文章编号:1006-9941(2022)01-0002-10

α -CL-20和CL-20/H₂O₂中溶剂分子的扩散特性及其对共晶分解影响的分子动力学模拟

王凡凡1,2,李如江2,张朝阳1

(1. 中国工程物理研究院化工材料研究所,四川 绵阳 621999; 2. 中北大学环境与安全工程学院,山西 太原 030051)

摘 要: 为了研究 H₂O 和 H₂O₂溶剂分子对含能共晶热稳定性的影响机制,采用分子动力学(MD)模拟方法对α-CL-20和CL-20/H₂O₂(正交、单斜)中溶剂分子的扩散行为及其热解机理进行了研究。结果表明,H₂O 和 H₂O₂都会随着温度的升高从晶胞中扩散出来,其中 H₂O 分子扩散得更快;温度低于 500 K时单斜晶型 CL-20/H₂O₂晶格框架具有阻碍溶剂分子 H₂O₂扩散的作用,而温度高于 500 K时,这种阻碍作用将不复存在。热分解过程中,α-CL-20 释能最慢,且其中 CL-20 的分解也是最慢的;温度低于 1500 K时,溶剂分子对含能组分热解呈现出一定的稳定化作用,但此作用随着温度的升高而消失。此外,溶剂的存在能明显增加晶格能。 关键词:含能溶剂化物;六硝基六氮杂异伍兹烷(CL-20);分子动力学(MD);扩散系数;热稳定性

中图分类号: TJ55; O64

文献标志码:A

DOI:10.11943/CJEM2021066

1 引言

含能材料在国防军事与民用领域有着极其广泛而 重要的应用^[1-2]。但是,含能材料存在能量-安全间的 矛盾,即能量高,感度则高^[3]。而含能共晶为缓解这一 矛盾或有效地平衡能量与安全性提供了可能,它是改 善单质炸药性能的一种新思路,通过调节共晶前驱体 的成份、氧平衡以及晶体堆积模式等实现综合性能的 提升^[4-5]。含能溶剂化物本质上也是含能共晶,经常出 现在结晶过程中,大多数情况下的含能溶剂化物存在 危害,如导致能量下降等。但是,有些溶剂化物存在 危害,如导致能量下降等。但是,有些溶剂化物,如 Matzger^[6]课题组在2016年合成的CL-20/H₂O₂,可提 高能量密度。随着溶剂的引入,相对于原有的含能化 合物,溶剂化物的热响应机制将发生变化。前期,人们 已开展了含能溶剂化物 CL-20/H₂O₂和α-CL-20热解

- 作者简介: 王凡凡(1995-), 女, 在读研究生, 主要从事含能材料热稳定性模拟研究。e-mail: 1755352877@qq.com
- **通信联系人:**张朝阳(1971-),男,研究员,主要从事计算含能材料 学研究。e-mail:chaoyangzhang@caep.cn

机制的分子动力学(MD)研究^[7-8],但并未突出溶剂分子对热解的具体影响。

MD模拟已成功应用在含能材料领域,尤其是近 年来随着反应性力场的开发成功^[9],含能材料的热力 响应机制在分子水平得到了充分的探索^[10-11]。因此, 本工作采用ReaxFF-lg反应力场研究了CL-20/H₂O₂和 α-CL-20的热解机制,以此获得溶剂分子对含能化合 物热解的影响规律;同时,采用经典力场COMPASS开 展热作用下溶剂分子在固体中的扩散行为研究。本研 究结果将丰富含能共晶热解机制的认知并对含能共晶 配体的选择具有参考作用。

2 研究方法

首先利用 COMPASS 力场^[12-13],采用 NVT 系综分 别在 300,450,480,500,520 K和 550 K6种温度 下进行 1000 ps的 MD,以此来模拟溶剂在晶胞中的 扩散特性。以溶剂化物 α -CL-20和 CL-20/H₂O₂(其中 正交晶型用 o-CL-20/H₂O₂表示,单斜晶型用 m-CL-20/ H₂O₂表示)为研究对象^[6],按照 4×2×1、4×2×1 和 1× 4×2 的 倍数扩胞,保证晶胞中 CL-20 的数目都为 64个,溶剂分子个数分别为 64个 H₂O、32个 H₂O₂和 32 个 H₂O₂; 然后,分别沿 3 种超胞的(001)(001)

引用本文:王凡凡,李如江,张朝阳.α-CL-20和CL-20/H₂O₂中溶剂分子的扩散特性及其对共晶分解影响的分子动力学模拟[J].含能材料,2022,30(1):2-11. WANG Fan-fan, LI Ru-jiang, ZHANG Chao-yang. Influence of the H₂O₂ and H₂O Molecules Caged in a-CL-20 and CL-20/H₂O₂ on Diffusion Characteristics and Thermal Decomposition by Molecular Dynamics Simulation[J]. *Chinese Journal of Energetic Materials(Hanneng Cailiao)*,2022,30(1):2-11.

