文章编号:1006-9941(2021)10-0964-07

## 含储氢材料的 RDX 基混合炸药能量输出特性

吴星亮1,徐飞扬1,王 旭1,董卓超1,马 腾1,罗一民1,徐 森1,2,曹卫国3,刘大斌1

(1.南京理工大学化工学院,江苏南京 210094; 2.国家民用爆破器材质量监督检验中心,江苏南京 210094; 3.中北大学环境与安全工程学院,山西太原 030051)

摘 要: 为了研究含 Mg基储氢材料、含 Ti基储氢材料、含 ZrH₂储氢材料等三种混合炸药的能量输出特性,采用恒温式爆热量热仪和水下爆炸系统分别研究了 3 种含储氢材料混合炸药的爆热和水下能量特征。结果表明:在 RDX/储氢材料/AP/others 温压配方体系中,3 种含储氢材料炸药爆热的关系为含 Mg基>含 Ti基>含 ZrH₂,爆热值分别为 7587.0606,6416.4741,3950.6279 kJ·kg<sup>-1</sup>,表明含储氢材料炸药的爆热与储氢材料的化学潜能呈正相关。水下爆炸中,含储氢材料混合炸药的冲击波峰值压力、冲量、能流密度、冲击波能的大小关系保持一致,从大到小依次为含 Mg基、含 Ti基、含 ZrH₂储氢材料混合炸药,冲击波能依次分别为 1.41 倍、1.26 倍、0.97 倍 TNT 当量,表明活性高、潜能大的储氢材料对水下爆炸冲击波的推动作用更大。储氢材料在水下爆炸能量中主要贡献在气泡脉动上,含 Mg基、含 Ti基、含 ZrH₂储氢材料混合炸药的气泡能分别为 2.17 倍、1.78 倍、0.86 倍 TNT 当量,表明 Mg基储氢材料 在二次反应能量释放程度上最优,其次是 Ti基储氢材料,ZrH₂的反应程度最低。3 种含储氢材料混合炸药的水下爆炸能量和爆热的大小趋势保持一致,总体能量水平依次是含 Mg基>含 Ti基>含 ZrH₂。含 Mg 储氢材料炸药的水下爆炸能量最大,达到 2.02 倍 TNT 当量。ZrH₂在温压体系配方中的适用性不强,爆热和水下爆炸能量均低于 TNT。

关键词:储氢材料;爆热;水下爆炸;冲击波;气泡脉动;能量特性;TNT当量
 中图分类号:TJ55;O64
 文献标志码:A

DOI:10.11943/CJEM2021126

## 1 引言

金属储氢材料因具有高能量密度、高燃烧热值、高 释能效率等优点被用作添加剂广泛应用于炸药、推进 剂等含能材料中<sup>[1-8]</sup>,以提高含能材料的综合性能。金 属储氢材料分为金属及金属合金氢化物、金属配位氢 化物两大类<sup>[9]</sup>,氢化镁、氢化钛和氢化锆是近几年研究 较多的三种金属氢化物,也是几种典型的金属储氢 材料<sup>[10-11]</sup>。

当前,国内外学者对于向混合炸药、乳化炸药、推进剂等含能材料中添加金属氢化物开展了大量研究。

收稿日期:2021-05-19;修回日期:2021-07-02 网络出版日期:2021-08-23

基金项目:装备预研国防科技重点实验室基金项目: (6142603200509,6142603180408)

