文章编号:1006-9941(2021)10-0957-07

含 α -AlH₃的HMX基凝聚相炸药的安全性和爆轰性能

牛 磊,曹少庭,金大勇,高 杰,郭 昕

(西安近代化学研究所,陕西 西安 710065)

摘 要: 为了探索 α-AlH₃在凝聚相炸药中的爆轰反应规律,对α-AlH₃的安全特性进行了表征。结果表明α-AlH₃热稳定性较差,对 温湿度敏感,处理α-AlH₃样品时应控制室温不超过 30 ℃,相对湿度不大于 60%。以自主设计的梯次控温冷却直接法造型粉制备工 艺,制备了以HMX为主炸药的系列含α-AlH₃炸药配方样品,并对其安全性、爆轰性能、做功能力、爆炸反应过程进行了研究。结果 表明,造型粉机械感度低,成型能良好;α-AlH₃含量超过 10% 后药柱成型相对密度随α-AlH₃含量增加而降低;α-AlH₃的特征爆速为 6078 m·s⁻¹,含α-AlH₃的HMX基凝聚相炸药与同质量分数含铝炸药相比,二者总做功能力相当,含α-AlH₃炸药爆轰产物在高压和 中压阶段做功能力较低;α-AlH₃中的氢元素在爆轰产物中主要以氢气的形式存在。

关键词: α-AlH₃;安全性;爆轰性能;爆轰产物;做功能力;凝聚相炸药 **中图分类号**: TI55: O64 **文献标志码**: A

DOI: 10.11943/CJEM2021079

1 引言

高能作为混合炸药的永恒追求,一直是混合炸药 研究的重点。向混合炸药中添加可燃金属粉能有效提 高炸药的能量,调节其能量结构。目前,常用的金属粉 有铝粉、硼粉等,这些金属粉普遍存在反应完全性不 足、点火温度较高等问题。储氢材料具有较强的反应 活性和较高的燃烧热值,可作为高能燃料应用于混合 炸药领域^[1]。AlH₃作为一种高效金属氢化物,由 Finholt^[2]于1947年利用LiH和AlCl₃在乙醚溶液中反 应首次制得,共有7种晶型,其中α型最为稳定。α-AlH₃ 晶体密度1.477 g·cm⁻³,与液态氢(0.071 gH₂·cm⁻³) 相比具有更高的储氢密度(0.148 gH₂·cm⁻³)^[3],在含 能材料领域有广泛的应用前景。

国内外对α-AlH₃合成、稳定化及应用开展了广泛的研究^[4-9]。近年来,随着俄罗斯、美国在高品质、稳定 化α-AlH₃方面取得新进展,α-AlH₃在含能材料中的应

收稿日期:	2021-04-10;	修回日期:	2021-05-12
-------	-------------	-------	------------

网络出版日期: 2021-07-15

作者简介:牛磊(1987-),男,副研究员,主要从事混合炸药研究。 e-mail:niulei2006@126.com

通信联系人:金大勇(1981-),男,研究员,主要从事混合炸药研究。e-mail:13572590838@126.com

用成为欧美新型含能材料研究领域的重点^[10]。 α-AlH₃释氢规律的研究表明,在高加热速率下α-AlH₃ 可以达到很高的释氢速率,氢的释放受其在晶体中扩 散过程控制,Al-H断裂反应不是控制性因素。α-AlH₃ 点火行为研究表明,其点火温度明显低于微米铝,介于 微米铝和纳米铝之间^[11]。LuigiT等^[12]研究表明,α-AlH₃ 释氢后为多孔铝结构,具有比同等粒径微米铝更高的 比表面积,具有更高的反应活性。Bazyn等^[13]研究了 α-AlH₃在高温和高压(反射区温度(2650±75)K,压力 (0.85±0.05) MPa)激波管中的燃烧行为,指出α-AlH₃ 脱氢在较低温度较短时间(100 μs量级)完成,释氢后 剩余的铝与微米铝燃烧行为相似。

α-AlH₃与凝聚相炸药中常用的传统金属粉相比, 其显著特点是极高的氢含量,如何将极高的氢含量转 化为高毁伤威力,是α-AlH₃在高效毁伤领域应用研究 的重点。将α-AlH₃引入混合炸药,国内外开展了初步 研究,主要集中在α-AlH₃对混合炸药能量影响方 面^[14-16],对α-AlH₃在凝聚相炸药中安全性和爆轰反应 规律研究较少。本工作研究了α-AlH₃单质的安全性, 选择与α-AlH₃相容的奥克托今(HMX)为主体炸药^[5], 据此设计了梯次控温冷却直接法的含α-AlH₃凝聚相 炸药制备工艺并制备了测试样品,讨论了α-AlH₃含量 对凝聚相炸药爆炸反应及能量的影响,为α-AlH₃在炸