Chinese Journal of Energetic Materials, Vol.30, No.1, 2022 (2-11)

收稿日期: 2021-03-30;修回日期: 2021-04-24

网络出版日期: 2021-10-29

基金项目:国家自然科学基金(21875227),山西省自然科学基金(201901D111143)

(100)方向做切面,在c方向上建立真空层,厚度与超 胞在 c 轴方向上的厚度一致,建模参数和结构分别如 表1和图1所示。模拟过程中的时间步长为1fs,6种 模拟温度是根据 Matzger^[6]课题组实验分解温度选择 的。运动过程中保存全运动轨迹,考虑到晶面和真空 层面的交界处有溶剂分子,因此,为了减少误差选择中 间层的溶剂分子(深蓝色)前500 ps的运动轨迹分析 均方位移(MSD),最后对分析得到的MSD进行扩散 系数(D)的求解。

表1 α-CL-20、o-CL-20/H,O,和 m-CL-20/H,O,3种晶胞的建 模参数

Table1 Modeling parameters for the three crystals of α -CL-20, o-CL-20/H₂O₂ and m-CL-20/H₂O₂

crystal	method	a/Å	b/Å	c/Å	$\alpha/(\circ)$	$\beta/(\circ)$	$\gamma/(\circ)$
CL 20	before ^[6]	9.48	13.14	23.38	90	90	90
α-CL-20	after	37.91	26.28	47.91	90	90	90
o-CL-20/H ₂ O ₂	before ^[6]	9.48	13.15	23.43	90	90	90
	after	37.90	26.31	48.01	90	90	90
m-CL-20/H ₂ O2	before ^[6]	28.45	8.96	12.78	90	113.40	90
	after	35.84	25.56	47.30	90	90	90

图1 α-CL-20、 o-CL-20/H₂O₂和 m-CL-20/H₂O₂的建模结构, 中间层蓝色分子为研究扩散性能的分子

- **Fig.1** Modeling structures of α -CL-20, *o*-CL-20/H₂O₂ and m-CL-20/H₂O₂. The blue molecules in each middle layer (in blue) are selected for studying diffusion performance
- 表2 与实验相比4种超晶胞优化前后晶胞参数的改变

 Table 2
 Comparison of relaxed and experimental cell parameters of the four supercells

采用MD研究热解机制,采用velocity Verlet积分 法^[14], Nosé-Hoover恒温水浴加热系统^[15], 步长为0.1 fs, 模拟完成后,用OVITO软件观察分子结构^[16],VARxMD 软件分析反应产物[17]。其中反应产物存活时间至少 100 fs,分析小分子产物用编写的 FORTRAN 脚本^[11],全 程用LAMMPS软件包完成^[18]。相比于 m-CL-20/H₂O₂, o-CL-20/H₂O₂的实验密度为2.03 g·cm⁻³,接近ε-CL-20 的 2.04 g·cm⁻³,更具有应用价值^[6,19],故选择 o-CL-20/ H,O,建模并研究其热解机制;同时,用CL-20单组分 γ -CL-20 和 ε -CL-20 及水溶剂化物 α -CL-20 做对比,共 4种晶胞其单胞结构见图2。首先,对这四种晶胞分别 进行了 4×2×1、4×2×1、2×4×2 和 4×2×2(2432 个、 2496个、2304个和2304个原子)倍数的扩胞得到超 晶胞。其次为了研究溶剂分子对主体分子分解的影 响,根据H,O,和H,O的密度建立了气相纯H,O,和 H₂O模型^[20-21],分别包含200个和268个分子。为了 证实 ReaxFF-lg 反应力场的可靠性,4种超晶胞在 300 K下驰豫 5 ps(NVT系综),驰豫前后参数的变化 如表2所示,密度误差控制在10%之内表明分子间的

