文章编号:1006-9941(2020)06-0569-07

高压短脉冲作用下 HNS-Ⅳ型炸药的全发火冲击起爆判据

王万军,祝明水,郭 菲,吕军军,杨 爽,付秋菠 (中国工程物理研究院化工材料研究所,四川 绵阳 621999)

摘 要: 为了确定 Hexanitrostilbene-IV (HNS-IV)炸药在高压短脉冲作用下的全发火冲击起爆判据参数,采用 Exploding Foil Initiation system (EFIs,爆炸箔起爆系统)驱动三种厚度的聚酰亚胺飞片(12.5,40 µm和50 µm)撞击HNS-IV炸药柱,用升降法进行 发火试验,获得了三种厚度飞片对应的最小全发火充电电压,Photon Doppler Velocimetry (PDV)方法获得最小全发火充电电压下 飞片的撞击速度分别为3400,3100 m·s⁻¹和2930 m·s⁻¹。基于冲击波理论和动力学仿真,分别获得三种厚度飞片在该撞击速度下 撞击 HNS-IV型炸药的界面压力 p、界面粒子速度 u 和持续时间 τ ,通过数据拟合确定 HNS-IV型炸药在高压短脉冲作用下的全发火 冲击起爆判据参数。研究结果表明,对于装药密度为 1.56 g·cm⁻³的 HNS-IV装药,在撞击界面压力为 10~13 GPa 和持续时间为 4.0~8.7 ns 的范围内,全发火 p^{n} t判据为: $p^{2.88}\tau \ge 7.21$ 。

关键词: Hexanitrostilbene-Ⅳ(HNS-Ⅳ);EFIs;升降法;Photon Doppler Velocimetry (PDV);全发火;起爆判据参数
 中图分类号: TJ55; TJ45; O389
 文献标志码: A
 DOI:10.11943/CJEM2019234

1 引言

HNS炸药具有良好的安全性、热安定性和短脉冲 冲击起爆性能,广泛应用于冲击片雷管、激光火工品的 起爆传爆序列中^[1],研究其高压短脉冲起爆特性具有 重要意义。不同颗粒度(比表面积)、不同密度HNS炸 药的短脉冲起爆性能明显不同,有必要研究特定颗粒 度和特定密度HNS炸药的起爆判据。经典的 $p^2\tau$ 判据 (通常用作 $p^{n}\tau$),建立了界面压力p和持续时间 τ 之间 需要满足的函数关系^[2],获得了广泛应用^[3-7];Schwarz 等^[8]采用电爆炸驱动不同厚度的聚酰亚胺飞片撞击炸 药,通过数据拟合确定了对于密度为1.6 g·cm⁻³的 HNS-SF炸药,其 $p^{n}\tau$ 判据中的指数n=2.4;James^[9]从 能量角度出发,进一步提出了炸药的James冲击起爆 判据,获得了较为广泛的应用^[10-12];Bowden 等^[13]采用

收稿日期: 2019-09-05; 修回日期: 2020-02-08 网络出版日期: 2020-03-10 基金项目:国家自然科学基金资助(11872342) 作者简介:王万军(1989-),男,助理研究员,主要从事爆炸力学、 火工品设计研究。e-mail:wangwanjun@caep.cn 通信联系人:付秋菠(1977-),女,副研究员,主要从事火工品设计 制造研究。e-mail:fuqiubo@caep.cn 激光驱动金属飞片撞击炸药,对HNS在更高压力 (20~30 GPa)和更短脉冲(0.7~1.25 ns)作用下的冲击 起爆行为进行了研究,结合Schwarz^[8]的实验结果,将 pⁿ 7 判据中的 n 修正为 2.52; Tarver 等^[14]在综合了不同 粒度的 HNS冲击起爆实验数据的基础上,给出了一套 平均的 HNS炸药点火增长模型参数,用于高压短脉冲 刺激下 HNS冲击起爆过程的数值计算。国内郭俊峰 等^[1]基于 Schwarz 和 Bowden 的实验数据,重新对 pⁿ 7 判据进行了拟合,并基于数值模拟结果对国产 HNS 的 起爆判据进行了修正;此外,钱石川等^[15]基于文献中的 实验数据也对 HNS 的冲击起爆判据进行了研究。