引用本文:牛磊,曹少庭,金大勇,等.含α-AlH₃的HMX 基凝聚相炸药的安全性和爆轰性能[J].含能材料,2021,29(10):957-963. NIU Lei, CAO Shao-ting, JIN Da-yong, et al. Safety and Detonation Performance of HMX-based Condensed Phase Explosives Containing α-AlH₃[J]. *Chinese Journal of Energetic Materials* (Hanneng Cailiao),2021,29(10):957-963.

CHINESE JOURNAL OF ENERGETIC MATERIALS

药中的应用研究提供参考。

2 实验部分

2.1 材料

特细球形铝粉,粒度 d_{50} 为6 μ m,活性大于98%, 鞍钢实业微细铝粉有限公司;HMX,粒度 d_{50} 为 12.5 μ m,甘肃银光化工公司; α -AlH₃,西安近代化学 研究所自制。

2.2 样品制备

 α -AlH₃单质:使用乙醚法制备^[17]。以LiAlH₄与 AlCl₃为原料,在乙醚中反应制备出AlH₃醚合物,在甲 苯中脱醚结晶获得 α -AlH₃,晶体密度1.47 g·cm⁻³, α 型含量大于99%。

含α-AlH₃凝聚相炸药造型粉:设计了梯次控温冷 却直接法制备造型粉。将炸药配方用黏结剂聚异丁烯 (PIB)及石蜡(WAX)放入石油醚中,搅拌,加热到 60℃,待混合液澄清后加入HMX,搅拌1h后自然降 温;混合液温度降低到30℃以下时再加入α-AlH₃,搅 拌,挥发石油醚至物料呈半干状态,过筛造粒,阴干,外 混石墨(C),得到造型粉样品。

含 α-AlH₃凝聚相炸药药柱:按照测试需求药量称 量制备好的造型粉,加入压药摸具的套筒中,装配好摸 具冲头后放置在压机的上下滑块之间,启动压机,加压 至冲头压强为250 MPa后保压1 min,泄压,退模得到 成型药柱。

含铝炸药样品:含铝炸药对比试样使用的HMX、 黏结剂材料及造型粉和药柱制备工艺与含α-AlH₃凝 聚相炸药相同。

2.3 实验方法

2.3.1 安全性

撞击感度:采用 GJB772A-1997 方法 601.1 进行 测试^[18]。落锤10 kg,落高25 cm,药量(50±1) mg,每 组25发,测2组,实验结果用爆炸百分数表示。

摩擦感度:采用 GJB772A-1997 方法 602.1 进行 测试。表压 3.92 MPa,摆角 90°,药量(20±1) mg,每 组 25发,测 2组,实验结果用爆炸百分数表示。

真空安定性:参照 GJB772A-1997 方法 501.2 进 行测试。测试样品在一定温度下恒温一定时间后放出 气体的量,药量(5.00±0.01)g,温度100 ℃,时间48 h。

吸湿性:动态吸湿性分析法^[19]。采用 VTI-SA 型动态吸附分析仪进行测定,等温吸湿参数为温度 30 ℃, 相对湿度 20%~90%,测量步长为相对湿度变化 10%, 样品量10~15 mg,连续记录样品质量变化。

5 s爆发点:采用 GJB772A-1997 中方法 606.1 进 行测试。药量(30±1) mg,盛药器为平底铝雷管壳,取 5个温度点,每个温度点测量5次。

2.3.2 爆轰性能

爆速:采用 GJB772A-1997 方法 702.1 进行测试。 药柱尺寸 Φ25 mm×25 mm,长度测量偏差不大于 0.01 mm,探针为 0.12 mm 漆包铜线,用 8*雷管直接 起爆。

爆热:采用 GJB772A-1997 方法 701.1 进行测试。 药柱规格 Φ25 mm×25 g,药柱质量精确至 0.0002 g。 样品在无氧量热弹内起爆后,以蒸馏水为测温介质,测 定水温升高值,依据系统标定值计算样品爆热。