图2 用于扩胞和建模的4种超晶胞的单胞结构 Fig.2 Unit cell structure of four supercells for enlargement and modeling

crystal	method	a / Å	b / Å	<i>c</i> / Å	α/(°)	eta / (°)	γ /(°)	density ∕g∙cm⁻³	relative errors / %
CL-20/H ₂ O ₂	exp. ^[6]	37.90	26.31	23.43	90	90	90	2.033	7.3
	this work	41.34	25.37	23.89	89.99	89.99	89.99	1.931	
α-CL-20	exp. ^[6]	37.91	26.28	23.38	90	90	90	1.970	8.7
	this work	40.28	25.58	24.58	89.99	89.99	89.99	1.914	
γ-CL-20	exp. ^[19]	26.46	32.68	29.75	90	109.17	90	1.916	0.6
	this work	26.65	31.50	30.83	89.99	109.16	89.99	1.905	
ε-CL-20	exp. ^[19]	35.41	25.11	26.77	90	106.82	90	2.044	4.7
	this work	35.27	25.12	28.15	89.99	106.81	89.99	1.951	

CHINESE JOURNAL OF ENERGETIC MATERIALS

含能材料

距离变化较小,证实了力场的适用性,同时,张力^[7]和 Xiao等^[8]对α-CL-20和CL-20/H₂O₂的模拟结果也证实 了力场的适用性^[7-8]。随后,在800,1000,1500,2000 K 和 3000 K 5种恒温条件下进行 300 ps热解的 MD 模 拟(升温时间 0.5 ps)。最后,通过对模拟结果的分析, 获得溶剂分子对晶胞热解的影响机制。

3 结果与讨论

3.1 扩散性能

采用 COMPASS 力场模拟得到了分子在受热过程中的全运动轨迹,截取了 500 ps时晶胞中分子排布如图 3 所示。从图 3 可以看出,随着温度的增加, α-CL-20、o-CL-20/H₂O₂和 m-CL-20/H₂O₂3种晶胞中的溶剂分子受到热刺激都发生剧烈运动,中间层的溶剂分子扩散出晶胞。α-CL-20中的H₂O因为分子小,在 450 K时已经基本完全从晶胞当中扩散出来; o-CL-20/H₂O₂中的溶剂分子在较低温度下保持稳定, 450 K左右扩散加剧,温度大于 500 K时中间层的H₂O₂基本不存在了;m-CL-20/H₂O₂在 450 K时基本保持稳定,但是随着温度的增加,中间层的溶剂分子也发 生了扩散。造成 o-CL-20/H₂O₂和 m-CL-20/H₂O₂中溶 剂分子不同扩散性能的原因是晶型的不同, m-CL-20/ H₂O₂中没有 H₂O₂的逃逸通道。模拟结果很好地验证 了实验现象和猜测^[6,22]。在更高温度下, 分子的活性 增加, 晶胞中溶剂分子的扩散性能差异不大。

计算中间层溶剂分子在 0~500 ps 受热过程中的 均方位移MSD,结果如图4所示,将图4中的MSD曲 线进行拟合求得扩散系数 D.结果如图 5 所示。从图 5 可以看出,随着温度的升高,溶剂分子的扩散系数一直 在增加,相同温度下,α-CL-20中溶剂分子H₂O的扩散 系数一直大于CL-20/H₂O₂的两种晶型,原因是在晶胞 相同空位下,H,O的分子要小于H,O,,这就造成了 α-CL-20在受热后有H₂O的逃逸通道,同时实验也是 在真空下加热去除水分子^[6,22];对于CL-20/H₂O2的两 种晶型,较低温度下 o-CL-20/H,O,的扩散系数一直大 于m-CL-20/H₂O₂,但是随着温度的继续升高,两种晶 型中的CL-20和溶剂分子H,O,都产生剧烈运动导致 溶剂分子的扩散特性基本相同。3种晶胞中溶剂分子 受热后的扩散特性与 Bennio^[6]通过 DSC/TG 实验测得 的 α-CL-20、m-CL-20/H,O,和 o-CL-20/H,O,的吸热温 度(失重)一致。

图 3 α-CL-20、o-CL-20/H₂O₂和 m-CL-20/H₂O₂在不同温度下 500 ps时的分子排布 **Fig.3** Molecular distribution of α-CL-20、o-CL-20/H₂O₂ and m-CL-20/H₂O₂ at various temperatures till 500 ps

