Rheological Behavior of High Solid Content Propellant Substitutes in Extrusion Process Assisted with SC-CO₂

RUAN Jian^{1,2}, XIONG Ao^{1,2}, DING Ya-jun^{1,2}, YING San-jiu^{1,2}

(1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2. Key Laboratory of Special Energy Materials (Nanjing University of Science and Technology), Ministry of Education, Nanjing 210094, China)

Abstract: In order to solve the problem of high viscosity of high solid content propellants, supercritical carbon dioxide (SC-CO₂) has been used as a plasticizer to improve its rheological behavior. The in-line viscosity of the CA/CaCO₃ solution was measured by a slit die rheometer during the extrusion process assisted with SC-CO₂, and the Power law was used to describe the rheological behavior of CA/CaCO₃ and CA/CaCO₃/SC-CO₂ solutions. Polyflow was utilized to model the dispersive mixing properties of the CA/CaCO₃/SC-CO₂ solutions. Results show that with the presence of SC-CO₂, the viscosity and pressure of the CA/CaCO₃ solution decreases significantly. And the viscosity coefficient of the CA/CaCO₃ solution at 50°C decreases by 26.00%, while its non-Newtonian index increases by approximately 16.67%. As the extrusion temperature increases, the viscosity of the CA/CaCO₃/SC-CO₂ solution is subjected to the maximum shear stress, the maximum probability density increases es by 20.63% at 50°C, which confirms that SC-CO₂ improves the dispersion mixing properties of the CA/CaCO₃ solution. **Key words:** High solid content propellant; Supercritical carbon dioxide; Rheological behavior; Dispersive mixing properties.

 CLC number:
 TJ55;
 TQ562
 Document code:
 A
 DOI:
 10.11943/CJEM2019287

1 Introduction

In recent years, reducing sensitivity without decreasing the energy of the propellant has been the main aim of research and development. Therefore, low vulnerability ammunition (LOVA) propellants were developed based on the formulation of solid-filling hexogen (RDX) and non-energetic binders^[1-2]. These types of high solid content propellants are normally produced using inefficient and potentially dangerous batch processes that are prone to produce propellants of variable quality ^[3].

Screw extrusion technology has great potential in the automated industrial production of high solid

Received Date: 2019-11-12; **Revised Date**: 2020-01-08 **Published Online**: 2020-03-10

Published Online: 2020-03-10

Biography: RUAN Jian(1994-),male,M.S,majoring in study of rheological behavior of energetic materials,e-mail:1154963679@qq.com **Corresponding author**: DING Ya-jun(1990-), male, lecturer, majoring in study of propellants, e-mail:dyj@njust.edu.cn content propellants. Its major advantages include higher production capacity, fewer operational handling steps and more uniform products. Meanwhile, the automated extrusion process can achieve human-machine isolation, thereby overcoming the harm of energetic/toxic chemicals to operators. Rheological studies of propellants in the extrusion process have been conducted, including safety and capabilities of intensive mixing, which can guide the processing of propellants and identify conditions that lead to improved propellant quality and productivity^[4–6].

However, due to the high viscosity of the high solid content propellant, there is a great potential safety hazard in the extrusion process. Meanwhile, complex rheological properties should be found to improve the processes oriented to their manufacture. Organic solvents and energetic plasticizers have been used to improve the rheology of propellants^[7]. Nevertheless, these organic solvents are often toxic, environmentally unfriendly and leave residues in the

引用本文:阮建,熊奥,丁亚军,等,SC-CO2辅助高固含量发射药代料挤出加工的流变行为[J].含能材料,2020,28(6):504-513.

RUAN Jian, XIONG Ao, DING Ya-jun, et al. Rheological Behavior of High Solid Content Propellant Substitutes in Extrusion Process Assisted with SC-CO₂[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2020,28(6):504–513.

Chinese Journal of Energetic Materials, Vol.28, No.6, 2020 (504-513)

product, which affects the performance of the final product. Besides, the addition of energy plasticizer increases processing risks. It is important to find an ideal plasticizer to improve the rheology of high solid content propellants in extrusion process.

The application of supercritical fluid (SCF) technology provides an easily removable solvent system that exhibits gas-like diffusivity, liquid-like density and low viscosity, and is suitable for extrusion process^[8]. The high diffusion rate of supercritical carbon dioxide (SC-CO₂) enables it to penetrate into the polymer matrix faster than liquid solvents, which reduces the viscosity and promotes faster transport of dissolved solutes throughout the polymer matrix^[9-11]. Lee^[12] found that SC-CO₂ had a measurable effect on the clay dispersion in the polymer matrix during the extrusion process, accordingly improving its rheology. Besides, Ding^[13-15] did a lot of work for gun propellant substitutes assisted with SC-CO₂ in extrusion processing, which proved that the addition of SC-CO₂ lowered the viscosity of propellant substitutes. Indeed, the presence of SC-CO₂ introduced into the barrel of the single-screw extruders improves the performance of the high solid content propellant extrusion process, which is feasible and has enormous potential for development.