做功能力:采用 GJB772A 方法 705.1 进行测试。 药柱直径 25 mm,药量(10±0.03)g,用 8*电雷管起爆。弹丸为45*钢,质量9.11 kg。

水下能量:采用水下爆炸实验测试其水下能量。 药柱规格 Φ40 mm×100 g,用 10 g JH-14 传爆药柱起爆,入水深度 4.7 m。

爆容:爆热实验完成后测量爆热弹内的气体压力, 通过气体状态方程将其换算为常温下气体体积。

3 结果与讨论

3.1 α-AlH₃安全性

3.1.1 安定性

α-AlH₃自身稳定性较差,受热易分解放出气体。 为确定合适的工艺参数,参照GJB772A-1997中方法 501.2测试了α-AlH₃在60 ℃、100 ℃条件下的真空放 气量。结果见表1。从表1可知,即使在60 ℃时, α-AlH₃也会放出氢气,故在工艺过程中不能对α-AlH₃ 进行加热。

表1 α-AlH₃放气量

Table 1Outgassing of α -AlH3

T / ℃	pressure conditions	<i>t /</i> h	$\Delta V / mL \cdot g^{-1}$
60	normal pressure	1.4	2.22
60	vacuum	48	4.66
100	vacuum	48	12.17

3.1.2 吸湿性

α-AlH₃的动态吸湿曲线见图 1。其中,开始 60 ℃ 加热曲线为α-AlH₃干燥曲线。从图 1 可知,温度 30 ℃、 相对湿度小于 60% 时,α-AlH₃样品吸湿量很小,样品 质量基本保持恒定;相对湿度达到70%后,α-AlH₃样 品开始吸湿,样品质量随时间增加呈加速增大趋势;湿 度达到90%后,α-AlH₃样品吸湿速度达到最大,样品质 量随时间增加呈线性增大趋势。所以,制备含α-AlH₃炸 药样品时,实验室相对湿度不能超过60%。

图1 α-AlH₃动态吸湿曲线

Fig.1 Dynamic moisture absorption curve of α -AlH₃

3.1.3 机械感度

采用 GJB772A-1997 方法 601.1 和 602.1 测试 α -AlH₃撞击感度和摩擦感度。测试结果表明, α -AlH₃撞击感度 I_b 为 0%,摩擦感度 P_b 为 8%,故制备含 α -AlH₃凝聚相炸药时,钝感包覆重点应放在机械感度 高的主炸药上。

安全性结果表明,α-AlH₃机械感度较低,在相对湿 度小于60%的室温条件下不易吸湿,受热极易放出氢 气。故含α-AlH₃凝聚相炸药制备工艺过程中不能对 α-AlH₃加热,制备相对湿度应小于60%。

3.2 含α-AlH₃凝聚相炸药安全性

对混合炸药开展各项研究时,一般要求其机械感 度不大于40%。HMX的撞击感度和摩擦感度均为 100%,α-AlH₃的机械感度较低,因此降低含α-AlH₃混 合炸药机械感度的要点是实现对HMX的钝感包覆。综 合考虑,设计了梯次控温冷却直接法的造型粉制备工 艺,该工艺在高温及降温过程用石蜡对HMX进行钝感 包覆,待混合液温度降至室温时加入α-AlH₃粉,实现对 α-AlH₃的混合与黏结,可以避免对α-AlH₃进行加热,保 证了工艺过程的安全性。为研究含α-AlH₃的HMX基 凝聚相炸药释能规律,设计了系列炸药配方,见表2。

3.2.1 造型粉机械感度与成型性

采用梯次控温冷却直接法按照表2配比制备炸药 造型粉,各配比炸药造型粉的撞击感度和摩擦感度测 试结果见表3。从表3可知,各配比造型粉机械感度较低,可以用来压制药柱。各配比造型粉在250 MPa压 强下的压力-密度曲线见图2。

表 2	炸药配	比及组成
-----	-----	------

 Table 2
 Proportion and composition of explosives

No.	$m_{_{\mathrm{HMX}}}$: $m_{_{\mathrm{AlH3}}}$: $m_{_{\mathrm{binder}}}$
HQ-30	65:30:5
HQ-20	75:20:5
HQ-15	80:15:5
HQ-10	85:10:5
HQ-7	88:7:5
HQ-5	90:5:5
HQ-3	92:3:5
HQ-1	94:1:5