图 4 α-CL-20、*o*-CL-20/H₂O₂和*m*-CL-20/H₂O₂在不同温度下的均方位移 MSD **Fig.4** MSD curves of α-CL-20、*o*-CL-20/H₂O₂ and *m*-CL-20/H₂O₂ at different temperatures

图 5 α -CL-20、o-CL-20/H₂O₂和 m-CL-20/H₂O₂在不同温度下的扩散系数 D

Fig.5 Diffusion coefficients of α -CL-20, o-CL-20/H₂O₂ and m-CL-20/H₂O₂ at various temperatures

3.2 分子间相互作用

根据动力学原理,共晶形成的主要动力是分子间 弱相互作用力^[23]。在进行热解 MD 前为了说明建模 的合理性,分析了 CL-20/H₂O₂、α-CL-20、无水α-CL-20、 γ-CL-20 和 ε-CL-20 共 5 种晶体的二维指纹图和分子 间不同相互作用的贡献(图 6 和图 7),以此说明溶剂化 后相互作用的变化。图 7 表明 5 种晶体中主要为O—O、 H—O和 N—O键,最近 Wang等^[24]的研究也发现了 这一点。计算 5 种晶体中分子间键所占比例,发现无 水α-CL-20、γ-CL-20 和ε-CL-20 晶体中 O—O键占的 比例最多,CL-20/H₂O₂和α-CL-20 中H—O键占主导,

Fig.6 Fingerprint of five crystals

CHINESE JOURNAL OF ENERGETIC MATERIALS

说明CL-20溶剂化物的形成依赖于CL-20与溶剂分子 之间形成氢键,同样,之前关于其他CL-20含能共晶的 研究也发现了这一点^[25-26]。

图7 基于指纹图分析获得的5种晶体中分子间不同相互作用 的贡献

Fig.7 Relative contributions to the Hirshfeld surface area for the various close intermolecular contacts of five crystals

另外,用GGA(PBE)基组加Grimme校正(PBE+D) 计算得到了 γ -CL-20、 ε -CL-20、 α -CL-20和CL-20/H₂O₂ 的晶格能,如表3所示。在常温下进行结构优化,计 算过程保持对称性,全部用Dmol3安装包完成。从 表3可看出,4种晶体的晶格能大小顺序为 α -CL-20> CL-20/H₂O₂> ε -CL-20> γ -CL-20, α -CL-20和CL-20> CL-20/H₂O₂> ε -CL-20> γ -CL-20和 ε -CL-20和CL-20/ H₂O₂的晶格能要大于 γ -CL-20和 ε -CL-20的,说明溶 剂分子H₂O和H₂O₂的加入增加了CL-20的晶格能,之 前Zhang 等^[26]对CL-20/TNT,CL-20/HMX和CL-20/ BTF的计算也表明了共晶的晶格能较CL-20的有所 增加。 α -CL-20的晶格能高于CL-20/H₂O₂,说明H₂O 的存在比H₂O₂更能使晶胞稳定。 ε -CL-20的晶格能 比 γ -CL-20的大,之前Liu等^[27]的研究也证实了这 一点。

表3 4种晶体的晶格能

Table3 Lattice energy of four crystals

	87	,
crystal		lattice energy / kJ·mol ⁻¹
ε-CL-20		181.4
γ-CL-20		180.4
α-CL-20		232.6
CL-20/H ₂ O ₂		212.4

3.3 能量演化

分析了 ε -CL-20、 γ -CL-20、 α -CL-20和 CL-20/H₂O₂ 4 种超晶胞在不同温度条件下势能随时间的演化曲 线,如图 8 所示。在模拟初始阶段,4 种不同超晶胞的 势能都是在短时间内急剧上升到最高点,随后 4 种超 晶胞发生次级反应放出大量的热量,从而导致系统势 能减小并趋于稳定,此时可以认为反应完全。模拟温 度越高,最大势能越高,释能越快,趋于稳定的时间越 短^[8,28]。相同温度条件下 4 种超晶胞势能增加的幅度 基本相同,说明四种超晶胞的能量壁垒相同。5 种恒 温条件下, α -CL-20的势能最高,在 800~1500 K ε -CL-20的势能衰减最快, γ -CL-20和 CL-20/H₂O₂衰 减的基本相同,在高温 2000~3000 K时,4 种超晶胞的 势能衰减幅度基本相当,说明含有溶剂的晶胞在低温 下能使共晶组分稳定,在高温下这种作用消失。