LOVA propellants based on the use of solid filler RDX and cellulose acetate (CA) have been proposed as high- energy propellants with good safety^[1]. Moreover, RDX is a powerful explosive that is manufactured using extrusion processes that poses a significant explosive or fire hazards. Because the physical properties and surface morphology of calcium carbonate (CaCO₃) are similar to those of RDX, they are all white solids and hardly soluble in water and alcohol, so they can be well dispersed in the CA matrix^[16-17]. In addition, CaCO₃ is often used as a filler in cellulose processing^[18]. Therefore, CaCO₃ can be considered as a benign replacement for RDX when optimizing extrusion processes.

In this work, experiments were performed by using a slit die rheometer to measure the viscosity of the CA/CaCO₃ and CA/CaCO₃/SC-CO₂ solutions dur-

ing extrusion process. Computer modeling was also performed by the modeling software Polyflow to further investigate the rheological and dispersive mixing properties of high solid content propellant substitutes during extrusion. In both methods, the effects of temperature and SC-CO₂ on the dispersion mixing properties and viscosity of the solutions during extrusion process were considered. In the mixture systems, CaCO₃ was used as a solid filler, CA was used as an inert propellant binder, and SC-CO₂ was used as a plasticizer. The effects of SC-CO₂ on solution viscosity were studied. Finally, the optimal extrusion process temperature was found.

2 Experimental

2.1 Materials and Devices

CA particles were provided by Xian North Huian Chemical Industry Ltd. $CaCO_3$ (analytically pure, AR), ethanol (analytically pure, AR) and acetone (analytically pure, AR) were purchased by Sinopharm Chemical Reagent Ltd. Industrial CO_2 (purity>99.9%) was provided by Nanjing Wenda Special Gas Ltd.

The kneading machine was supplied by Jiangsu Guomao Reducer Group Ltd. The syringe pump (260D) was purchased from American Teledyne IS-CO Ltd. The single screw extruder (the length-diameter aspect ratio of the screw is 36) and the slit die rheometer were purchased from Nanjing Yizhong Machinery Ltd.

2.2 Viscosity Measurement

CA (mass fraction of 60%) and CaCO₃ (mass fraction of 40%) particles were preliminarily mixed together in an acetone/ethanol (1:1) mixed solvent for 40 minutes at 35 °C using the kneading machine. The ratio of the volume of the mixed solvent to the mass of CA/CaCO₃ was 1.20 ml \cdot g⁻¹. Then the CA/ CaCO₃ solution was fed into a single-screw extruder (screw speed of 6 r \cdot min⁻¹ to 14 r \cdot min⁻¹), while SC-CO₂ was introduced into the barrel at a constant flow rate of 0.01 mL \cdot min⁻¹. Constant injection pressure was used to maintain above 15 MPa (higher than the critical pressure of SC-CO₂), and processing temperature was used to keep above 40 °C (higher than the critical temperature of $SC-CO_2$). The shear forces generated by the screw resulted in the efficient dissolution of $SC-CO_2$ into the CA/CaCO₃ solution phase, then the pressure and the volumetric flow rate of CA/CaCO₃/SC-CO₂ mixture were measured by a slit die rheometer (Fig.1).

Fig.1 Schematic diagram of the slit die rheometer

Based on the pressure values and the volumetric flow rate, the calculation of shear viscosity of the $CA/CaCO_3/SC-CO_2$ solution was calculated by following Equation^[19].

The shear stress (τ_w) of the CA/CaCO₃/ SC-CO₂ solution on the wall of the slit die rheometer was determined from the Equation (1):

$$\tau_{\rm w} = \frac{\Delta P \cdot H}{2L} \tag{1}$$

where H (0.002 m) is the height of the slit die rheometer, L (0.130 m) is the length between the pressure transducers, and ΔP is the pressure drop between the pressure transducers, kPa.

The shear rate $(\dot{\gamma})$ of the CA/CaCO₃/SC-CO₂ solution at the wall of the slit die rheometer was evaluated using the Equation (2):

$$\dot{\gamma} = \frac{6Q}{W \cdot H^2} \left(\frac{2a+1}{3a} \right) \tag{2}$$

where Q is the volumetric flow rate, cm³·s⁻¹, W (0.020 m) is the width of the slit die rheometer, a is the power law index obtained from the slope of the linear plots between lg (τ_w) and lg ($\dot{\gamma}$) using Equation (3), (2a + 1)/3a is the Rabinowitsch correction factor, and it compensates the loss of shear rate between Newtonian fluid and shear-thinning fluid.

$$a = \frac{d\left[lg(\tau_w)\right]}{d\left[lg(6Q/WH^2)\right]}$$
(3)

Therefore, based on Equations (1-3), the actual shear viscosity (η) of the CA/CaCO₃/SC-CO₂ solution can be calculated by Equation (4):

$$\eta = \frac{\tau_{w}}{\dot{\gamma}} \tag{4}$$

Due to the ratio of W/H is 10, the measurement errors caused by the bondary effect of slit decrease to less than 5%.