表3 造型粉机械感度

 Table 3
 Mechanical sensitivity of molding powder

No.	I _b / %	P _b / %
HQ-30	20	8
HQ-20	8	4
HQ-15	8	8
HQ-10	8	8
HQ-7	4	8
HQ-5	4	4
HQ-3	0	4
HQ-1	8	0

图 2 250 MPa压强下药柱相对密度与α-AlH₃含量关系 **Fig.2** Relationship between the relative density of compressed powder and the content of α-AlH₃ at 250 MPa

图 2 曲线表明,当α-AlH₃含量不超过 10% 时,压 药的相对密度在 97% 附近正常波动,当含量超过 10% 后,炸药的相对密度呈明显下降趋势。各配比炸药使 用的钝感黏接体系材料与制备工艺相同,相对密度下 降的原因可能是由于α-AlH₃晶体为立方体状^[17],当炸 药中含量较多时,在压制过程中不能与 HMX 颗粒实 现紧密排列,空隙较多导致的。

3.2.2 造型粉的热感度

热感度是含能材料安全性能的重要指标,5 s 延滞 期爆发点是一种常用的表征热感度方法。按照 GJB772A-1997 中方法 606.1 测试了 HQ-20、HQ-30 两种炸药造型粉的 5 s 延滞期爆发点 *T*_{5 s},结果见表 4。 两种炸药的 5 s 延滞期爆发点均超过 300 ℃,热安全性 较好。

表4 造型粉的热感度

Table 4	Thermal	sensitivity	of modeling	powder
---------	---------	-------------	-------------	--------

No.	T_{5s} / °C
HQ-30	313
HQ-20	308

3.2.3 造型粉贮存稳定性

新型含能材料研究过程中,为提高数据质量,往往 一次制样多次使用,样品的贮存稳定性是确定样品的 安全使用规则的重要依据。HQ-30炸药配比中 α-AlH₃含量多,其贮存稳定性数据在此类炸药中有较 强代表性。采用GJB772A-1997方法601.1和602.1 测试不同贮存时间后HQ-30炸药造型粉的机械感度, 结果见表5。

表5 不同贮存时间后造型粉的机械感度

Table 5 Mechanical sensitivity of molding powder after different storage time

e	·			
No.	<i>t</i> / d	<i>I</i> _b / %	P _b / %	
	1	20	8	
HQ-30	210	52	64	
	370	84	80	

从表5可知,随贮存时间的增加,造型粉的机械感 度呈增大趋势,贮存210天后的造型粉撞击感度和摩 擦感度都超过40%。这是因为在贮存过程中,造型粉 中的α-AlH₃会分解少量氢,部分逸出,另外部分留在 造型粉中。在受到外界机械刺激时,α-AlH₃中分解少 量氢后形成的孔穴易变为热点,导致机械感度增加。 此外,机械感度测试中的试验样品与环境并未完全封 闭,在受到外界机械刺激时,留在造型粉中的氢与环境 中的氧也会发生燃烧反应,导致造型粉的进一步分解 和爆炸,引起机械感度增加。因此,进行各种试验时, 造型粉应现用现制。

3.3 爆轰性能

3.3.1 α-AlH₃对HMX基凝聚相炸药爆轰参数的影响

图 3 和图 4 分别是表 2 中各炸药配比的密度、爆速、爆热和爆容随α-AlH₃含量增加的变化趋势。图 3 数据表明,随着α-AlH₃含量的增加,炸药的爆热和爆容呈现增加的趋势,且爆热数值与同质量分数的含铝

炸药相当,与经验公式的计算值相吻合。含铝炸药爆 轰二次反应理论认为,铝与高能炸药爆轰产物发生了 二次反应,这些反应将炸药中的氧元素转移到铝的氧 化物中,氧元素转移的过程伴随着更多能量的释放,是 含铝炸药增加能量的主要来源。爆热和爆容数据表 明,凝聚相炸药中的α-AlH₃中的铝元素可以与高能炸 药爆轰产物发生二次反应,放出热量。由于爆热是在 无氧环境中测试,α-AlH₃中的氢元素主要以气体的形 式存在于爆轰产物中,有效增加了爆轰产物的体积。

