Å ³	727.40(13)	
Ζ	6	
$ ho/{ m mg}\cdot{ m mm}^{-3}$	1.549	
$\mu/{ m mm}^{-1}$	0.132	
<i>F</i> (000)	348	

表 2 4-硝基吡唑的原子坐标和等效温度因子

Table 2 Atomic coordinates and isotropic thermal parametersof 4-nitropyrazole

atom	x/a	y/b	z/c	$U/\text{\AA}^2$
N(4)	1.3402(18)	-0.5403(15)	0.4404(13)	
H(4)	1.2934	-0.4548	0.4093	0.0220
O(3)	1.3088(18)	-0.8772(14)	0.7997(12)	
N(7)	1.5885	-0.5091	0.1823	0.0240
O(1)	0.9321(18)	0.1675(13)	0.1348(13)	
O(4)	1.5131(18)	-0.9824(13)	0.6816(13)	e'
O(2)	0.8446(16)	0.0666(14)	0.3549(13)	N.º
N(9)	1.8851(19)	-0.3811(17)	-0.2329(14)	h
N(2)	1.2104(19)	-0.2549(15)	0.3080(13)	
H(2)	1.2489	-0.3371	0.3576	0.0240
N(8)	1.5580(18)	-0.3238(14)	0.0350(13)	
H(8)	1.4740	-0.2762	0.0713	0.0230
N(1)	1.2688(19)	-0.1936(15)	0.1713(13)	
H(1)	1.34940	-0.2301	0.1206	0.0240
N(5)	1.4683(18)	-0.6083(15)	0.3693(13)	
H(5)	1.5155	-0.5718	0.2854	0.0220
N(6)	1.4089(2)	-0.8802(15)	0.6931(14)	
O(6)	1.8790(18)	-0.2707(15)	-0.3313(12)	
N(3)	0.9389(19)	0.0692(15)	0.2444(15)	
O(5)	1.9856(17)	-0.4878(16)	-0.2348(13)	
C(8)	1.7665(2)	-0.3850(18)	-0.1100(16)	
C(3)	1.0855(2)	-0.1693(18)	0.3538(17)	
H(3)	1.0253	-0.1866	0.4436	0.0240
C(9)	1.6425(2)	-0.2771(18)	-0.0914(16)	1C
H(9)	1.6222	-0.1886	-0.1557	0.0230
C(5)	1.4052(2)	-0.7560(17)	0.5749(16)	6
C(2)	1.0622(2)	-0.0495(17)	0.2422(16)	
C(6)	1.5098(2)	-0.7393(17)	0.4490(16)	
H(6)	1.5933	-0.8069	0.4245	0.0220
C(7)	1.7509(2)	-0.4969(18)	0.0123(16)	
H(7a)	1.8181	-0.5839	0.0299	0.0240
C(4)	1.3005(2)	-0.6291(17)	0.5660(16)	
H(4a)	1.2172	-0.6098	0.6359	0.0210
C(1)	1.1800(2)	-0.0681(18)	0.1298(16)	
H(1a)	1.19410	-0.0037	0.0411	0.0240

表 3	4-硝基吡	唑的部	分化学锁	書键长	

bond	length/ Å	bond	length/ Å
N(4)-H(4)	0.8600	N(1)-H(1)	0.8600
N(4) - N(5)	1.3641(18)	N(1)-C(1)	1.3240(2)
N(4) - C(4)	1.3250(2)	N(5)-H(5)	0.8600
O(3) - N(6)	1.2337(18)	N(5)-C(6)	1.3300(2)
N(7)-H(7)	0.8600	N(6)-C(5)	1.4320(2)
N(7)-N(8)	1.3613(19)	N(3)-C(2)	1.4240(2)
N(7)-C(7)	1.3250(2)	C(8)-C(9)	1.3810(2)
O(1) - N(3)	1.2370(18)	C(8)-C(7)	1.3890(2)
O(4) - N(6)	1.2331(18)	C(3) - H(3)	0.9300
O(2) - N(3)	1.2327(17)	C(3)-C(2)	1.3820(2)
N(9) - O(6)	1.2353(19)	C(9) - H(9)	0.9300
N(9) - O(5)	1.2316(19)	C(5)-C(6)	1.3790(2)
N(9) - C(8)	1.4270(2)	C(5) - C(4)	1.3890(2)
N(2) - H(2)	0.8600	C(2)-C(1)	1.3870(2)
N(2) - N(1)	1.3605(18)	C(6) - H(6)	0.9300
N(2) - C(3)	1.3290(2)	C(7)—H(7)A	0.9300
N(8)-H(8)	0.8600	C(4) - H(4)A	0.9300
N(8)-C(9)	1.3240(2)	C(1)—H(1)A	0.9300