势能的最高点减去最低点得到的值为加热过程中的放热量 Q,结果如图 9 所示。图 9 表明,随着温度的上升,4 种超晶胞的放热量也在增加,在 800-1000 K 之间,ε-CL-20 的放热量始终最大,α-CL-20 的放热量 最少,γ-CL-20 和 CL-20/H₂O₂的放热量基本相同;温度 高于 1000 K时,CL-20/H₂O₂的放热量逐渐增加且是 4 种超晶胞中放热量最大的,究其原因是 CL-20/H₂O₂

图8 4种超晶胞在不同加热条件下势能的演变

Fig.8 Potential energy (E_p) evolution of four supercells heated at various temperatures

图 9 4种超晶胞在不同温度下加热 300 ps 时放热量的比较 **Fig.9** Comparison in heat release(*Q*) of four supercells heated at different temperatures till 300 ps

超胞中的H₂O₂分解放出热量导致系统整体放热量最大,同时Xiao对 m-CL-20/H₂O₂模拟结果也显示了加热过程中 m-CL-20/H₂O₂释放的能量要比单组分

CL-20的放热量大^[8]。

3.4 主要物种的演化

为了比较 ε-CL-20、γ-CL-20、α-CL-20和 CL-20/ H₂O₂ 4种超晶胞的热稳定性,对不同超胞中 CL-20分子和 NO₂的演化进行了分析,结果分别如图 10和 图 11 所示。图 10表明,温度越高,超胞中的 CL-20分 解越快,张力对 CL-20的模拟结果也说明了这一 点^[7,29]。较低温度下α-CL-20的中的 CL-20分解最慢, 原因是水分子在该温度下保持稳定,H₂O的存在抑制 了 CL-20的分解。在高温下,4种超晶胞的分解差异 不是很明显。4种超晶胞分解产生的 NO₂的数目都遵 循先增加后减少,热分解初始步骤为 N—NO₂键均裂, 这和张力等^[7]用 ReaxFF MD 计算得到的 CL-20初始分 解步骤,Xiao 等^[8]用 ReaxFF-lg 力场得到的 *m*-CL-20/

图10 4种超晶胞中CL-20的数量在不同加热条件下的演变

Fig.10 Evolution of the number ratio of remaining CL-20 to original reactants ($R_{n,CL-20}$) of the four supercells heated at different temperatures

图11 4种超晶胞在不同加热条件下生成NO₂的数量演化

Fig.11 Evolution of the number ratio of NO₂ partitioned to original reactants ($R_{n,NO2}$,) of the four supercells heated at different temperatures

H₂O₂的分解步骤,Liu 等^[27]用密度泛函紧束缚理论 DFTB计算得到的ε-CL-20 χ -CL-20和β-CL-203种晶 型的分解路径,Patil等^[30]、Pace等^[31]和董林茂等^[32]采 用不同实验方法得到的CL-20的分解机理,Okovytyy 等^[33]采用过渡态搜索计算得到的ε-CL-20的分解路径 相同。随着温度的升高,4种超晶胞分解产生的NO₂ 的数目没有太大的区别,说明溶剂的加入并没有改变 溶质CL-20的初始热分解路径。

利用超胞分解产生的小分子含量(CO₂、H₂O和N₂) 来判断CL-20热分解的程度^[8,28-29]。不同产物的生成时 间与数量有较大不同。如图12所示,在2000K下随着 CL-20的分解小分子含量增加,4种超晶胞产生的CO₂和 N₂的数量基本相同,不同的是,CL-20/H₂O₂、α-CL-20、 ε-CL-20和γ-CL-20生成的H₂O的量分别稳定在2.7, 2.5,1.7 mol和1.7 mol。这说明溶剂的加入对CL-20 生成H₂O的数目有一定的影响。α-CL-20分解产生的 H₂O多是因为超胞中本身含有H₂O,再加上CL-20分 解产生H₂O导致H₂O的量呈上升状态。CL-20/H₂O₂ 分解产生的H₂O量多是H₂O₂在高温下分解产生H₂O 导致的,3000K下小分子的变化同2000K。张力等^[7] 对α-CL-20的模拟也发现了同样的结果。

与气相纯 H₂O 和 H₂O₂ 模型模拟结果相比, α-CL-20和CL-20/H₂O₂中反应物的分解情况如图 13 和图 14 所示。图 13 和图 14 分别表明,α-CL-20 和