图 4 数据表明,随着 α -AlH₃含量的增加,炸药的密度和爆速均呈下降趋势。将装药密度、相对密度及HMX、黏结剂特征爆速代入 Urizar 公式计算 α -AlH₃特征爆速^[15],得到 α -AlH₃特征爆速为 6078 m·s⁻¹,低于铝粉特征爆速 6850 m·s⁻¹。炸药密度下降是因为 α -AlH₃晶体密度较低及压药相对密度降低,爆速下降的原因主要是 α -AlH₃特征爆速较低和压药相对密度较低。

图3 爆热及爆容与α-AlH₃含量关系

Fig.3 Relationship between explosion heat and specific volume with content of α -AlH₃

图4 爆速和装药密度与α-AlH₃含量关系

Fig.4 Relationship between detonation velocity and charge density with content of α -AlH₃

3.3.2 α-AlH₃对HMX基凝聚相炸药做功能力的影响

α-AlH₃相对于铝粉的突出特点是极高的氢含量, 因其特征爆速低于铝粉,故含α-AlH₃炸药爆轰作用研 究应侧重于内爆、水下这一类体现炸药爆轰产物膨胀 做功能力的领域^[20]。炸药对外做功过程分为高、中、 低压三个阶段。高压阶段可用爆轰产物的C-J压力表 征。弹道摆爆炸室体积为药柱体积的30倍,测试时药 柱不与弹丸直接接触,所以弹道摆数值体现爆轰产物 膨胀部分做功能力,约22%~32%^[21],可以表征爆轰产 物膨胀中压阶段做功能力。使用水下爆炸实验测试炸 药能量时,爆轰产物对外做功时能量损失很少,近似绝 热过程,常用来表征炸药总做功能力。

炸药对破片有效加速阶段主要位于高压及中压阶段,对应炸药冲击波驱动力和爆轰产物的膨胀力。炸药总能量大小对水下毁伤有现实意义。使用铝粉含量为30%的含铝炸药(HL-30)与HQ-30炸药进行做功能力对比实验,用爆压(*p*_{C-1})对比高压阶段做功能力,用弹道摆威力(*W*)对比中压阶段做功能力,用水下能量(*e*₁)的TNT当量值对比总做功能力,并与爆热的TNT当量值进行对比,结果见表6。其中,水下能量*e*₁为样品的冲击波能*e*₅与气泡能*e*₆的和,水下能量TNT当量用样品的*e*₁除以对比TNT样品的*e*₁得到。爆热TNT 当量用样品的爆热除以TNT爆热4200 J·g⁻¹得到。

表6 炸药的做功能力(TNT当量)

Table 6	Work capacity of e	explosive (T	NT equivalent)
No.	W / %	$e_{\rm t}$ / %	$Q_{_V}$ / %
HQ-30	114.5	175	177
HL-30	135.0	179	176

爆轰产物的 C-J 压力可以用公式(1)进行工程 计算^[22]。

 $p_{\rm C-1} = 1/(1+\gamma)(\rho D^2)$ (1)

式中, p_{C_1} 为炸药C-J爆轰压,GPa; γ 为爆轰产物绝热指数,为对比计算方便,值取3;p为混合炸药密度,g·cm⁻³; D为混合炸药爆速,km·s⁻¹。

弹道摆威力值为100%时绝对功W₀为1297 kJ^[21], 将两种炸药的弹道摆威力值与W₀相乘,可以得到两种 炸药弹道摆的绝对功。爆轰压和弹道摆绝对功计算结 果见结果见表7。

表 6 数据表明, HQ-30 与 HL-30 两种炸药对外总 做功能力相当, 当量值与爆热当量值接近。表 7 中数 据表明, HQ-30 炸药在高压阶段做功能力弱于 HL-30 炸药, 在中压阶段做功绝对值也低于 HL-30 炸药。含 α-AlH₃的凝聚相炸药爆轰参数和做功能力研究表明, 该炸药发生爆轰反应时,α-AlH₃与高能炸药爆轰产物 发生了二次反应,提高了炸药的总能量,但二次反应能 量释放时间较为滞后,为炸药对外做功在高压阶段和 中压阶段提供能量低于含铝炸药。