3 Numerical Simulation

3.1 Control and Constitutive Equations

Polyflow provides users with the ability to analyze mixing of material^[20]. The flow field inside the material flow in the screw section was simulated by Polyflow^[21-22]. After the flow field was computed, a mixing task was executed by using the mixing module program (based on particle-tracking technology). Then, the mixing characteristic parameters inside the flow domain were analyzed using Polystat statistical module to evaluate the probability and density of the probability functions that corresponding to the maximum shear stress levels of the dispersion mixing processes respectively.

According to the theories of rheology, combining the screwing process and the viscoelastic characteristics of the propellant materials, the basic assumptions are as follows: incompressible polymer fluid is considered to be non-Newtonian properties, generating isothermal, laminar and no-slip flow conditions near the extruder walls. Ignoring the inertia and gravity components, the following control Equations (5–7) can be used to simulate flow performance^[23]:

Continuity equation:

$$\nabla \boldsymbol{V} = \boldsymbol{0} \tag{5}$$

Momentum equation:

 $\rho \,\mathrm{d} \, V / \,\mathrm{d} \, t = -\nabla \boldsymbol{p} + \nabla \tau \tag{6}$ Energy equation:

$$\rho c_{v} \,\mathrm{d} \,T/\,\mathrm{d} \,t = -\nabla \boldsymbol{q} + \tau/\nabla \boldsymbol{V} \tag{7}$$

where **V** is the volume velocity vector, ρ is the fluid density, τ is the stress tensor, **p** is the pressure, *T* is the fluid temperature, c_v is the constant volume specific heat capacity of the fluid, q is the heat flux vector, and ∇ is the differential operator.

CA/CaCO₃ and CA/CaCO₃/SC-CO₂ solutions exhibit the characteristics of pseudoplastic fluids. The Power model based on the constitutive Equation (8) is the ideal model that describes the relationship between the shear viscosity (ln η) and the shear rate (ln $\dot{\gamma}$): $\eta = K (\lambda \dot{\gamma})^{n-1}$ (8)

where η is the viscosity, k·Pas, K is the viscosity coefficient, kPa · sⁿ, λ is the relaxation time, $\dot{\gamma}$ is the shear rate, s⁻¹, and n is the non-Newtonian index.

3.2 Rheological Parameters

The rheological parameters of the propellant substitutes were obtained from the experiment of the viscosity measurements and Equation (8), shown in Table 1. These experimental datas was used as parameters to simulate dispersion mixing.

 Table 1
 Rheological parameters of the propellant substitute

solution	T / ℃	$K / \mathrm{kPa} \cdot \mathrm{s}^n$	n
CA/CaCO ₃	50	34.00	0.18
	40	37.43	0.18
	45	30.45	0.19
CA/CaCO ₃ /SC-CO ₂	50	25.16	0.21
	55	21.01	0.21
	60	16.50	0.24

3.3 Geometric Model

During extrusion process of CA/CaCO₃ solution assisted with SC-CO₂, the material flow of the screw section has an important influence on the plasticizing process between CO₂ fluid and material. Therefore, this paper mainly focuses on the numerical simulation of the material flow in the screw section. A schematic diagrams of the single-screw and fluid channel used in this paper were shown in Fig.2. The

Fig.2 Schematic diagrams of (a) single-screw and (b) flow channel

length, diameter and gap of the single-screw are 78 mm, 30 mm, 26 mm, respectively. The groove depth, outer diameter and inner diameter of fluid channel are 3 mm, 30 mm, 24 mm, respectively.

4 Results and Discussion

4.1 Rheological Behaviors of CA/CaCO₃/SC-CO₂ Solution

The in-line rheological behavior of the CA/Ca-CO₃ and CA/CaCO₃/SC-CO₂ solutions can be calculated from the above Equations (1) to (4) and data measured by the slit die rheometer. Fig. 3 shows the flow curves [In shear rate (In $\dot{\gamma}$) vs In shear viscosity (In η)] of the CA/CaCO₃ and CA/CaCO₃/SC-CO₂ solutions at 50 °C with screw speeds ranging from 6 r·min⁻¹ to 14 r·min⁻¹. It was found that the viscosity level decreased with increasing shear rate. Since In $\dot{\gamma}$ has a significant linear relationship with In η , it demonstrates that the rheological behavior of both CA/CaCO₃ and CA/CaCO₃/SC-CO₂ solutions can be described by the Power law.