作者简介:吴星亮(1994-),男,博士研究生,主要从事炸药性能及 炸药爆炸输出特性研究。e-mail:wuxingliang94@163.com 通信联系人:徐森(1981-),男,副教授,主要从事爆炸力学研究。

e-mail:xusen@njust.edu.cn

Wei Cao<sup>[12]</sup>等研究发现将 MgH,添加到含铝炸药中, 能够增加其爆炸热量和增强其后燃效应。张冠永[13] 等通过水下爆炸试验和空中爆炸试验研究发现镁硼储 氢合金(Mg(BH<sub>x</sub>)<sub>v</sub>)能够有效提高硝酸酯炸药的能量 和后燃效应。Bing Xue等<sup>[14]</sup>向 RDX 基混合炸药中添 加TiH,,其水下爆炸结果显示冲击波能、气泡能均明 显提高;且小粒径的TiH<sub>2</sub>( $D_{50}$ =0.96 µm)性能更佳<sup>[15]</sup>。 Yang Yanjing 等<sup>[16]</sup>研究了含有 ZrH<sub>2</sub>的 HTPB 推进剂的 反应机理,ZrH,能独立地脱氢产生H,和金属Zr,从而 促进气相燃烧反应。Cudziło等<sup>[17]</sup>对含Al、(Al/ZrH<sub>2</sub>)、 TiH,和ZrH,添加剂的RDX基非理想炸药的爆热进行 了详细研究,并分析了爆炸后固体产物,所有含金属炸 药的能量均高于RDX本身,AI对总能量释放呈现正作 用,而TiH,是这三种添加剂中反应性最低的添加剂。 在我们的前期研究中,陈愿等[18]等研究了含新型储氢 合金 RDX 基炸药的水下爆炸能量性能,其总能量与同 等铝含量的炸药相比高4.7%。以上研究表明,虽然金 属氢化物在含能材料中应用具有相当大的优势,但仍

引用本文: 吴星亮, 徐飞扬, 王旭, 等. 含储氢材料的 RDX 基混合炸药能量输出特性[J]. 含能材料, 2021, 29(10):964-970.
 WU Xing-liang, XU Fei-yang, WANG Xu, et al. Energy Output Characteristics of RDX-based Composite Explosives Containing Hydrogen Storage Materials[J].
 Chinese Journal of Energetic Materials (Hanneng Cailiao), 2021, 29(10):964-970.

Chinese Journal of Energetic Materials, Vol.29, No.10, 2021 (964-970)

存在一些问题,如MgH,易分解和与水反应,在含能材 料中直接使用存在一定的安全隐患;而氢化钛和氢化 锆相对于氢化镁更加稳定,但热力学性能一般。同时 关于氢化镁、氢化钛和氢化锆三种氢化物储氢材料在 温压体系混合炸药中的应用未见报道。基于此,本课 题组将金属氢化物添加至Al、B等其他高热值材料中, 通过复合工艺解决金属氢化物的安全性问题,制备形 成复合储氢材料,并将复合储氢材料添加至混合炸药, 研究不同金属氢化物对混合炸药能量特性的影响。本 文选择 MgH<sub>2</sub>-Al-B 复合储氢材料、TiH<sub>2</sub>-Al-B 复合储氢 材料和ZrH,三种储氢材料作为RDX基混合炸药的金 属添加剂,炸药配方体系为RDX/储氢材料/AP/others, 通过爆热和水下能量对三种储氢材料的混合炸药能量 输出特性进行了研究,分析了三种储氢材料在该配方 体系中的反应特性,为复合储氢材料在温压体系混合 炸药的应用提供指导意义。

#### 2 实验

#### 2.1 样品

试验以TNT(2,4,6-Trinitrotoluene)和含储氢材料 RDX(Cyclotrimethylene trinitramine)基混合炸药 两类压装药柱作为试验样品。所用的储氢材料分为三种:MgH<sub>2</sub>-Al-B复合储氢材料、TiH<sub>2</sub>-Al-B复合储氢材料和ZrH<sub>2</sub>,均由中科院金属所自制提供,具体成分规格见表1。

## 表1 储氢材料规格

 Table 1
 Specifications of hydrogen storage material

| storage materials      | types of hydrogen storage materials          | main ingredients                | particle size/µm |
|------------------------|----------------------------------------------|---------------------------------|------------------|
| MgH <sub>2</sub> -Al-B | Magnesium-based hydrogen storage materials   | Al:MgH <sub>2</sub> :B=70:15:15 | 5-15             |
| TiH <sub>2</sub> -Al-B | Titanium-based hydrogen storage materials    | Al:TiH <sub>2</sub> :B=70:15:15 | 5-20             |
| ZrH <sub>2</sub> -0    | Zirconium hydride hydrogen storage materials | ZrH <sub>2</sub>                | 5-20             |