表7 炸药的做功能力

Table 7 Work capacity of explosive of explosite	sives
---	-------

No.	p _{C−J} / GPa	W / kJ
HQ-30	22	1478
HL-30	30	1750

3.3.3 含α-AIH₃凝聚相炸药爆炸反应过程

研究表明,对于 C_aH_bN_cO_dAl_e类炸药,爆轰产物组 成与炸药氧平衡有直接的关系。此类炸药一般为负氧 平衡,爆轰产物中 CO₂含量较少^[22]。HQ 系列炸药均 为负氧平衡炸药,计算炸药爆轰产物组成时,可以假定 炸药中 C 元素在爆轰产物中以 CO 和 C 的形式存在, 氢元素以 H₂及 H₂O 的形式存在,铝元素以单质 Al 和 Al₂O₃的形式存在,氧元素存在于 CO、H₂O 及 Al₂O₃ 中,N 元素以 N₂的形式存在,故此类炸药爆轰反应方 程式可写为:

 $C_aH_bN_cO_dAl_e$ → $X_1CO+X_2C+X_3H_2O+X_4H_2+X_5Al_2O_3+X_6AHc/2N_2$ 依据化学反应质量守恒定律有:

 $X_1 + X_2 = a \tag{1}$

 $2X_3 + 2X_4 = b (2)$

$$X_1 + X_3 + 3X_5 = d \tag{3}$$

 $2X_5 + X_6 = e (4)$

依据爆轰产物气体状态方程有:

混合炸药爆容: $V_f = 22.4(X_1 + X_4 + c/2)$ (5) 依据化学反应能量守恒规律有:

混合炸药爆热: $Q_v = Q_p + 2.477n$

 $Q_{p} = X_{1}\Delta H_{F}^{0}(CO) + X_{3}\Delta H_{F}^{0}(H_{2}O) + X_{5}\Delta H_{F}^{0}(Al_{2}O_{3}) - \Delta H_{F}^{0}$ (Explosive) (6)

利用公式(1)~(6)计算含α-AlH₃的HMX基凝聚 相炸药(以1kg炸药计)爆轰产物组成,结果见图5。 从图5可知,随着α-AlH₃含量的增加,爆轰产物中的 Al₂O₃、H₂、C、Al含量增加,N₂、H₂O、CO含量下降,基 本与α-AlH₃含量增加呈线性关系,表明随着炸药中铝 元素含量的增加,氧元素在爆轰产物二次反应时逐渐 从H₂O、CO中转移到Al₂O₃。爆轰产物中氢气的含量 迅速增加,表明炸药中的氢元素未能与氧结合放出热 量,只增加了气体产物的体积。

3.3.4 氢气反应活性

为研究含α-AlH,的HMX基凝聚相炸药爆轰反应

含能材料

图5 含α-AlH₃凝聚相炸药爆轰产物组成

Fig. 5 Composition of detonation products of condensed phase explosives containing α -AlH₃

释放的氢气在有氧条件下的反应活性,在氧气压力为 0.1 MPa的条件下,对HQ-30炸药和HL-30炸药进行 过氧爆热测试,结果见表8,表中Q_v表示无氧爆热,Q_{v0} 表示氧气氛围下爆热。从表8可知,在密闭条件下, HQ-30炸药和HL-30炸药爆轰产物中的氢气都可以 与环境中氧气发生反应放出热量。又α-AlH₃燃烧热 高于铝粉^[1],所以HQ-30炸药过氧爆热高于HL-30 炸药。

表8 炸药过氧爆热

HL-30

Table 8	Detonation heat of explosive	e with excess oxygen
No.	$Q_{\rm v}$ / J·g ⁻¹	$Q_{ m v0}$ / J·g ⁻¹
HQ-30	7417	21464

19167

7412

α-AlH₃在高温下释氢需100 μs左右,且过程呈喷 射状^[13],极为有利于氢气在气相介质中的扩散。燃料 空气炸药发生云雾爆轰时体系呈正氧平衡,爆炸反应 时间长且呈现振荡爆轰特征,可以为α-AlH₃分解释氢 提供良好的反应环境。又α-AlH₃燃烧热高于铝粉^[1], 氢气在空气中爆炸浓度范围宽,点火能小,所以可以探 索α-AlH₃在燃料空气炸药反应特性。

4 结论

(1)测试结果表明,自制α-AlH₃机械感度低,环境 相对湿度高于60%时吸湿明显,加热条件下易放出氢 气,处理α-AlH₃样品时应控制环境温湿度;采用梯次 控温冷却直接法工艺制得的含α-AlH₃的凝聚相炸药 造型粉机械感度低于40%,成形性良好;α-AlH₃含量 超过10%后药柱成形相对密度随其含量增加而降低; 造型粉机械感度随贮存时间增加而增大,建议样品现 用现制。 (2)测试结果表明,α-AlH₃的特征爆速为6078 m·s⁻¹, 含α-AlH₃的 HMX 基凝聚相炸药与同质量分数含铝炸 药相比,二者总做功能力相当,爆轰产物在高压和中压 阶段做功能力较低;α-AlH₃中的氢元素在爆轰产物中 主要以氢气的形式存在,环境中有氧时,氢气可以与氧 反应放出热量。