综合表 4 和表 5 可知,在吡唑环的骨架中: C(1)-C(2)-C(3)-N(2), C(2)-C(3)-N(2)-N(1), C(3) - N(2) - N(1) - C(1) N(2) - N(1) - C(1) - C(2)N(1)-C(1)-C(2)-C(3)的扭角分别为:-0.6°、 0.4°、-0.10°、-0.27°、0.5°,都接近0°,说明吡唑环 中的三个碳原子和两个氮原子在同一平面上。C(2) 位的硝基与吡唑环的扭角呈 $0.8^{\circ}(\varphi_{C(1)-C(2)-N(3)-O(1)})$ 和 $0.4^{\circ}(\varphi_{C(3)-C(2)-N(3)-O(2)})$, 也接近于 0°。而且,从二面角来看,C(3)—C(2)—N(3)、 ○ C(3)—C(2)—C(1)、C(1)—C(2)—N(3)的二面角分 别为: 125.64°、107.14°、127.23°, 三者之和接近于 360°,可看出硝基上的氮原子 N(3)与吡唑环在一个平 面内: $O(1) - N(3) - C(2) \cup O(2) - N(3) - O(1) \cup O(2)$ O(2)-N(3)-C(2) 的二面角分别为: 117.94°、 124.18°、117.88°, 三者之和为360°, 可见硝基中的氮原 子 N(3)和氧原子 O(1)、O(2)在一个平面内,则表 明该分子接近于平面结构。

由图 6 可看出,分子间通过氢键连接,3 个 4-硝基 吡唑分子通过氢键 N—H…N 组成一个平面。氢键增 加了 4-硝基吡唑的分子稳定性,平面的 4-硝基吡唑分 子按层状排列,层与层之间通过范德华力结合。这种 结构使分子堆积更加紧密,晶体结构更加稳定。

表4 4-硝基吡唑的键角

 Table 4
 Bond angles of 4-nitropyrazole

bond	angle/(°)	bond	angle/(°)
N(5)-N(4)-H(4)	126.00	C(9) - C(8) - N(9)	125.91(15)
C(4) - N(4) - H(4)	126.00	C(9) - C(8) - C(7)	106.82(14)
C(4) - N(4) - N(5)	108.05(13)	C(7) - C(8) - N(9)	127.27(15)
N(8) - N(7) - H(7)	126.00	N(2)-C(3)-H(3)	126.60
C(7) - N(7) - H(7)	126.00	N(2) - C(3) - C(2)	106.71(14)
C(7) - N(7) - N(8)	107.92(13)	C(2) - C(3) - H(3)	126.60
O(6) - N(9) - C(8)	117.51(15)	N(8) - C(9) - C(8)	107.03(14)
O(5) - N(9) - O(6)	124.31(14)	N(8) - C(9) - H(9)	126.50
O(5) - N(9) - C(8)	118.18(14)	C(8) - C(9) - H(9)	126.50
N(1)-N(2)-H(2)	125.00	C(6) - C(5) - N(6)	125.81(15)
C(3) - N(2) - H(2)	125.00	C(6) - C(5) - C(4)	107.17(13)
C(3) - N(2) - N(1)	110.06(13)	C(4) - C(5) - N(6)	127.00(14)
N(7) - N(8) - H(8)	124.90	C(3) - C(2) - N(3)	125.64(15)
C(9) - N(8) - N(7)	110.13(13)	C(3) - C(2) - C(1)	107.14(14)
C(9) - N(8) - H(8)	124.90	C(1) - C(2) - N(3)	127.23(15)
N(2) - N(1) - H(1)	125.90	N(5) - C(6) - C(5)	106.88(14)
C(1) - N(1) - N(2)	108.11(13)	N(5) - C(6) - H(6)	126.60
C(1) - N(1) - H(1)	125.90	C(5) - C(6) - H(6)	126.60
N(4) - N(5) - H(5)	125.00	N(7) - C(7) - C(8)	108.10(15)
C(6) - N(5) - N(4)	109.94(13)	N(7) - C(7) - H(7)A	125.90
C(6) - N(5) - H(5)	125.0	C(8) - C(7) - H(7)A	125.90
O(3) - N(6) - C(5)	117.95(14)	N(4) - C(4) - C(5)	107.96(14)
O(4) - N(6) - O(3)	124.55(14)	N(4) - C(4) - H(4)A	126.00
O(4) - N(6) - C(5)	117.50(14)	C(5) - C(4) - H(4)A	126.00
O(1) - N(3) - C(2)	117.94(14)	N(1) - C(1) - C(2)	107.98(14)
O(2) - N(3) - O(1)	124.18(14)	N(1) - C(1) - H(1)A	126.00
O(2) - N(3) - C(2)	117.88(14)	C(2) - C(1) - H(1)A	126.00