#### 2.2 实验及装置

## 2.2.1 爆热

恒温式爆热量热仪主要由爆热弹体、恒温循环系 统及计算机数据采集系统组成,爆热弹容积为20L, 见图2。试样为 Φ40 mm、质量为80g圆柱形药柱样 品,精确称量到0.0001g,传爆药柱为7g的JH-14<sup>[19]</sup> 标准药柱,每个样品平均测定2次。以蒸溜水为测温 介质,测定水温变化值。根据热量计的热容量及温升 值,即可求出单位质量试样在给定条件下的爆热,计算 公式<sup>[20]</sup>如(1)式:

#### CHINESE JOURNAL OF ENERGETIC MATERIALS

$$Q_{v,\tau} = \frac{C(t_1 - t_0 - \Delta t) - q_d - Q_b \cdot m_b}{m}$$
(1)

式中, $Q_{V,T}$ ,样品定容爆热, $kJ\cdot kg^{-1}$ ;C,系统热容量值, 由苯甲酸进行标定, $kJ\cdot K^{-1}$ ; $t_1$ ,量热桶内最终水温,K;  $\Delta t$ ,系统修正温升,K; $t_0$ ,量热桶内初始水温,K; $q_d$ ,雷 管的爆热值,kJ; $Q_b$ ,传爆药的定容爆热, $kJ\cdot kg^{-1}$ ; $m_b$ ,传 爆药的质量,kg;m,样品的质量,kg。

#### 2.2.2 水下爆炸

试验在8.0 m×8.0 m水池中进行,样品和传感器入水深度为4.0 m,传感器距离爆心的水平距离为3.0 m,

RDX 基混合炸药选用含 AP(Ammonium Perchlorate)类型的温压体系配方(RDX/储氢材料/AP/others, others 为钝感剂、黏结剂等),将 3 种不同储氢材料添加至混合炸药中,通过混合、捏合、干燥、造粒、压装等工艺制成实验药柱:TNT(1.58 g·cm<sup>-3</sup>)、1<sup>#</sup>(1.75 g·cm<sup>-3</sup>)、2<sup>#</sup>(1.80 g·cm<sup>-3</sup>)、3<sup>#</sup>(2.08 g·cm<sup>-3</sup>),药柱实物如图 1 所示,1<sup>#</sup>、2<sup>#</sup>、3<sup>#</sup>样品所含的储氢材料分别为表 1 中的MgH<sub>2</sub>-Al-B、TiH<sub>2</sub>-Al-B、ZrH<sub>2</sub>-0。3 种含储氢材料混合炸药的配方相同,均为 RDX:储氢材料:AP:others=35:35:20:10。对于 3 种储氢材料下文简称 Mg基储 氢材料、Ti基储氢材料、ZrH<sub>2</sub>储氢材料。



Fig.1 The explosive columns of TNT and RDX-based com-

posite explosives containing hydrogen storage materials



图2 恒温式爆热量热仪

Fig.2 Constant temperature detonation heat calorimeter

样品的装药结构如图 3, 直径为 Φ40 mm, 质量为 100 g, 实验布置如图4所示。

采用PCB138A10水下激波传感器(美国PCB公司, 量程:68950 kPa;灵敏度(±15%):0.073 mV·kPa<sup>-1</sup>)测 定药柱样品在水下爆炸时产生的冲击波压力时程曲线 和第一次气泡脉动周期。样品用防水袋将药柱进行隔 水处理,以10g RDX压装药作为传爆药柱,采用8\*工 业雷管进行起爆,每个样品进行2次平行实验。