参考文献:

- [1] 姜帆,王晓峰,冯晓军,等.固体储氢材料在炸药中的应用研究 进展[J].飞航导弹,2020(2):90-95.
 JIANG Fan, WANG Xiao-feng, FENG Xiao-jun, et al. Application of solid hydrogen storage materials in explosives[J]. Aerodynamic Missile Journal, 2020(2):90-95.
- [2] Finholt A E, Bond A C, Schlesinger H I. Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry
 [J]. Journal of American Chemistry Society, 1947, 69 (5): 1199–1203.
- [3] Graetz J, Reilly J J, Yartys V A, et al. Aluminum hydride as a hydrogen and energy storage material: Past, present and future
 [J]. Journal of Alloys and Compounds, 2011, 5095: 5517– 5528.
- [4] David LEMPERT, Gelii NECHIPORENKO, George MANELIS. Energetic performances of solid composite propellants [J]. Central European Journal of Energetic Materials, 2011, 8(1): 25-38.
- [5] 张伟,刘运飞,谢五喜,等.热分析法研究α-AlH₃与固体推进剂组分的相容性[J].火炸药学报.2015, 38(1):41-46.
 ZHANG Wei, LIU Yun-fei, XIE Wu-xi, et al. Study on compatibility of AlH₃ with compositions of solid propellant by thermal analysis method [J]. *Chinese Journal of Explosive & Propellants*, 2015, 38(1): 41-46.
- [6] Feng Mu-Ye, Li He-Ping, Luo Kai H. A molecular dynamics study on oxidation of aluminum hydride (AlH₃)/ hydroxyl-terminated polybutadiene (HTPB) solid fuel[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4469– 4476.
- [7] Gregory Young, Grant A Risha, Terrence L Connell Jr, et al. Combustion of HTPB based solid fuels containing metals and metal hydrides with nitrous oxide[J]. *Propellants, Explosives, Pyrotechnics*, 2019, 44(6): 744–750.
- [8] 袁雪玲,李和平,庞爰民,等.三氢化铝释氢改性调控方法及机理研究进展[J].固体火箭技术,2020,43(6):739-747.
 YUAN Xue-lin, LI He-ping, PANG Ai-min, et al. Research progress on regulation method and mechanism of hydrogen evolution modification of aluminum hydride[J]. Journal of Solid Rocket Technology. 2020,43(6):739-747.
- [9] Mijeong Park, Wooram Kim, Younja Kwon, et al. Wet synthesis of energetic aluminum hydride[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(10): 1233-1241.
- [10] 庞爱民,朱朝阳,徐星星. 三氢化铝合成及应用评价技术进展
 [J]. 含能材料,2019,27(4):317-325.
 PANG Ai-min, ZHU Zhao-yang, XU Xing-xing. Recent progresses on synthesis and evaluation of AlH₃[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2019, 27 (4): 317-325.

- [11] Young G, Piekiel N, Chowdhury S, et al. Ignition behavior of α-AlH₃[J]. Combustion Science and Technology, 2010, 182: 1341–1359.
- [12] Luigi T. DeLuca, Luca Rossettini, Charles Kappenstein, et al. Ballistic characterization of AlH₃-based propellants for solid and hybrid rocket propulsion [C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 2-5 August 2009, Denver, Colorado, AIAA 2009–4874.
- [13] Bazyn T, Eyer R, Krier H, et al. Combustion characteristics of aluminum hydride at elevated pressure and temperature [J]. *Journal of Propulsion and Power*, 2004, 20(3):427–431.
- [14] 牛磊, 苗璐, 曹少庭, 等. 含 α-AlH₃ HMX 基炸药爆轰产物计算
 [J]. 火工品, 2020(2):53-56.
 NIU Lei, MIAO Lu, CAO Shao-ting, et al. Calculation of detonation products of HMX based explosives containing α-AlH₃
 [J]. *Initiators and Pyrotechnics*, 2020(2):53-56.
- [15] 牛磊,王亲会,曹少庭,等.α-AlH₃对HMX基炸药爆轰参数的影响[J].火工品,2018(3):23-26.
 NIU Lei, WANG Qin-hui, CAO Shao-ting, et al. The Influence of α-AlH₃ on the detonation parameters of HMX-based Explosive[J]. *Initiators and Pyrotechnics*, 2018(3):23-26.
- [16] 牛磊,曹少庭,马海峰,等.α-AlH₃对凝聚相炸药能量输出的影响
 [J].科学技术与工程,2019,19(21):162-166.
 NIU Lei, CAO Shao-ting, MA Hai-feng, et al. The influence of α-AlH₃ on energy output of condensed phase explosives[J]. *Science Technology and Engineering*,2019,19(21):162-166.
- [17] 张彦,唐望,秦明娜,等.α'-AlH₃的制备及形成研究[J].固体火箭 技术,2017,40(5):605-608.
 ZHANG Yan, TANG Wang, QIN Ming-Na, et al. α'-AlH₃