Fig. 3 Rheological curves of CA/CaCO₃ and CA/CaCO₃/ SC-CO₂ solutions at 50 $^{\circ}\rm C$

The flow equations of the $CA/CaCO_3$ and $CA/CaCO_3/SC-CO_2$ solutions can be described by linear fitting Equations (9) and (10):

$$\eta = 33.998 \times (\dot{\gamma})^{-0.82} \tag{9}$$

$$\eta = 25.160 \times \left(\dot{\gamma}\right)^{-0.79} \tag{10}$$

An increase in shear rate leads to a decrease in shear viscosity, and the phenomenon known as "shear thinning". The *n* values of the CA/CaCO₃ and CA/CaCO₃/SC-CO₂ solutions are 0.18 and 0.21, respectively, and they are both well below 1, so they

can be treated as non-Newtonian pseudoplastic fluids. Compared with the CA/CaCO₃ solution, the *K* value of the CA/CaCO₃/SC-CO₂ solution decreases by 26.00%, and the *n* value increases by approximately 16.67%. This means that SC-CO₂ decreases the consistency of the CA/CaCO₃ solution, which is beneficial to the fluidity of the mixture. Moreover, the viscosity of the CA/CaCO₃/SC-CO₂ solution is significantly lower than that of the CA/CaCO₃ solution at the same shear rate.

Furthermore, pressure values and volumetric flow rates also important for the overall safety in the extrusion of high solids propellants. The pressure values and volumetric flow rates of the CA/CaCO₃/ SC-CO₂ solution can be measured by the slit die rheometer as shown in Table 2. When the screw speed is 10 $r \cdot min^{-1}$, compared with the CA solution, the pressures in the presence of SC-CO₂ decrease obviously, and volumetric flow rate increases by 20.00%. Therefore, the presence of SC-CO₂ significantly reduces the viscosity and pressure of the extruding CA/CaCO₃ solution, resulting in a higher fluidity of the mixture solution extruded at an increased volumetric flow rate. These results are consistent with the plasticizing ability of SC-CO₂, which acts as a "lubricant" to improve the swelling ability and motility of the CA molecular chains that leads to a reduction in molecular entanglement and intermolecular forces. The plasticizing effect of SC-CO₂ also promotes more effective mixing of the CaCO₃ and CA components, leading to a more uniform dispersion of the system. Consequently, it is promising to extruding high solid content propellants with the solvent of SC-CO₂.

Table 2Rheological data of CA/CaCO3 and CA/CaCO3/SC-CO2 solutions

solution	pressure transducers 1 / kPa	pressure transducers 2 / kPa	volumetric flow rate / cm ³ ·s ⁻¹
CA/CaCO ₃	10642	3200	0.10
CA/CaCO ₃ /SC-CO ₂	8540	2351	0.12

4.2 Effect of Temperature on Rheological Behaviors

Temperature has a significant impact on the rheological properties of solid propellant materials, which is of great significance to the overall safety of the extrusion process. Because the high temperature and high screw speed of the propellant can cause dangerous accidents during the extrusion process, according to the experience of screw extrusion processing of energetic materials, CA/CaCO₃ substitutes are more sensitive to the rheological property of the high solid content propellant when temperature is below 70 °C and screw speed is below 15 r·min^{-1[24]}. The effect of temperature on the extrusion properties of the high solid content propellant substitute are explored at 40 ℃, 45 ℃, 50 ℃, 55 ℃ and 60 ℃, respectively, with Fig. 4 showing the rheological curves of the CA/CaCO₃/SC-CO₂ solution at different temperatures that can be calculated from the above Equations (1) to (4) and data measured by the slit die rheometer. At the same shear rate, it was found that the shear viscosity of the CA/CaCO₃/SC-CO₂ solution decreases with increasing temperature, which is caused by the better mobility of the CA molecular chains at higher temperatures.

Fig.4 Rheological curves of CA/CaCO₃/SC-CO₂ solutions at different temperatures

The viscosity of the CA/CaCO₃/SC-CO₂ solutions at different temperatures are shown in Table 3

 Table 3
 Viscosity of CA/CaCO₃/SC-CO₂ solutions at different temperatures

screw speed	viscoity / kPa·s					
/r·mim ⁻¹	40 ℃	45 ℃	50 ℃	55 ℃	60 ℃	
6	6.53	4.64	3.88	3.32	2.77	
8	4.91	3.91	3.06	2.36	1.90	
10	4.43	3.14	2.39	1.89	1.66	
12	3.19	2.39	2.08	1.61	1.39	
14	2.68	2.11	1.81	1.47	1.27	

(Based on Fig.4). From 40 °C to 45 °C, the viscosity of the CA/CaCO₃/SC-CO₂ solution decreases by 28.94% at 6 r·min⁻¹, and decreases by 21.27% at 14 r·min⁻¹, while the smaller decreases in viscosity levels of 16.57% and 13.61% observed from 55 °C to 60 °C. These results indicate that the viscosity of the CA/CaCO₃/SC-CO₂ solution decreases more at lower speeds with the increase of temperature. Since the total time required for SC-CO₂ and CA/CaCO₃ solutions to be completely mixed decreases as the screw speed increases, a small amount of SC-CO₂ is dissolved in the CA/CaCO₃ solution, which reduces the plasticizing effect of the SC-CO₂ component.