图3 样品装药结构

Fig.3 Structure of the explosive charge

#### 表2 TNT和含储氢材料混合炸药的爆热结果

Table 2 Detonation heat of TNT and composite explosives containing hydrogen storage materials



图4 水下爆炸装置

Fig.4 Underwater explosive device

#### 3 结果与讨论

## 3.1 含储氢材料炸药的爆热

TNT和含储氢材料炸药的爆热结果如表2所示。 从表2可以看出,含Mg基储氢材料混合炸药的爆热值 最高,7587 kJ·kg<sup>-1</sup>,达到1.85倍TNT当量。在相同体 系配方、相同比例下,三种含储氢材料炸药爆热值的关 系为1<sup>\*</sup>>2<sup>\*</sup>>3<sup>\*</sup>,其中含Ti基混合炸药的爆热为1.56倍 TNT当量,含ZrH<sub>2</sub>混合炸药爆热最小,略小于TNT。 分析认为,在相同配方条件下,其爆热影响因素为储氢 材料的种类,即储氢材料在混合炸药中的反应情况。 根据二次反应理论<sup>[21]</sup>,储氢材料的反应在爆轰波CJ面 之后,在本配方体系中表现为储氢材料与AP、爆轰产物 的反应;1<sup>\*</sup>和2<sup>\*</sup>混合炸药中,除了金属氢化物不同,其它 成分均保持一致,而TiH<sub>2</sub>的燃烧热值(21.27 MJ·kg<sup>-1</sup>)<sup>[22]</sup> 低于MgH<sub>2</sub>(30.89 MJ·kg<sup>-1</sup>),在混合炸药中表现出爆 热较小。3种储氢材料ZrH<sub>2</sub>的燃烧热值最低,为 12.22 MJ·kg<sup>-1</sup>,致使含ZrH<sub>2</sub>混合炸药的爆热最小。

|          |                                    | -            | -               |                                          | 0                             |                |
|----------|------------------------------------|--------------|-----------------|------------------------------------------|-------------------------------|----------------|
| sample   | oxygen balance / g•g <sup>-1</sup> | <i>m</i> / g | $m_{\rm b}$ / g | $Q_{\mathrm{V,T}}$ / kJ·kg <sup>-1</sup> | average / kJ·kg <sup>-1</sup> | TNT equivalent |
| TNT      | -0.74                              | 79.7392      | 6.9832          | 4134.7269                                | 4104 0100                     | 1.00           |
|          |                                    | 79.4872      | 7.0234          | 4073.2943                                | 4104.0106                     | 1.00           |
| 1#       | -0.65                              | 79.7484      | 6.9707          | 7610.8069                                | 7597.0000                     | 1.85           |
|          |                                    | 79.7007      | 7.0027          | 7563.3143                                | /58/.0606                     |                |
| 2# -0.62 | -0.62                              | 79.8699      | 7.0191          | 6321.8387                                | 6416 4741                     | 1.56           |
|          |                                    | 79.9785      | 6.9303          | 6511.1095                                | 6416.4741                     |                |
| 3#       | -0.37                              | 79.4986      | 7.0060          | 3944.4307                                | 3950.6279                     | 0.96           |

Note: m is the mass of sample;  $m_{\rm b}$  is the mass of booster charge;  $Q_{\rm V,T}$  is the result of detonation heat.

## 3.2 含储氢材料炸药的冲击波特征

冲击波超压是炸药在水下爆炸的重要毁伤参数, 对于炸药威力的评估十分重要。炸药在水中爆炸后, 冲击波超压迅速达到最大峰值,随后以指数形式衰减 至静水压力,公式如(2)式<sup>[23]</sup>:

 $p(t) = p_{\rm ms} \cdot \exp\left(-t/\theta\right) \tag{2}$ 

式中,p(t)为冲击波超压随时间的变化关系,MPa; $p_{ms}$ 为冲击波超压峰值,MPa; $\theta$ 为时间常数,冲击波压力从峰值压力 $p_{ms}$ 衰减到 $p_{ms}/e$ 时所经历的时间,s。