图 12 4种超晶胞在 2000 K 和 3000 K 加热过程中生成小分子稳定产物(*R*_{*n*,CO2}, *R*_{*n*,H2O}, *R*_{*n*,N2})的演变 **Fig.12** Evolution of the number ratio of small stable product to original reactants (*R*_{*n*,CO2}, *R*_{*n*,H2O}, *R*_{*n*,N2}) of four supercells heated at 2000 K and 3000 K

(*c*-CL-20和*c*-H₂O分别代表α-CL-20中CL-20和H₂O分子;*p*-H₂O代表气相纯H₂O分子)

Fig.13 Comparison the number ratio of molecules to original reactants (R_n) in α -CL-20 and pure H₂O solvents (*c*-CL-20 and *c*-H₂O represent CL-20 and H₂O molecules in α -CL-20; *p*-H₂O represents H₂O molecules in the gas phase

图 14 CL-20/H₂O₂和气相纯H₂O₂中反应物数量(R_n)的对比

 $(c-\text{CL}-20 和 c-\text{H}_2\text{O}_2 分别代表 CL-20/\text{H}_2\text{O}_2 中 CL-20 和 H_2\text{O}_2 分子; p-\text{H}_2\text{O}_2 代表气相纯 H_2\text{O}_2 分子)$ **Fig.14** Comparison the number ratio of molecules to original reactants (R_n) in CL-20/H₂O₂ and pure H₂O₂ solvents $(c-\text{CL}-20 \text{ and } c-\text{H}_2\text{O}_2 \text{ represent CL-20 and H}_2\text{O}_2 \text{ in CL-20/H}_2\text{O}_2; p-\text{H}_2\text{O}_2 \text{ represents H}_2\text{O}_2 \text{ molecules in the gas phase})$

CL-20/H₂O₂在受热过程中溶质 CL-20的分解快于溶剂分子 H₂O 和 H₂O₂的分解,这一模拟结果与 Xiao 等^[8] 对 m-CL-20/H₂O₂的 热解模拟、张力等^[7] 对 α -CL-20的热解模拟和 Xue 等^[34] 对 CL-20/HMX 的热解模拟结果一致,都是 CL-20最先分解。图 13 表明,在 1000 K下 α -CL-20 中 H₂O 分解了少许,然而气相纯H₂O 在 5 种温度下基本不分解,说明 α -CL-20 的形成能够促进溶剂分子 H₂O 的分解;同时在图 14 中 CL-20/H₂O₂ 執解模拟过程中也观察到 CL-20/H₂O₂ 中 溶剂分子 H₂O₂的分解快于气相纯H₂O₂分子。

4 结论

采用 MD 方法模拟了 α-CL-20 和 CL-20/H₂O₂的 扩散和热解,对溶剂分子 H₂O 和 H₂O₂和溶剂化物的 热解进行了分析,揭示了溶剂化物中溶剂的扩散性能 和溶剂化物的热解机理,得到以下结论:

(1)含能溶剂化物在加热过程中溶剂分子会逃逸 出晶格,其中α-CL-20中的H₂O的扩散能力最强, CL-20/H₂O₂的两种晶型中溶剂分子的扩散性能不同, 单斜晶型在低温条件下没有H₂O₂逃逸的通道。

(2)溶剂分子 H₂O 和 H₂O₂在低温下能对溶剂化物的热解起到稳定作用,高温下这种作用消失,说明含能溶剂化物的反应机制存在温度依懒性。

(3)热解显示溶剂化物中溶质 CL-20 最先分解, 与气相纯组分相比,溶剂化物中溶剂分子的稳定性 降低。

参考文献:

[1] 王泽山.含能材料概论[M].哈尔滨:哈尔滨工业大学出版社, 2006.

WANG Ze-shan. Introduction of energetic materials [M]. Harbin: Harbin Institute of Technology Press, 2006.

- [2] Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications [J]. *Journal of Hazardous Materials*, 2004, 112(1-2): 1-15.
- [3] 张朝阳.含能材料能量-安全性间矛盾及低感高能材料发展策略
 [J].含能材料,2018,26(1):2-10.
 ZHANG Chao-yang. On the energy & safety contradiction of energetic materials and the strategy for developing low-sensitive high-energetic materials [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1): 2-10.
- [4] Zhang C, Cao Y, Li H, et al. Toward low-sensitive and high-energetic cocrystal I: evaluation of the power and the safety of observed energetic cocrystals [J]. Cryst Eng Comm, 2013, 15(19): 4003-4014.
- [5] Wang Y, Song S, Huang C, et al. Hunting for advanced high-energy-density materials with well-balanced energy and safety through an energetic host-guest inclusion strategy [J]. *Journal of Materials Chemistry A*, 2019, 7 (33) : 19248–19257.
- [6] Bennio J C, Chowdhury N, Kampf J W, et al. Hydrogen peroxide solvates of 2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane [J]. Angewandte Chemie International Edition, 2016, 55(42): 13118–13121.
- [7] 张力,陈朗,王晨,等.水分子对α相CL-20热分解机理影响的 分子动力学研究[J].物理化学学报,2013,29(6):1145-1153.