表5 4-硝基吡唑的扭角

 Table 5
 Torsion angles of 4-nitropyrazole

bond	angle/(°)	bond	angle/(°)
N(4) - N(5) - C(6) - C(5)	0.01(19)	N(5)-N(4)-C(4)-C(5)	-0.09(18)
O(3) - N(6) - C(5) - C(6)	178.52(16)	N(6) - C(5) - C(6) - N(5)	-178.40(16)
O(3) - N(6) - C(5) - C(4)	0.50(3)	N(6) - C(5) - C(4) - N(4)	178.41(16)
N(7) - N(8) - C(9) - C(8)	0.22(19)	O(6) - N(9) - C(8) - C(9)	1.30(3)
O(1) - N(3) - C(2) - C(3)	-178.78(16)	O(6) - N(9) - C(8) - C(7)	-179.80(17)
O(1) - N(3) - C(2) - C(1)	0.80(3)	N(3) - C(2) - C(1) - N(1)	-179.14(16)
O(4) - N(6) - C(5) - C(6)	-0.90(3)	O(5) - N(9) - C(8) - C(9)	-178.16(17)
O(4) - N(6) - C(5) - C(4)	-178.94(17)	O(5) - N(9) - C(8) - C(7)	0.70(3)
O(2) - N(3) - C(2) - C(3)	0.40(3)	C(3) - N(2) - N(1) - C(1)	-0.10(19)
O(2) - N(3) - C(2) - C(1)	-179.98(16)	C(3) - C(2) - C(1) - N(1)	0.50(2)
N(9) - C(8) - C(9) - N(8)	178.85(16)	C(9) - C(8) - C(7) - N(7)	0.20(2)
N(9) - C(8) - C(7) - N(7)	-178.90(16)	C(6) - C(5) - C(4) - N(4)	0.09(19)
N(2) - N(1) - C(1) - C(2)	-0.27(19)	C(7) - N(7) - N(8) - C(9)	-0.11(19)
N(2) - C(3) - C(2) - N(3)	179.09(16)	C(7) - C(8) - C(9) - N(8)	-0.20(2)
N(2) - C(3) - C(2) - C(1)	-0.60(2)	C(4) - N(4) - N(5) - C(6)	0.05 (19)
N(8) - N(7) - C(7) - C(8)	-0.05(19)	C(4) - C(5) - C(6) - N(5)	-0.06(19)
N(1)-N(2)-C(3)-C(2)	0.40(2)		

结 4 论

(1)以吡唑为原料,以发烟硝酸(90%)/发烟硫酸 (20%)为硝化剂通过一锅两步法合成了4-硝基吡唑, 较佳的合成工艺为: n(发烟硝酸): n(发烟硫酸): n(浓硫酸):n(吡唑)=1.5:3:2.1:1,反应温度 为 50 ℃,反应时间 1.5 h,此时产物收率最高为 85%。

(2)室温下培养了 4-硝基吡唑的单晶,其分子结 构比较规整,属三斜晶系 P-1 空间群,晶体参数: a= 8.0329(11) Å, b=9.6305(8) Å, c=9.9036(8) Å, $\alpha = 74.393(7)^{\circ}, \beta = 81.560(9)^{\circ}, \gamma = 83.196(9)^{\circ},$ $V = 727.40(13) \text{ Å}^3, Z = 6, \rho = 1.549 \text{ mg} \cdot \text{mm}^{-3},$ $\mu = 0.132 \text{ mm}^{-1}$, $F(000) = 348_{\circ}$

(3)单晶衍射结果表明: 吡唑环产生了共轭效应, 吡唑环与环外硝基形成了共轭,4-硝基吡唑化合物的稳 定性增强。4-硝基吡唑通过分子间氢键连接,呈现平面 结构且按层状排列,层与层之间通过范德华力结合。

参考文献:

[1] 高红旭, 赵凤起, 胡荣祖, 等. 六硝基六氮杂异伍兹烷的热分解 反应动力学参数和热安全性评估[J].火炸药学报,2013,36 $(5) \cdot 41 - 48.$

GAO Hong-xu, ZHAO Feng-qi, HU Rong-zhu, et al. Estimation of the kinetic parameters of thermal decomposition reaction and thermal safety on hexanitrohexaazaisowurtzttane [J]. Chinese Journal of Explosives & Propellants, 2013, 36(5): 41-48.