冲击波作用所形成的爆炸冲量 *L*是冲击波压力对时间的积分<sup>[23]</sup>:

$$I_{s} = \int_{0}^{6.7\theta} p^{2}(t) dt$$
 (3)

能流密度  $E_d$ 是另一个衡量冲击波性能的重要参数<sup>[23]</sup>:  $E_d = (1-2.422 \times 10^{-4} p_{ms} - 1.031 \times 10^{-8} p_{ms}^2) (\rho_0 c_0)^{-1} \int_0^{6.7\theta} p^2(t) dt (4)$ 

单位质量炸药产生的有效冲击波能 E.<sup>[23]</sup>:

$$E_{s} = \frac{4\pi R^{2}}{w \rho_{0} c_{0}} \int_{0}^{6.7\theta} p^{2}(t) dt$$
(5)

式中,R为炸药离爆心的距离,m;w为炸药的装药量, kg; $\rho_o$ 为水的密度,kg·m<sup>-3</sup>; $c_o$ 为水的音速,m·s<sup>-1</sup>。

3种含储氢材料炸药的冲击波压力随时间变化如 图 5 所示,其冲击波特征参数见表 3。样品 1\*、2\*、3\*的 冲击波峰值压力、能流密度、冲击波能依次递减,根据 P.J.Miller<sup>[24]</sup>提出的含铝炸药爆轰反应模型,表明在该 类型配方中,储氢材料在化学反应区的反应释能不同, 对于冲击波的影响也不尽相同,Mg基储氢材料参与 的反应贡献最大,Ti基储氢材料略小,而纯的 ZrH<sub>2</sub>的 反应贡献最小。其原因是由于 MgH<sub>2</sub>的活性最大<sup>[22]</sup>, 更容易激发储氢材料中惰性物质硼的反应。储氢材料 和传统的铝粉相似,相对于炸药是惰性物质,在反应动 力学上对反应物的浓度起稀释作用,导致爆速、爆压及



图5 含储氢材料炸药的冲击波 p-t曲线

**Fig.5** *p-t* curves of the shock wave of the explosives containing hydrogen storage materials

## CHINESE JOURNAL OF ENERGETIC MATERIALS

波阵面上的化学能降低[25-27]。

时间常数θ可以表征炸药水中爆炸冲击波传播过 程中的压力衰减快慢程度。含Ti基混合炸药的冲击 波超压峰值略小于含Mg基混合炸药,但其时间常数 较1\*稍大,同时冲击波冲量相当。而Zr基混合炸药 (3\*)在冲击波超压峰值与样品2\*相当的情况下,时间 常数θ和冲量远小于样品2\*。表明ZrH<sub>2</sub>对于冲击波推 动的作用远小于其他两种储氢材料。

表3 含储氢材料炸药的冲击波特征参数

**Table 3** Shock wave characteristic parameters of the explo-sives containing hydrogen storage materials

| sample | $p_{ m ms}$ / MPa | $	heta$ / $\mu$ s | $I_{\rm s}/{\rm kPa}\cdot{ m s}$ | $E_{\rm d}/\rm W\cdot m^{-2}$ | $E_{\rm s}/{\rm MJ}\cdot{\rm kg}^{-1}$ |
|--------|-------------------|-------------------|----------------------------------|-------------------------------|----------------------------------------|
| 1#     | 6.849             | 64                | 0.588                            | 9.541                         | 0.85                                   |
|        | 6.926             | 62                | 0.601                            | 9.872                         | 0.84                                   |
| 2#     | 6.474             | 68                | 0.566                            | 8.591                         | 0.75                                   |
|        | 6.501             | 69                | 0.581                            | 8.731                         | 0.76                                   |
| 3#     | 6.389             | 49                | 0.410                            | 6.882                         | 0.58                                   |
|        | 6.275             | 46                | 0.390                            | 6.783                         | 0.58                                   |

Note:  $p_{ms}$  is the peak overpressure of the shock wave;  $\theta$  is the time constant which the shock wave pressure decays from peak pressure  $p_{ms}$  to  $p_{ms}/e$ ;  $I_s$  is the impulse of shock wave;  $E_d$  is the energy flow density;  $E_s$  is the effective shock wave energy produced by explosives per unit mass.