国内外研究成果对于HNS-IV型炸药的冲击起爆 特性研究提供了借鉴,上述研究中多采用临界起爆飞 片速度来计算撞击压力和持续时间,对应地获得了临 界起爆判据,然而,实际工程应用中通常要求HNS-IV 炸药能够可靠的全部起爆,因此有必要研究HNS-IV 型炸药的全发火起爆判据,以期对冲击片雷管等火工 品的科学设计提供参考。

常用的高速飞片驱动技术有 EFIs 技术^[16]、激光驱 动飞片技术^[17]以及磁压缩驱动技术^[18]等,本研究选取 目前炸药起爆中应用最广泛的 EFIs 技术。首先开展升 降法发火试验,获得三种厚度(12.5,40 µm 和 50 µm)

引用本文:王万军,祝明水,郭菲,等.高压短脉冲作用下 HNS-IV型炸药的全发火冲击起爆判据[J].含能材料,2020,28(6):569-575. WANG Wan-jun, ZHU Ming-shui, GUO Fei, et al. Parameters of the All-fire Shock Initiation Criterion for HNS-IV Explosive Under the Impact of a Short-Duration High Pressure Pulse[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2020,28(6):569-575.

CHINESE JOURNAL OF ENERGETIC MATERIALS

聚酰亚胺飞片的最小全发火电压,采用PDV获得对应 的撞击速度;通过飞片撞击LiF窗口的界面粒子速度波 形,研究飞片在撞击瞬间的实际厚度;开展理论分析和 数值仿真,计算飞片在最小全发火条件下撞击HNS-IV 炸药的界面压力、界面粒子速度和持续时间,通过数据 拟合确定HNS-IV炸药的全发火 P^ατ起爆判据参数。

2 试验研究

2.1 最小全发火条件下的撞击速度

采用升降法确定最小全发火条件。升降法能够用 于确定炸药的最小全发火起爆条件^[19],样品示意图如图 1所示。由陶瓷塞、爆炸箔、聚酰亚胺、加速膛、HNS-IV 药柱和壳体组成。爆炸箔两端通过金属脚线外接储能 电容,电容放电时,爆炸箔中间窄桥在焦耳热沉积下转 化为高温高压产物,驱动聚酰亚胺在加速膛内径处剪 切形成飞片^[20],并在加速膛中持续加速后撞击HNS-IV 药柱将其起爆。调整充电电压进行发火试验,根据 GJB376-1987(火工品可靠性评估方法)和GJB377-1987(感度试验用升降法)计算最小全发火电压。

图1 升降法试验样品示意图

采用PDV测速技术,对三种飞片在对应最小全发 火条件下的速度-时间曲线进行测试。测速样品示意 图如图2所示,由陶瓷塞、爆炸箔、聚酰亚胺、加速膛、 光纤探头、光纤和壳体组成。测试系统如图3所示,由 测试样品、储能电容、固态开关、信号发生器、PDV测 速仪、示波器、光纤和导线等组成。信号发生器发送两 路触发信号,其中一路将固态开关闭合,爆炸箔桥区爆 发后驱动飞片加速;另一路触发信号触发示波器,开始 记录PDV测速仪发送的激光信号,对激光信号进行处 理即可获得飞片的速度-时间曲线,如图4所示。

图2 飞片撞击速度测试样品示意图

图3 PDV测速系统示意图

Fig.3 Diagram of PDV system

图4 典型的飞片速度-时间曲线

Fig.4 Typical flyer velocity history captured by PDV

三种厚度的飞片在最小全发火条件下的速度-时间曲线以及积分获得的位移-时间曲线如图 5 所示。 通过速度-时间曲线和位移-时间曲线的对比,获得三 种厚度的飞片在加速膛出口处的速度(即撞击速度)分 别为 3400,3100 m·s⁻¹和 2930 m·s⁻¹。