[2] 仪建红, 胡双启, 刘胜楠, 等. 硝基吡唑类衍生物的结构和爆轰 性能的理论研究[J]. 含能材料, 2010, 18(3): 252-256. YI Jian-hong, HU Shuang-qi, LIU Sheng-nan, et al. Theoretical study on structures and detonation performances for nitro derivatives of pyrazole by density functional theory[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010, 18(3): 252-256

- [3] 郭俊玲, 曹端林, 王建龙, 等. 硝基吡唑类化合物的合成研究进 展[J]. 含能材料, 2014, 22(6): 872-879. GUO Jun-ling, CAO Duan-lin, WANG Jian-long, et al. Review on synthesis of nitropyrazoles [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(6): 872-879.
- [4] 赵廷兴,李磊,董战,等. 硝基唑类含能化合物的合成研究进展 [J]. 有机化学,2014,34(2):304-315. ZHAO Ting-xing, LI Lei, DONG Zhan, et al. Research progress on the synthesis of energetic nitroazoles[J]. The Journal of Organic Chemistry, 2014, 34(2): 304-315.
- [5] Janssen J, Koeners H J, Kruse C G, et al. Pyrazoles. XII. Preparation of 3 (5)-nitropyrazoles by thermal rearrangement of N-nitropyrazoles[J]. The Journal of Organic Chemistry, 1973, 38 (10): 1777-1782.
- [6] Iaroshenko V O, Gevorgyan A, Davydova O, et al. Regioselective and guided C—H activation of 4-nitropyrazoles [J]. The Journal of organic chemistry, 2014, 79(7): 2906-2915.
- [7] Hüttel R, Büchele F. Über N-nitro-pyrazole [J]. Chemische Berichte, 1955, 88(10): 1586-1590.
- [8] Rao E N, Ravi P, Tewari S P, et al. Experimental and theoretical studies on the structure and vibrational properties of nitropyrazoles [J]. Journal of Molecular Structure, 2013, 1043: 121-131.
- [9] Ravi P, Tewari S P. Faujasite catalyzed nitrodeiodination of iodopyrazoles[J]. Catalysis Communications, 2013, 42: 35-39.
- [10] Ravi P. Experimental and DFT studies on the structure, infrared and Raman spectral properties of dinitropyrazoles[J]. Journal of Molecular Structure, 2015, 1079: 433-447.
- [11] Ek S, Latypov N V. Four syntheses of 4-amino-3, 5-dinitropyrazole[J]. Journal of Heterocyclic Chemistry, 2014, 51(6): 1621-1627.
- [12] Kurpet M K, Da browska A, Jarosz M M, et al. Coupling of C-nitro-NH-azoles with arylboronic acids. A route to N-aryl-C-nitroazoles [J]. Beilstein Journal of Organic Chemistry, 2013, 9 (1): 1517-1525.
- [13] 朱文涛. 物理化学下[M]. 北京:清华大学出版社, 1995: 210-211.

One-Pot Two Steps Synthesis of 4-Nitropyrazole and Its Crystal Structure

LI Yong-xiang, DANG Xin, CAO Duan-lin, CHAI Xiao-xiao

(School of Chemical Engineering and Environment North University of China, Taiyuan 030051, China)

Abstract: 4-Nitropyrazole(4-NP) was synthesized via a "one-pot two steps" method using pyrazole as raw material in a fuming nitric acid (w = 98%) /20% oleum system. The target product was characterized by IR spectrometry, nuclear magnetic resonance spectroscopy, high resolution mass spectrometry and elemental analysis. The single crystal structure was determined by X-ray single-crystal diffractometer The effect of material ratio, reaction temperature, and reaction time on the yield of product was studied. Results show that the best synthesis process is n(fuming nitric acid) : n(oleum) : n(concentrated sulfuric acid) : n(pyrazole) =1.5 : 3 : 2.1 : 1, reaction temperature 50 ℃, reaction time 1.5 h, the highest yield is 85%. The single crystal structure of 4-NP belongs to triclinic crystal system, its space group is P-1 with cell paramaters of a=8.0329(11) Å, b=9.6305(8) Å, c=9.9036(8) Å, $\alpha = 74.393(7)^{\circ}, \beta = 81.560(9)^{\circ}, \gamma = 83.196(9)^{\circ}, V = 727.40(13)^{\circ}, \lambda^{3}, Z = 6, \rho = 1.549 \text{ mg} \cdot \text{mm}^{-3}, \mu = 0.132 \text{ mm}^{-1}, F(000) = 348.$ Key words: 4-nitropyrazole; "one-pot two steps" method; nitrification; crystal structure

Document code: A

DOI: 10.11943/j.issn.1006-9941.2018.05.005

CLC number: TJ55; O62