ZHANG Li, CHEN Lang, WANG Chen, et al. Molecular dynamics study of the effect of H_2O on the thermal decomposition of α phase CL-20[J]. Acta Physico-Chimica Sinica, 2013, 29(6): 1145-1153.

- [8] Xiao Y, Chen L, Geng D, et al. Reaction mechanism of embedding oxidizing small molecules in energetic materials to improve the energy by reactive molecular dynamics simulations
 [J]. The Journal of Physical Chemistry C, 2019, 123 (48) : 29144-29154.
- [9] Van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. *Journal of Physical Chemistry A*, 2001, 105(41): 9396–9409.
- [10] Strachan A, Duin A V, Chakraborty D, et al. Shock waves in high-energy materials: The initial chemical events in nitramine RDX[J]. *Physical Review Letters*, 2003, 91(9): 098301.
- [11] Zhong K, Xiong Y, Liu J, et al. Enhanced shockwave-absorption ability of the molecular disorder rooting for the reactivity elevation of energetic materials [J]. *Energetic Materials Frontiers*, 2020,1(2):103–116.
- [12] Sun H J. COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. *The Journal of Physical Chemistry B*, 1998, 102(38): 7338–7364.
- [13] Zhong K, Xiong Y, Zhang C. Reactive molecular dynamics insight into the influence of volume filling degree on the thermal explosion of energetic materials and its origin[J]. *Energetic Materials Frontiers*, 2020, 1(3-4): 201-215.
- [14] Satoh A. Stability of computational algorithm used in molecular dynamics simulations. 1st report. for velocity verlet algorithm [J]. Nihon Kikai Gakkai Ronbunshu B Hen/transactions of the Japan Society of Mechanical Engineers Part B, 1994, 60 (569): 9–15.
- Brańka A. Nosé-Hoover chain method for nonequilibrium molecular dynamics simulation [J]. physical Reviewe Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 2000, 61(5): 4769-4773.
- [16] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 2154-2162.
- [17] Liu J, Li X, Guo L, et al. Reaction analysis and visualization of ReaxFF molecular dynamics simulations[J]. *Journal of Molecular Graphics & Modelling*, 2014, 53(1): 13–22.
- [18] Plimpton S. Fast parallel algorithms for Short-Range molecular dynamics [J]. *Journal of Computational Physics*, 1995, 117 (1): 1–19.
- [19] Nielsen A T, Chafin A P, Christian S L, et al. Synthesis of polyazapolycyclic caged polynitramines [J]. *Tetrahedron*, 1998, 54(39):11793-11812.
- [20] Rosen M A. Advances in hydrogen production by thermochemical water decomposition: A review-science direct[J]. Energy, 2010, 35(2): 1068–1076.
- [21] Lin S S, Gurol M D. Catalytic decomposition of hydrogen peroxide on iron oxide : Kinetics, mechanism, and implications
 [J]. Environmental Science & Technology, 1998, 32 (10) : 1417–1423.
- [22] Simpson R L, Urtiew P A, Ornellas D L, et al. CL-20 performance exceeds that of HMX and its sensitivity is moderate[J].

Propellants, Explosives, Pyrotechnics, 2010, 22(5): 249-255.