2.2 撞击瞬间飞片厚度

Bowden^[13]提出,飞片在加速过程中可能变薄,导 致脉冲压力的持续时间变短。对于EFIs驱动的飞片, 虽然爆炸产物的温度远高于飞片的热分解温度,但是

图5 三种厚度的飞片在最小全发火条件下的速度-时间曲线 和位移时间曲线

Fig. 5 Velocity and displacement history of three different thickness flyers under their minimum all-fire charging voltages

飞片与爆炸产物的接触时间仅为亚微秒尺度,这两方 面的竞争关系使飞片撞击炸药瞬间的厚度很难确定。 本研究将飞片撞击窗口的界面粒子速度波形与仿真结 果对比,确定飞片撞击窗口瞬间的实际厚度。

采用 PDV 测试飞片撞击 LiF 窗口的界面粒子速度,测试样品示意图如图 6 所示,由陶瓷塞、爆炸箔、聚 酰亚胺、加速膛、LiF 窗口、光纤探头、光纤和壳体组成。 LiF 窗口的上表面镀有 0.2 μm 厚的铝反射膜,作为界 面粒子速度的载体。数值计算模型如图 7 所示,计算 模型中飞片厚度为其初始厚度,飞片和 LiF 窗口均采 用 Lagarange 网格建模,设置 Lagrange/Lagrange Interaction 描述飞片和窗口的碰撞作用。聚酰亚胺和 LiF 均采用 Shock 状态方程,状态方程参数见表 1。

采用图 7 所示的计算模型,选用厚度为 40 μm 的飞 片进行网格收敛性验证。网格尺寸为 8,4,2 μm 和 1 μm 时的界面粒子速度对比见图 8。由图 8 可以看出,网 格尺寸为 2 μm 和 1 μm 时的计算结果已经非常接近,计 算结果基本收敛,下文均采用 1 μm 的网格进行计算。

界面粒子速度波形的 PDV 测试结果与仿真结果 对比见图 9。厚度为 12.5 μm 的飞片,其计算结果与 PDV 测试结果几乎完全一致,表明飞片在撞击窗口瞬

图6 界面粒子速度测试用样品示意图

Fig.6 Diagram of the sample for the measurement of interface particle velocity

图7 LiF飞片撞击LiF窗口计算模型

Fig.7 Simulation model of flyer impacting onto LiF window

表1 聚酰亚胺和LiF的Shock状态方程参数

Table 1 Para	meters of Sho	ock EOS fo	or polyimide	e and LiF
--------------	---------------	------------	--------------	-----------

			'		
material	ho / kg·m ⁻³	$C_0 / \text{km} \cdot \text{s}^{-1}$	λ	Г	
polyimide ^[14]	1414.0	2.737	1.41	0.76	
LiF ^[21]	2638.0	5.15	1.35	1.69	

Note: ρ is density, C_o, λ and \varGamma are material constants of Shock equation of state.

图8 不同网格尺寸下的界面粒子速度历程

Fig. 8 Interface particle velocity history by simulation with different mesh size

图 9 三种厚度飞片测试界面粒子速度与仿真结果对比 Fig. 9 Comparison of particle velocity history by PDV and simulation

Chinese Journal of Energetic Materials, Vol.28, No.6, 2020 (569-575)

间厚度仍为12.5 μm。对于厚度为40 μm和50 μm 的飞片,PDV测试波形的脉宽明显小于计算结果,表 明飞片在撞击窗口时厚度有所减小。将计算模型中飞 片厚度分别设置为21 μm和25 μm后,计算界面粒子 速度波形与PDV测试结果基本重合,表明厚度为 40 μm和50 μm的飞片在撞击窗口时的实际厚度减 小为21 μm和25 μm。后续将采用飞片撞击窗口时 的实际厚度计算脉宽。