#### 3.3 含储氢材料炸药的气泡脉动

含储氢材料炸药的气泡脉动波形如图6所示。气 泡脉动的压力远小于冲击波压力,但其作用时间却远 大于冲击波的作用时间,在一定程度上对目标物的毁 伤起到致命作用,所以研究炸药水中气泡脉动过程具 有重要的战略意义<sup>[25]</sup>。气泡脉动的最大压力为脉动 压力峰值 *p*<sub>mb</sub>,脉动所形成的冲量 *I*<sub>b</sub>是脉动压力对时间 的积分<sup>[28]</sup>:

$$I_{\rm b} = \int_{\tau_1}^{\tau_2} p(t) dt$$
 (6)

文献[28-30]中积分基线 p1为脉动压力峰值的



图6 含储氢材料炸药的气泡脉动 p-t曲线

**Fig.6** *p-t* curves of bubble pulsation of explosives containing hydrogen storage materials

含能材料

5%~10%,考虑到噪声影响,本文的 $p_1$ 取13% $p_{mb}$ 。气泡脉动宽度 $\Delta T = T_2 - T_1$ 。

气泡能计算公式如(7)式[22]:

$$E_{\rm b} = \frac{0.675 p_0^{\frac{5}{2}}}{w \rho_0^{\frac{3}{2}}} \cdot T^3$$
(7)

式中, $p_0$ 为爆心处静水压力,Pa;T为气泡第一次振荡周期, $s_o$ 

含储氢材料炸药的水下气泡脉动参数计算结果见 表4。由表4可知,样品1<sup>\*</sup>、2<sup>\*</sup>、3<sup>\*</sup>的脉动压力峰值、脉 宽、脉动周期、气泡能均为1<sup>\*</sup>最大,其次是2<sup>\*</sup>、3<sup>\*</sup>。储氢 材料的主体物质是金属材料,金属材料相对于炸药属 于惰性物质,虽然炸药发生爆轰后会产生高温高压,但 金属材料氧化还原反应的时间(百微秒级)也远长于爆

表4 气泡脉动特征参数

 Table 4
 Characteristic parameters of bubble pulsation

| sample | $p_{\rm mb}/{\rm MPa}$ | $\Delta T/ms$ | T <sub>m</sub> /ms | $I_{\rm b}/{\rm kPa}\cdot{\rm s}$ | $E_{\rm b}/{\rm MJ}\cdot{\rm kg}^{-1}$ |  |
|--------|------------------------|---------------|--------------------|-----------------------------------|----------------------------------------|--|
| 1#     | 0.801                  | 10.97         | 154.58             | 2.995                             | 5.38                                   |  |
|        | 0.818                  | 11.23         | 154.69             | 3.041                             | 5.39                                   |  |
| 2#     | 0.750                  | 9.63          | 144.30             | 2.870                             | 4.37                                   |  |
|        | 0.757                  | 9.81          | 145.02             | 3.012                             | 4.44                                   |  |
| 3#     | 0.613                  | 9.53          | 113.81             | 2.478                             | 2.15                                   |  |
|        | 0.601                  | 9.37          | 113.61             | 2.391                             | 2.13                                   |  |

Note:  $p_{mb}$  is the peak overpressure of bubble pulsating;  $\Delta T$  is the width of bubble pulsation;  $T_m$  is the first bubble period;  $I_b$  is the impulse of bubble pulsation;  $E_b$  is the effective bubble energy produced by explosives per unit mass.