Besides, the viscosity of the CA/CaCO₃/SC-CO₂ solution from 40 $^{\circ}$ C to 60 $^{\circ}$ C decrease by 29.12%, 23.89%, 20.92% and 12.17%, respectively, at 10 $r \cdot min^{-1}$ (same conditions as before). As the temperature increases, the effect of SC-CO₂ on the reduction in the viscosity of the CA/CaCO₃ solution becomes weaker. Due to the enhanced diffusion capacity of SC-CO₂ at higher temperatures, the dissolution in the CA/CaCO₃ solution is reduced, which results in a more uneven distribution of SC-CO₂, and the interaction between SC-CO₂ and CA/CaCO₃ phases is reduced. The viscosity of CA/CaCO₃/SC-CO₂ solution decreases obviously when the temperature rises from 40 $^{\circ}$ C to 55 $^{\circ}$ C, but the viscosity changes unobvious when the temperature is in the range of 55 $^{\circ}$ C to 65 °C. Therefore, the processing temperature is unsuitable to exceed 55 °C for CA/CaCO₃ extrusion assisted with SC-CO₂. Therefore, these results indicate that for the safe manufacture of CA/RDX-based propellants using extrusion processes, precise temperature and screw speed control may be required.

The relationship between fluid viscosity and temperature can be expressed by the Arrhenius relationship^[25] in a certain temperature ranges using Equation (11):

$$\eta = A \exp(E_{\eta}/RT) \tag{11}$$

Taking the logarithm of this formula, Equation (12) can be derived:

$$\ln\eta = \ln A + E_{\rm p}/RT \tag{12}$$

where A is the viscosity constant; R is the gas con-

stant, 8.314 $J \cdot mol^{-1} \cdot k^{-1}$; *T* is the absolute temperature, K; and E_{η} is the viscous activation energy, $kJ \cdot mol^{-1}$.

According to Equations (11) and (12), Fig.5 is obtained within a certain temperature range. Fig.5 reveals the relationship between the logarithm of the viscosity of the CA/CaCO₃/SC-CO₂ solution and the reciprocal of temperature, with $\ln \eta$ exhibiting a degree of linear relationship with 1000/T. The viscous activation energy of the CA/CaCO₃/SC-CO₂ solution at a shear rate of 4 s⁻¹ to 20 s⁻¹ are calculated as 37.87, 35.85, 34.67, 33.83 kJ · mol⁻¹ and 33.18 kJ \cdot mol⁻¹ obtained from the slope of the linear fit, respectively. These values represent the sensitivity of the polymer fluid to the processing temperature, showing that they decrease with increasing shear rate. Therefore, the shear viscosity of the CA/CaCO₃/SC-CO₂ solution at higher shear rates is less sensitive to temperature fluctuation than that at lower shear rates.

Fig.5 Effects of temperature on the rheological behaviors of CA/CaCO₃/SC-CO₂ solutions

4.3 Dispersive Mixing Properties of CA/CaCO₃ Solution in the Presence of SC-CO₂

The dispersion mixing properties have a significant influence on the viscosity distribution during extrusion processes, which is closely related to the rheological behavior of the material being extruded. Particle-tracking technology can be used to simulate the probability and density of the probability functions corresponding to the maximum shear stress level of the dispersion mixing process. In this type of experiment, the greater the proportion of tracer particles that experience high shear levels, the higher the dispersion level.

Based on the above experimental results, Polyflow was used to numerically calculate the flow of the CA/CaCO₃ and CA/CaCO₃/SC-CO₂ solutions in the screw channel. Fig.6 shows the flow field distribution of the viscosity of the CA/CaCO₃ and CA/Ca-CO₃/SC-CO₂ solutions at 50 ℃ and 10 r·min⁻¹ (the selection of conditions corresponds to the viscosity measurement experiment). Compared with CA/Ca- CO_3 solution, the maximum viscosity of $CA/CaCO_3/$ SC-CO₂ solution is reduced by 48.03%, and SC-CO₂ has a great effect on increasing the viscosity distribution of CA/CaCO₃ solution, which is consistent with the above experimental results. Fig.7 and Fig.8 show the curves of probability and probability density functions of CA/CaCO₃ and CA/CaCO₃/SC-CO₂ solutions at 50 ℃ and 10 r·min⁻¹ under maximum shear stress, respectively. Fig.7 reveals that the maximum shear stress value of the CA/CaCO₃/SC-CO₂ solution is lower than that of the CA/CaCO₃ solution, because the injection of SC-CO₂ reduces the shear stress of the CA/CaCO₃ solution during extrusion. Fig.8 reveals that the maximum probability density of the CA/ CaCO₃ and CA/CaCO₃/SC-CO₂ solutions are 0.63 and 0.76 under maximum shear stress, respectively. The results show that the maximum probability density of the CA/CaCO₃/SC-CO₂ solution under maximum shear stress is 20.63% higher than that of the corresponding CA/CaCO₃ solution. Because the plasticizing effect of SC-CO₂ improves the thermal movement of the CA molecular chains and the free volume of the CA solution, thereby promoting a more effective mixing of the CaCO₂ and CA components. Therefore, CaCO₃ particles can be better dispersed in the CA matrix, leading to more uniformly dispersed phase system. These results clearly demonstrate that the addition of SC-CO₂ can improve the overall dispersion mixing properties of the CA/CaCO₃ solution, which provide theoretical fundamentals and important reference value for the research of continuous and safe extrusion of high solid content propellant.