- [23] Desiraju G R. Crystal and co-crystal [J]. Cryst Eng Comm, 2003, 5(82): 466-467.
- [24] Wang K, Zhu W. Computational insights into the formation driving force of CL-20 based solvates and their desolvation process[J]. *CrystEngComm*, 2021, 23(10): 2150-2161.
- [25] Liu G, Li H, Gou R, et al. Packing structures of the CL-20-based cocrystals[J]. Crystal Growth & Design, 2018, 18(11): 7065-7078.
- [26] Zhang C, Xue X, Cao Y, et al. Toward low-sensitive and high-energetic co-crystal II: structural, electronic and energetic features of CL-20 polymorphs and the observed CL-20-based energetic-energetic co-crystals [J]. Cryst Eng Comm, 2014, 16(26): 5905-5916.
- [27] Liu G, Gou R, Li H, et al. Polymorphism of energetic materials: a comprehensive study of molecular conformers, crystal packing, and the dominance of their energetics in governing the most stable polymorph [J]. *Crystal Growth & Design*, 2018, 18(7): 4174-4186.
- [28] Liu G, Xiong Y, Gou R, et al. Difference in the thermal stability of polymorphic organic crystals: a comparative study of the early events of the thermal decay of 2, 4, 6, 8, 10, 12-Hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane (CL-20) polymorphs under the volume constraint condition [J]. *Journal of Physical Chemistry C*, 2019, 123(27): 16565–16576.
- [29] 张力,陈朗,王晨,等.不同晶型CL-20热分解反应机理计算分析[J].爆炸与冲击,2014,34(2):188-194.
 ZHANG Li, CHEN Lang, WANG Chen, et al. Molecular dynamics simulation on thermal decomposition mechanism of CL-20 with different polymorphs [J]. Explosion and Shock Waves, 2014, 34(2):188-194.
- [30] Patil D G, Brill T. Thermal decomposition of energetic materials 53. Kinetics and mechanism of thermolysis of hexanitrohexazaisowurtzitane[J]. Combustion & Flame, 1991, 87(2): 145-151.
- [31] Pace M D. EPR Spectra of photochemical NO₂ formation in monocyclic nitramines and hexanitrohexaazaisowurtzitane[J]. *The Journal of Physical Chemistry*, 1991, 95 (15) : 5858– 5864.
- [32] 董林茂,李晓东,杨荣杰.基于质谱的六硝基六氮杂异伍兹烷热 分解动力学[J].物理化学学报,2008,24(6):997-1001.
 DONG Lin-mao, LI Xiao-dong, YANG Rong-jie. Thermal decomposition kinetics of hexanitrohexaazaisowurtzitane by mass spectrometry[J]. Acta Physico-Chimica Sinica, 2008, 24 (6):997-1001.
- [33] Okovytyy S, Kholod Y, Qasim M, et al. The mechanism of unimolecular decomposition of 2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane. A computational DFT study
 [J]. Journal of Physical Chemistry A, 2005, 109(12): 2964– 2970.
- [34] Xue X, Ma Y, Zeng Q, et al. Initial decay mechanism of the heated CL-20/HMX cocrystal: a case of the cocrystal mediating the thermal stability of the two pure components [J]. *The Journal of Physical Chemistry C*, 2017, 121(9): 4899–4908.

Influence of the H_2O_2 and H_2O Molecules Caged in α -CL-20 and CL-20/ H_2O_2 on Diffusion Characteristics and Thermal Decomposition by Molecular Dynamics Simulation

WANG Fan-fan^{1,2}, LI Ru-jiang², ZHANG Chao-yang¹

(1. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China; 2. College of Environment and Safety Engineering, North University of China, Taiyuan 030051, China)

Abstract: In order to clarify the influence mechanism of H_2O and H_2O_2 molecules on the thermal stability of energetic cocrystals, molecular dynamics (MD) simulation method was employed to analyze the diffusion behavior and thermal decomposition mechanism of solvent molecules in α -CL-20 and CL-20/ H_2O_2 (orthogonal/monoclinic). The results show that both H_2O and H_2O_2 will diffuse out of the cell as the temperature rises, among which H_2O molecules diffuse faster; when the temperature is lower than 500 K, the monoclinic CL-20/ H_2O_2 lattice framework has the ability to hinder the diffusion of H_2O_2 molecules. When the temperature rises above 500 K, this hindering effect no longer exists. In the process of thermal decomposition, α -CL-20 releases energy the slowest, and the decomposition of CL-20 also proceeds the slowest; when the temperature is lower than 1500 K, the solvent exhibits a certain stabilizing effect on the thermal decomposition of energetic components, but this effect disappears as the temperature rises. In addition, the presence of solvents can increase the lattice energy significantly. **Key words:** energetic solvate; hexanitrohexazisowurtzitane(CL-20); molecular dynamics(MD); diffusion coefficient;

thermal stability **CLC number:** TI55; O64

Document code: A

DOI: 10.11943/CJEM2021066

(责编: 王艳秀)