#### 表5 含储氢材料炸药的能量特性

Table 5
 Energy characteristics of explosives containing hydrogen storage materials

| sample | $p_{ m mb}/p_{ m ms}$ | $I_{\rm b}/I_{\rm s}$ | $E_s/MJ \cdot kg^{-1}$ | N <sub>s</sub> | $E_{\rm b}/{\rm MJ}\cdot{\rm kg}^{-1}$ | N <sub>b</sub> | $E_t/MJ \cdot kg^{-1}$ | N <sub>t</sub> | $X_{\rm t}/Q_{\rm V,T}$ |
|--------|-----------------------|-----------------------|------------------------|----------------|----------------------------------------|----------------|------------------------|----------------|-------------------------|
| TNT    | -                     | -                     | 0.60                   | 1.00           | 2.48                                   | 1.00           | 3.08                   | 1.00           | 75.05%                  |
| 1#     | 11.75%                | 5.07                  | 0.85                   | 1.41           | 5.38                                   | 2.17           | 6.225                  | 2.02           | 82.05%                  |
| 2#     | 11.61%                | 5.13                  | 0.76                   | 1.26           | 4.41                                   | 1.78           | 5.165                  | 1.68           | 80.50%                  |
| 3#     | 9.59%                 | 6.09                  | 0.58                   | 0.97           | 2.14                                   | 0.86           | 2.72                   | 0.88           | 68.85%                  |

Note:  $N_s$ ,  $N_b$ ,  $N_t$  represent the TNT equivalent of shock wave energy, bubble energy, and total energy, respectively

含储氢材料炸药的爆热和水下爆炸总能量的关系 见表5。由表5可以看出,水下能量小于爆热,为爆热 的68%~83%。其原因是由于两种表征能量的方式不 同,爆热侧重于炸药的热值,忽略了炸药爆炸时对周围 的冲击做功效果;而水下能量忽略了部分热值在水中 的消散,主要表征炸药在水中的做功能力。3种储氢 材料的水下能量和爆热的趋势保持一致,含Mg基储 氢材料炸药能量最大,其次是含Ti基储氢材料炸药, 轰时间(微秒级)<sup>[31]</sup>,所以含储氢材料炸药中的反应主 要分布在波阵面之后的二次反应上。而储氢材料的种 类是影响二次反应的重要因素,二次反应的程度直接 关系到气泡的脉动过程,由3.1节的爆热结果可以看 出,三种含储氢材料炸药的化学潜能大小依次为1<sup>#</sup>、 2<sup>#</sup>、3<sup>#</sup>,这与其气泡脉动特征规律保持一致,表明Mg基 储氢材料在混合炸药的二次反应能量释放程度上更 优,其次是Ti基储氢材料,ZrH,的反应程度最低。

## 3.4 三种含储氢材料炸药的能量特征

炸药的水下爆炸总能量 *E*,以冲击波能和气泡能来 计算,忽略传播中损耗的能量。计算公式如下:<sup>[22]</sup> *E*, = *E*, + *E*, (8)

取两次实验的平均值作为水下爆炸的最终结果, 同时计算  $p_{mb}/p_{ms}$ 、 $I_b/I_s$ 、冲击波能 TNT 当量( $N_s$ )、气泡能 TNT 当量( $N_b$ )、总能量 TNT 当量( $N_t$ )、 $N_t/Q_{v,T}$ ,计算结果如表 5 所示。

从表5可以看出,几种含储氢材料炸药的气泡脉动压力峰值约为冲击波压力峰值的9%~12%,但其脉动冲量是冲击波冲量的5~6倍,脉动压力的持续时间远大于冲击波的作用时间。其中含ZrH2储氢材料混合炸药的冲击波性能和气泡能明显低于其他两种含储氢材料,比TNT更低,依次仅为0.97倍和0.86倍TNT当量。含Mg基储氢材料炸药(1\*)在水下爆炸总能量上总体优于含Ti基、含ZrH2储氢材料炸药,主要体现在气泡能上,气泡能的TNT当量超过了2.0,而气泡能在总能量的占比较大,体现出的总能量较大。