3 撞击参数计算

3.1 界面粒子速度

假设飞片材料的 Hugoniot *D*-*u*关系和 HNS-Ⅳ炸 药的未反应 Hugoniot *D*-*u*关系满足线性规律,界面粒 子速度 *u*可通过求解方程(1)获得:

 $\rho_e(C_{0e} + \lambda_e u)u = \rho_p(C_{0p} + \lambda_p(u_0 - u))(u_0 - u)$ (1) 式中, $\rho_e \pi \rho_p \beta$ 别为 HNS-IV 和聚酰亚胺的初始密度, g·cm⁻³; $C_{0e} \pi C_{0p}$ 为声速, m·s⁻¹; $\lambda_e \pi \lambda_p$ 为冲击 Hugoniot *D*-u曲线的斜率; u_0 为飞片撞击速度, m·s⁻¹。聚酰 亚胺的材料参数见表 1, HNS-IV 型炸药的密度为 ρ_e = 1.56 g·cm⁻³, 未反应 Hugoniot参数通过反撞法火炮试 验确定为: C_{0e} =1396 m·s⁻¹, λ_e =2.215。计算所得界面 粒子速度 u 见表 2。

表 2 三种厚度的飞片在最小全发火条件下撞击 HNS-Ⅳ 炸药 的脉冲压力参数

Table 2 Parameters of the transimition wave in HNS-IVbooster impact by flyer with 3 different thickness

h ₀ / μm	h ₁ / μm	u ₀ ∕ km⋅s ⁻¹	u ∕ km∙s⁻¹	р / GPa	τ ₁ / μs	τ ₂ / μs	τ ₃ / μs
12.5	12.5	3.40	1.64	13.0	0.0049	0.0040	0.0038
40.0	21.0	3.10	1.51	11.2	0.0084	0.0071	0.0067
50.0	25.0	2.93	1.43	10.3	0.0103	0.0087	0.0084

Note: h_0 is initial flyer thickness, h_1 is terminal flyer thickness, u_0 is impact velocity, u is interface particle velocity, p is interface pressure, τ_1 , τ_2 and τ_3 are pulse durations calculated by the classical model, the modified model and the simulation, respectively.

3.2 界面压力

获得界面粒子速度 u后,界面压力 p 可通过式(2) 计算:

$$\rho = \rho_e \Big(C_{0e} + \lambda_e u \Big) u = \rho_p \Big(C_{0p} + \lambda_p \Big(u_0 - u \Big) \Big) \Big(u_0 - u \Big)$$
(2)

含能材料

界面压力的计算结果见表2。由表2可知,对于三 种不同厚度的飞片,其最小全发火条件下的压力幅值 相差并不大:当厚度为12.5 μm时,撞击界面压力为 13.0 GPa;当厚度为25 μm时,撞击界面压力为 10.3 GPa。虽然厚度增加了一倍,但是其界面压力仅 仅减小了20.8%,暗示从飞片动能角度考虑,理论上较 薄的飞片需要更小的动能就能够使得HNS-W炸药获 得接近100%的发火概率。

3.3 持续时间

当飞片的直径和厚度比较大时,冲击波从撞击面 传播至飞片背面并再次返回撞击面的时间非常短,可 以忽略飞片边界效应对界面压力持续时间的影响,从 而近似认为撞击过程是一维的,采用式(3)估算界面 压力的持续时间τ:

$$\tau = 2h_1/D \tag{3}$$

式中, h_1 为撞击瞬间飞片厚度, μ m;D为飞片中冲击波 相对于波前介质的传播速度, $m \cdot s^{-1}$ 。D通过式(4) 计算:

$$D = C_{0p} + \lambda_p \Big(u_0 - u \Big) \tag{4}$$

根据式(4)计算所得持续时间如表 2 中的 τ_1 所示。 式(3)假设了冲击波从飞片正面(撞击面)到飞片背面 的传播时间,与稀疏波从飞片背面返回正面的时间相 同。实际上,稀疏波返回的时间明显更小,这主要是由 于撞击瞬间,飞片正面的质点速度由 u_0 瞬间下降为 u, 而此时飞片背面尚未受到影响,速度仍为 u_0 ,因此在冲 击波从飞片正面传播至背面的时间段 h_1/D 内,背面的 运动速度始终大于正面,速度差为 u_0-u ,导致这段时 间内飞片厚度不断变薄,因此稀疏波返回时的传播距 离由 h_1 减小为 $h_1-(u_0-u)(h_1/D)$ 。假设稀疏波返回时 相对于波前介质的传播速度与冲击波相同,则界面压 力的持续时间应由式(3)修正为:

$$\tau = \frac{2h_1}{D} \left(1 - \frac{u_0 - u}{2D} \right) \tag{5}$$

根据式(5)计算所得持续时间如表 2 中的 τ_2 所示。 可以看到,修正后的持续时间 τ_2 要明显小于修正前的 τ_1 ,偏差大约为 15%~20%。为了进一步验证式(5)的 计算结果,采用 AUTODYN 对飞片撞击 HNS-IV 过程 进行数值仿真,仿真所得持续时间记为 τ_3 。可以看出, 仿真结果与式(5)的计算结果基本一致,表明在一维 冲击条件下,界面压力的持续时间由式(5)进行计算 更加准确。下文也将采用修正后的持续时间τ₂进行起 爆判据的拟合。

4 判据拟合

常用的炸药冲击起爆判据有 pⁿ τ 判据,如式(6) 所示。

$$p^n \tau \ge K \tag{6}$$

式中,p为界面压力,GPa;τ为脉冲压力的持续时间, μs;n和K为待拟合的参数。作为一种拟合式判据,该 判据认为界面压力和持续时间是起爆的决定因素,本 研究假设炸药的全发火起爆特性也是由这两个参数决 定的,因此也可以采用 pⁿτ≥K的方程形式表征其全发 火起爆特性。

结合表 2 中的数据,对式(6)中的常数 n 和 K 进行 拟合, 拟合所得 pⁿ τ 判据为: p^{2.88} τ ≥ 7.21, 拟合结果的决 定因子 R₂为 0.9988, 拟合判据与试验结果的对比如 图 10 所示。本研究拟合所得指数 n 相较文献^[8.13]中的 数值偏大,这可能是由于 HNS-IV 型炸药的全发火起 爆特性和临界起爆特性不同引起的。还需要说明,在 不同的撞击压力区间内,炸药的起爆判据也会有所不 同,因此本研究获得的全发火起爆判据,仅在其覆盖的 压力区间内适用。

图 10 起爆判据的拟合结果与试验数据的对比 Fig.10 Comparison between the fitted criterion and experimental data

5 结论

(1)通过升降法试验和PDV测速技术,获得了不同厚度飞片在最小全发火条件下的撞击速度,当飞片厚度为12.5,40 μm和50 μm时,最小全发火撞击速

含能材料 2020年 第28卷 第6期 (569-575)

574

度分别为3400,3100 m·s⁻¹和2930 m·s⁻¹;

(2)将 PDV 测试所得 LiF 窗口的界面粒子速度波 形与数值仿真结果对比,表明聚酰亚胺飞片在加速过 程中厚度可能会减小;

(3)聚酰亚胺飞片撞击 HNS-Ⅳ炸药的脉冲压力 持续时间小于 2*h*₁/*D*,需要考虑飞片在冲击波压缩后 的厚度变化进行修正;

(4)通过数据拟合,获得HNS-W炸药的全发火 p^oτ判据为:p^{2.88}τ≥7.21,该判据适用于本研究所研究的 炸药和压力范围,研究结果对于冲击片雷管等火工品 的设计具有一定的指导意义。

参考文献:

- [1] 郭俊峰,曾庆轩,李明愉,等.HNS-Ⅳ炸药的短脉冲冲击起爆 判据[J].高压物理学报,2018,32(2):1-6.
 GUO Jun-feng, ZENG Qing-xuan, LI Ming-yu, et al. Short Pulse Shock Initiation Criteria for HNS-Ⅳ Explosive [J]. *Chines Journal of High Pressure Physics*, 2018, 32(2): 1-6.
- [2] Walker F E, Wasley R J. Critical energy for shock initiation of Heterogeneous explosive[J]. Explosive Stoffe, 1969, 17(1):9.
- [3] 同红梅,奥成刚,韩克华,等.超细HNS-W炸药的窄脉冲起爆 判据研究[J].火工品,2011,(2):32-36.
 TONG Hong-mei, AO Cheng-gang, HAN Ke-hua, et al. Study on the short pulse initiation criterion of ultrafine HNS-IV explosive[J]. Initiators & Pyrotechnics, 2011, (2): 32-36.
- [4] 周之奎,卫玉章.凝聚炸药的短脉冲冲击起爆[J].爆炸与冲击, 1992,12(1):77-82.
 ZHOU Zhi-kui, WEI Yu-zhang. Short duration shock initiation of condensed explosives [J]. Explosion and Shock Waves, 1992,12(1):77-82.
- [5] 章冠人.粘弹塑性热点燃烧模型的冲击起爆理论[J].爆炸与冲击,1988,8(3):210-214.
 ZHANG Guan-ren. Theory of initiation of hot spot in heterogeneous explosive with visco-elastic-plastic and combustion model [J]. *Explosion and Shock Waves*, 1988, 8(3): 210-214.
- [6] 谷卓伟,孙承纬,苏小勇.小型激光器驱动飞片冲击引爆炸药实 验研究[J].爆炸与冲击,2002,22(1):88-91.
 GU Zhuo-wei, SUN Cheng-wei, SU Xiao-yong. Experimental research on impacting and detonating explosive by mini size laser-driven-flyer[J]. *Explosion and Shock Waves*, 2002, 22 (1):88-91.
- [7] 王桂吉,赵同虎,莫建军,等.一种以TATB/HMX为基的高聚物 粘结炸药的短脉冲冲击起爆特性[J].爆炸与冲击,2007,27
 (3):230-235.
 WANG Gui-ji, ZHAO Tong-hu, MO Jian-junet al. Short-duration pulse shock initiation characteristics of a TATB/ HMX-based polymer bonded explosive [J]. *Explosion and Shock Waves*, 2007, 27(3): 230-235.
- [8] Schwarz A C. Study of factors which influence the shock initiation senstivity of Hexanitrostilbene (HNS) [R]. Sandia National Labs, 1981.

- [9] James H R. An extension to the critical energy criterion used to predict shock initiation thresholds [J]. Propellants, Explosives, Pyrotechnics, 1996, 21:8–13.
- [10] 赵锋,孙承纬,卫玉章.非均质固体炸药的冲击引爆临界能量判据研究[J].爆炸与冲击,1993,13(1):41-48.
 ZHAO Feng, SUN Cheng-wei, WEI Yu-zhang, et al. Critical energy criterion for the shock initiation of heterogeneous explosives[J]. *Explosion and Shock Waves*, 1993, 13(1):41-48.
- [11] Wurster, S. Evaluation of the James Initiation Criterion in the 21 mm and 50 mm PMMA Gap Test[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 749–753.
- [12] Taylor T. Young. DoD MEMS fuze explosive train Evaluation & Enhancement [C]//61th Annual NDIA Fuze Conference, 2018, San Diego.
- [13] Bowden M D. Determination of critical energy criterion for Hexanitrostilbene using laser-driven flyer plates [J]. Proceedings of SPIE-The International Society for Optical Engineering, 2008, 7070: 707004-707004-7.
- [14] Tarver C M, Chidester S K. Ignition and growth modeling of short pulse shock initiation experiments on fine particle Hexanitrostilbene (HNS) [J]. *Journal of Physics: Conference Series*, 2014, 500(5): 52044-52049.
- [15] 钱石川,甘强,任志伟,等.HNS-Ⅳ炸药一维冲击起爆判据的研究[J].含能材料,2018,26(6):495-501.
 QIAN Shi-chuan, GAN Qiang, REN Zhi-wei, et al. Study on one-dimensional shock initiation criterion of HNS-Ⅳ explosive
 [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2018, 26(6): 495-501.
- [16] 耿春余. 电爆炸箔加速塑料片速度分析[J]. 含能材料, 1995, 3 (2):37-43.