Preparation of α' -AlH₃ and its crystallization process [J]. *Journal of Solid Rocket Technology*. 2017, 40(5):605–608.

- [18] 中国兵器工业总公司.GJB 772A-1997:炸药试验方法[S].北 京:中国标准出版社,1997.
 China North Industries Group Corporation.GJB 772A-1997: Explosive test method [S]. Beijing: China Standard Press, 1997
- [19] 严蕊,胡岚,张彦,等.环境湿度对AIH₃稳定性的影响[J].火炸药 学报,2015,38(3):94-98.
 YAN Rui, HU Lan, ZHANG Yan, et al. Effect of environmental humidity on the stability of AIH₃[J]. *Chinese Journal of Explosive & Propellants*, 2015,38(3):94-98.
- [20] 卢勇,王伯良,何中其,等.温压炸药爆炸能量输出的实验研究
 [J].含能材料,2014,22(5):684-687.
 LU Yong, WANG Bo-liang, HE Zhong-qi, et al. Experimental research on energy output of thermobaric explosive[J]. *Chinese Journal of Energetic Materials*, 2014, 22(5):684-687.
- [21] 夏天赦.改进威力弹道摆的研究[J].火炸药,1982(4):63-67.
 XIA Tian-She. Research on improving powerful ballistic pendulum[J]. *Explosives & Propellants*, 1982(4):63-67.
- [22] 孙业斌. 军用混合炸药[M].北京:兵器工业出版社,1995.
 SUN Ye-bin. Military mixed explosives[M]. BeiJing: Weapons Industry Press, 1995.
- [23] 王彩玲,赵省向,贾铭,等.含AP非理想炸药爆轰产物分析与计算[J].含能材料,2014,2:235-239.
 WANG Cai-ling, ZHAO Sheng-xiang, JIA Ming, et al. Calculation of detonation products for non-ideal explosive with AP
 [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014,22(2): 235-239.

Safety and Detonation Performance of HMX-based Condensed Phase Explosives Containing α -AlH₃

NIU Lei, CAO Shao-ting, JIN Da-yong, GAO Jie, GUO Xin

(Xi'an Modern Chemistry Research Institute, Xi'an 710065, China)

Abstract: In order to explore the detonation law of α -AlH₃ in condensed phase explosive, the safety features of α -AlH₃ were characterized. The results indicated that α -AlH₃ had poor thermal stability due to its sensitivity to temperature and humidity. The operational condition for α -AlH₃ samples should not exceed 30 °C RT and 60% RH. HMX was selected as the main high explosive to develop a formulation containing α -AlH₃ with a self-designed technology namely direct method of step temperature control and cooling. The safety, detonation performance, work capacity and explosion reaction process of the explosive were studied. The molding powder had low mechanical sensitivity and good moldability. When the α -AlH₃ content exceeded 10%, the relative density of the grain decreased with increasing content of α -AlH₃. The characteristic detonation velocity of α -AlH₃ was 6078 m·s⁻¹. Compared with an HMX based explosive formulation containing aluminum, the counterpart with α -AlH₃ had an equivalent work capacity. But its work capacity was poor at the high and medium pressure stage of the detonation products. The hydrogen element in α -AlH₃ mainly existed in the form of hydrogen in the detonation products.

Key words: α-AlH3; safety; detonation performance; detonation products; work capacity; condensed phase explosivesCLC number: TJ55; O64Document code: ADOI: 10.11943/CJEM2021079

(责编: 王艳秀)