Fig. 6 Viscosity nephograms of CA/CaCO₃ and CA/CaCO₃/SC-CO₂ solutions at 50 $^{\circ}$ C and 10 r · min⁻¹

Fig.7 Probability functions of CA/CaCO₃ and CA/CaCO₃/ SC-CO₂ solutions at 50 $^{\circ}$ C and 10 r \cdot min⁻¹

Fig.8 Density of probability functions of CA/CaCO₃ and CA/CaCO₃/SC-CO₂ solutions at 50 $^{\circ}$ C and 10 r·min⁻¹

含能材料

4.4 Effect of Temperature on Dispersive Mixing Properties

Using Polyflow's particle-tracking technology, the effect of processing temperature on the flow of CA/CaCO₃/SC-CO₂ solution was numerically simulated. Fig. 9 shows the viscosity flow field distribution of the CA/CaCO₃/SC-CO₂ solution at different temperatures and 10 r·min⁻¹, indicating that the viscosity decreases and the viscosity distribution uniformity gradually increases with increasing temperatures. From 40 $^\circ \!\!\! C$ to 60 $^\circ \!\!\! C$, the maximum viscosity of the CA/CaCO₃/SC-CO₂ solution decrease by 37.56%, 40.36%, 17.69% and 37.27%, respectively. In spite of the maximum viscosity decreases by 37.27% from 55 $^{\circ}$ C to 60 $^{\circ}$ C, as the temperature approach 60 $^{\circ}$ C, the decrease coincided with a more uneven viscosity distribution. This may be due to the too low viscosity and pressure of the CA/CaCO₃ solution at higher temperature, so a part of the SC-CO₂ fluid will convert the CO₂ gas and form a gas flow in the CA/CaCO₃ solution, resulting in instability during extrusion process. As a result, the uniformity of the viscosity distribution is weak.

The curves of probability and probability density functions of the CA/CaCO₃ and CA/CaCO₃/ SC-CO₂ solutions at 10 r·min⁻¹ and different temperatures under maximum shear stress are shown in Fig. 10 and Fig. 11. Fig. 10 indicates that the maximum shear stress of the CA/CaCO₃/SC-CO₂ solution decreases as the temperature increases. When temperature increases from 40 $^{\circ}\mathrm{C}$ to 60 $^{\circ}\mathrm{C}$, the maximum probability density are 0.44, 0.49, 0.76, 1.34 and 1.30, increase by 11.36%, 55.10%, 76.32% and -2.99%, respectively (shown as Fig.11). These results confirm that temperature increases is favorable for the dispersive mixing of the CA/CaCO₃/ SC-CO₂ solution during the extrusion process. However, when the temperature achieves 60 $^\circ\!\!C$, the increase in the maximum probability density of the CA/ CaCO₂/SC-CO₂ solution showed a negative value under maximum shear stress, indicating a less dispersion mixing efficiency of the CA/CaCO₂/SC-CO₂ solution at this temperature. Due to the higher temperature reduces the strength of the CA/CaCO₂ solution,

Fig.9 Viscosity nephograms of CA/CaCO₃/SC-CO₂ solutions at different temperatures

Fig.10 Probability functions of CA/CaCO₃/SC-CO₂ solutions at different temperatures

Fig.11 Density of probability functions of CA/CaCO₃/SC-CO₂ solutions at different temperatures

 $SC-CO_2$ cannot be completely absorbed by the CA/ CaCO₃ solution, which causes the CA/CaCO₃/ $SC-CO_2$ mixture to crack and phase separate. Therefore, the dispersion property of CaCO₃ in the CA matrix becomes poor.

Therefore, in combination with the above results, the maximum viscosity and viscosity distribution do not change significantly from 50 °C to 55 °C, and 50 °C represents the optimal processing temperature for CA/CaCO₃ extrusion assisted with SC-CO₂. The results obtained from the numerical simulation correlate well with the experimental data, thus Polyflow can be used to predict the performance of such extrusion process.