Geng Chun-yu. Velocity analysis of a plastic flyer accelerated by an electrically exploded metal foil [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 1995, 3(2):37–43.

- [17] 王志昊,李勇,覃文志,等.激光驱动飞片飞行特征研究进展
 [J].含能材料,2019,27(3):255-264.
 WANG Zhi-hao, LI Yong, QIN Wen-zhi, et al. Research Progress in the Flight Characteristics of Laser-driven Flyer[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2019, 27(3):255-264.
- [18] 蔡进涛,赵锋,王桂吉,等.5 GPa内JO-9159炸药的磁驱动准等熵压缩响应特性[J].含能材料,2011,19(5):536-539.
 CAI Jin-tao, ZHAO Feng, WANG Gui-ji, et al. Response of JO-9159 under magnetically driven quasi-isentropic compression to 5 GPa[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2011,19(5):536-539.
- [19] 张天飞,蔡瑞娇,董海平,等.升降法试验下标准差σ估计的 Monte Carlo分析[J].火工品,2004,(2):43-47.
 ZHANG Tian-fei, CAI Rui-jiao, DONG Hai-ping, et al. Study on σ estimation in Up-Down sensitivity test with Monte-Carlo method[J]. Initiators & Pyrotechnics, 2004, (2):43-47.
- [20] Willey T M, Champley K, Hodgin R, et al. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers [J]. *Journal of Applied Physics*, 2016, 119(23):558–562.
- [21] Steinberg D.J. Equation of State and Strength Properties of Selected Materials[R].LLNL National Labs, 1991.

Chinese Journal of Energetic Materials, Vol.28, No.6, 2020 (569-575)

含能材料

Parameters of the All-fire Shock Initiation Criterion for HNS- \mathbb{N} Explosive Under the Impact of a Short-Duration High Pressure Pulse

WANG Wan-jun, ZHU Ming-shui, GUO Fei, LÜ Jun-jun, YANG Shuang, FU Qiu-bo

(Institute of Chemical Materials, CAEP, Mianyang 621999, China)

Abstract: The main purpose of this paper is to experimentally determine the all-fire shock initiation criterion of Hexanitrostilbene-IV (HNS-IV) explosive under the impact of a short-duration high pressure pulse. Up-down tests of three kinds of polyimide flyers with different thicknesses (12.5, 40 μ m and 50 μ m) were carried out using Exploding Foil Initiation system (EFIs) in order to determine the minimum all-fire charging voltage. Using Photon Doppler Velocimetry (PDV) technology, the impact velocity of the three flyers under their minimum all-fire conditions was obtained. On this basis, the interface pressure p, particle velocity u and duration τ of the three kind of flyers impacting onto HNS-IV explosive were calculated based on shock wave theory and dynamic simulation. Furthermore, the all-fire shock initiation criterion of HNS-IV explosive under the impact of short-duration high pressure pulse was finally determined by data fitting. Results show that the all-fire $p^n \tau$ criterion for HNS-IV with charge density of 1.56 g·cm⁻³ explosive is $p^{2.88}\tau \ge 7.21$ in the range of 10–13 GPa and 4.0–8.7 ns.

Key words: Hexanitrostilbene- $\mathbb{N}(\mathsf{HNS-N})$; EFIs; up-down method; Photon Doppler Velocimetry (PDV); all-fire; parameters of the initiation criterion

CLC number: TJ55; TJ45; O389

Document code: A

DOI: 10.11943/CJEM2019234

(责编:高 毅)