5 Conclusions

The slit die rheometer and Polyflow modeling have been used to investigate the effect of SC-CO₂ on the rheological behavior and dispersive mixing properties of high solid content propellant substitutes in extrusion process. The following conclusions have been reached:

(1) During screw extrusion process, CA/CaCO₃ and CA/CaCO₃/SC-CO₂ solutions behave as non-Newtonian pseudoplastic fluids. With the presence of SC-CO₂, the viscosity coefficient of the CA/ CaCO₃ solution is reduced by 26.00% at 50°C. This is consistent with the role of SC-CO₂ in reducing the viscosity and pressure of the CA/CaCO₃ solution system, resulting in an increase in its overall volumetric flow rate of extrusion.

(2) Increasing the extrusion temperature causes the viscosity of the CA/CaCO₃/SC-CO₂ solution to decrease, and the beneficial effect of SC-CO₂ on the reduced viscosity levels at higher temperatures. The viscosity of the CA/CaCO₃/SC-CO₂ solution at lower shear rates is more sensitive to temperature than for high shear rates.

(3) The overall dispersion mixing properties of the CA/CaCO₃ solution in the extrusion process is significantly improved with the presence of SC-CO₂. Although the maximum viscosity of the CA/CaCO₃/ SC-CO₂ solution decreases by 37.27% from 55 °C to 60 °C, the maximum probability density under the maximum shear stress decreases 2.99%. This results in a more uneven viscosity distribution and reduced dispersion mixing properties, 50 °C was found to be the optimal processing temperature.

References:

- [1] Pillai A, Sanghavi R, Dayanandan C, et al. Ballistic evaluation of LOVA propellant in high calibre gun [J]. *Defence Science Journal*, 2001, 51(2): 147–153.
- [2] Pillai A, Sanghavi R, Khire M, et al. Process technology development for LOVA gun propellant [J]. *Indian Journal of Chemical Technology*, 2000, 7(3): 100–104.
- [3] Kowalczyk J, Malik M, Kalyon D, et al. Safety in design and manufacturing of extruders used for the continuous processing of energetic formulations [J]. *Journal of Energetic Materials*, 2007, 25(4): 247–271.
- [4] Dombe G, Mehilal, Bhongale C, et al. Application of twin screw extrusion for continuous processing of energetic materials[J]. Central European Journal of Energetic Materials, 2015, 12(3): 507–522.
- [5] Manning T, Leone J, Zebregs M, et al. Definition of a JA-2 equivalent propellant to be produced by continuous solventless extrusion [J]. *Journal of Applied Mechanics-Transactions* of the Asme, 2013, 80(3): 1–7.
- [6] Birinci E, Gevgilili H, Kalyon D, et al. Rheological characterization of nitrocellulose gels [J]. Journal of Energetic Materials, 2006, 24(3): 247-269.

- [7] Chizari M, Bayat Y. Designing a highly energetic PCL-GAP-PCL-based PU elastomer; investigation of the effect of plasticizers on its properties[J]. *Central European Journal of Energetic Materials*, 2019, 16(1): 33–48.
- [8] Poudel A, Karode N, Fitzhenry L, et al. Investigation of the thermal, mechanical, electrical and morphological properties of supercritical carbon dioxide assisted extrusion of microphase-separated poly (styrene-ethylene/butylene-styrene) [J]. *The Journal of Supercritical Fluids*, 2017, 130: 1–9.
- [9] Kravanja G, Knez Z, Hrncic M. Density, interfacial tension, and viscosity of polyethylene glycol 6000 and supercritical CO₂
 [J]. The Journal of Supercritical Fluids, 2018, 139: 72–79.
- [10] Chauvet M, Sauceau M, Fages J. Extrusion assisted by Supercritical CO₂: a review on ITS application to bioplymers [J]. *The Journal of Supercritical Fluids*, 2016, 120(2): 408-420.
- [11] Common A, Rodier E, Sauceau M, et al. Flow and mixing efficiency characterisation in a CO₂-assisted single-screw extrusion process by residence time distribution using Raman spectroscopy [J]. *Chemical Engineering Research and Design*, 2014, 92(7): 1210–1218.
- [12] Lee S, Shim D, Lee J. Rheology of PP/Clay hybrid produced by supercritical CO₂ assisted extrusion[J]. *Macromolecular Research*, 2008, 16(1): 6–14.
- [13] Ding Y, Wei R, Ying S. In-line rheological behaviors of gun propellant substitute assisted with supercritical CO₂ in extrusion processing[J]. *Propellants Explosives Pyrotech*, 2017, 42 (3): 246–251.
- [14] Ding Y, Wei R, Ying S. Numerical simulation of gun propellant substitute in die during extrusion processing assisted with SC-CO₂[J]. Science and Technology of Energetic Materials, 2017, 78(3-4): 81-85.
- [15] Ding Y, Ying S, Xiao Z, et al. Numerical simulation of gun propellant substitute in barrel during extrusion processing assisted with SC-CO₂[J]. Science and Technology of Energetic Materials, 2018, 79(5-6): 131-136.
- [16] Pillai A, Sanghavi R, Dayanandan C, et al. Studies on RDX particle size in LOVA gun propellant formulations[J]. Propellants Explosives Pyrotechnics, 2001, 26(5):226-228.
- [17] Suthabanditpong W, Takai C, Razavi-Khosroshahi H, et al. Influence of CaCO₃ pore-forming agent on porosity and thermal

conductivity of cellulose acetate materials prepared by non-solvent induced phase separation[J]. Advanced Powder Technology, 2018, 30(1): 207–213.

- [18] Cheng X, Qian H, Zhang S, et al. Preparation and characterization of Cellulose-CaCO₃ composites by an Eco-Friendly Microwave-assisted route in a mixed solution of ionic liquid and ethylene glycol[J]. *Bioresources*, 2016, 11(2): 4392–4401.
- [19] Klozinski A. The application of an extrusion modular slit head of a special construction in the in-line extensional viscosity measurements of polymers [J]. *Polymer Testing*, 2019, 73: 186-192.
- [20] Wen J, Lei S, Liang Y, et al. Numerical simulation of mixing characteristics in a vane extruder [J]. *Journal of Macromolecular Science Part B-Physics*, 2014, 53(2): 358–369.
- [21] 季丹丹,刘志涛,廖昕,等.19孔发射药挤出过程的数值模拟与模具优化[J].含能材料,2016,24(11):1114-1120.
 JI Dan-dan, LIU Zhi-tao, LIAO Xin, et al. Numerical Simulation of Extrusion Process and Die Optimization for 19-Hole Propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(11):1114-1120.
- [22] 刘林林,马忠亮,高可政,等.变燃速发射药挤出过程中药料流动计算研究[J].含能材料,2010,18(5):583-586.
 LIU Lin-lin, MA Zhong-liang, GAO Ke-zheng, et al. Computational Study of Flow for Outside Layer of Variable-burning Rate Propellant During Extrusion[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2010, 18(5): 583-586.
- [23] Wen J, Yang M, Fan D. Numerical simulation of energy consumption in the melt conveying section of eccentric rotor extruders[J]. Advances in Polymer Technology, 2018, 37(8): 3335-3347.
- [24]任务正,王泽山.火炸药理论与实践[M].北京:中国北方化学工业总公司,2001.
 RENG Wu-zheng, WANG Ze-shan. Theory and Experiment of Explosives [M]. Beijing: China North Industries Corp, 2001.
- [25] 蒙君煚,周霖,金大勇,等. DNAN/HMX熔铸炸药的流变特性
 [J]. 含能材料, 2018, 26(8): 677-685.
 MENG Jun-jiong, ZHOU Lin, JIN Da-yong, CAO Shao-ting, et al. Rheological properties of DNAN/HMX melt-cast explosives[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2018, 26(8): 677-685.

SC-CO₂辅助高固含量发射药代料挤出加工的流变行为

阮 建^{1,2}, 熊 奥^{1,2}, 丁亚军^{1,2}, 应三九^{1,2}

(1. 南京理工大学化工学院,江苏 南京 210094; 2. 南京理工大学特种能源材料教育部重点实验室,江苏 南京 210094)

摘 要: 为了改善高固含量发射药挤出加工时流变性能,采用超临界二氧化碳(SC-CO₂)作为增塑剂辅助高固含量发射药代料醋酸纤维素/碳酸钙(CA/CaCO₃)挤出加工,通过狭缝流变仪和幂律方程研究了CA/CaCO₃和CA/CaCO₃/SC-CO₂溶液的在线流变行为,使用Polyflow软件模拟了CA/CaCO₃/SC-CO₂溶液的分散混合性能。结果表明,温度为50℃时,SC-CO₂使CA/CaCO₃溶液的稠度系数降低了26.00%,非牛顿指数增加了16.67%,降低了CA/CaCO₃溶液在挤出过程的粘度和压力;随着加工温度的升高,CA/CaCO₃/SC-CO₂溶液的粘度降低;在低剪切速率下,CA/CaCO₃/SC-CO₂溶液的剪切粘度对温度的敏感性较高;根据模拟结果,温度为50℃时,CA/CaCO₃/SC-CO₂溶液经受最大剪切应力的最大概率密度比CA/CaCO₃溶液增加了20.63%,SC-CO₂的注入有利于CA/CaCO₃溶液分散混合性能的提高。

关键词:高固含量发射药;超临界二氧化碳(SC-CO₂);流变行为;分散混合性能
 中图分类号: TJ55; TQ562
 文献标志码: A

DOI:10.11943/CJEM2019287 (责编: 美 梅)