含ZrH<sub>2</sub>储氢材料炸药能量不佳,略低于TNT。

#### 4 结论

通过爆热和水下爆炸研究了配方体系为RDX/储 氢材料/AP/others的含Mg、Ti、Zr基储氢材料混合炸 药爆炸能量输出特性,主要结论如下:

(1)在同体系、同比例配方中,3种含储氢材料混

合炸药爆热值的关系为含 Mg 基>含 Ti 基>含 ZrH<sub>2</sub>, 分别为 7587.0606, 6416.4741, 3950.6279 kJ·kg<sup>-1</sup>。 储氢材料的化学潜能(燃烧热)直接影响炸药的爆热。

(2)含储氢材料混合炸药的冲击波峰值压力、冲量、能流密度、冲击波能的大小关系保持一致,从大到 小依次为含 Mg基、含 Ti基、含 ZrH2储氢材料混合炸 药。活性高的金属氢化物质对水下爆炸冲击波的推动 作用更大。

(3)储氢材料对于水下能量的主要贡献在气泡脉动上,Mg基储氢材料在混合炸药的二次反应能量释放程度上更优,其次是Ti基储氢材料,ZrH2的反应程度最低,Mg基储氢材料混合炸药的气泡能的TNT当量最大达到了2.17。

(4)3种含储氢材料混合炸药的水下能量和爆热的趋势保持一致,总体能量水平依次是含Mg基>含 Ti基≫含ZrH<sub>2</sub>。含Mg基储氢材料混合炸药的水下爆 炸能量最大,达到2.02倍TNT当量。本研究的ZrH<sub>2</sub> 储氢材料在温压体系中的适用性不强,爆热和水下能 量都比TNT低。

**致谢:**感谢中国科学院金属研究所张军旗老师给予的指导 和帮助。

#### 参考文献:

- [1] 窦燕蒙,罗运军,李国平,等.储氢合金/AP/HTPB推进剂的热分 解性能[J].火炸药学报,2012,35(3):66-70.
   DOU Yan-meng,LUO Yun-jun,LI Guo-ping, et al. Thermal decomposition properties of hydrogen storage alloy /AI /HTPB propellant [J]. Chinese Journal of Explosives & Propellants, 2012,35(3):66-70.
- [2] 刘磊力,李凤生,支春雷,等. 镁基储氢材料对 AP/AI /HTPB 复合 固体推进剂性能的影响[J]. 含能材料,2009,17(5):501-504.
   LIU Lei-li,LI Feng-sheng, ZHI Chun-lei, et al. Effects of magnesium based hydrogen storage materials on the properties of composite solid propellant [J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2009,17(5):501-504.
- [3] Lempert D, Nechiporenko G, Manelis G. Energetic performances of solid composite propellants [J]. Central European Journal of Energetic Materials, 2011, 8(1): 25–38.
- [4] Sherman A, Farkas N. Metal-composite powder energetic materials[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014: 3892.
- [5] Yartys V A, Lototskyy M V, Akiba E, et al. Magnesium based materials for hydrogen based energy storage: Past, present and future[J]. *International Journal of Hydrogen Energy*, 2019, 44(15):7809-7859.
- [6] Yang-fan Cheng, Jian Su, Rong Liu, et al. Influential factors on the explosibility of the unpremixed hydrogen/magnesium dust[J]. International Journal of Hydrogen Energy, 2020, 45 (58): 34185-34192.
- $\cite{T}$  Yang-fan Cheng, Hong-bo Wu, Rong Liu, et al. Combustion behaviors and explosibility of suspended metal hydride  $\cite{TiH}_2$

dust[J]. International Journal of Hydrogen Energy, 2020, 45 (21): 12216-12224.

- [8] Wei-guo Cao, Wen-juan Li, Shuo Yu, et al. Explosion venting hazards of temperature effects and pressure characteristics for premixed hydrogen-air mixtures in a spherical container [J]. *Fuel*, 2021, 290: 120034.
- [9] 陈曦, 邹建新, 曾小勤,等. 镁基储氢材料在含能材料中的应用
  [J]. 火炸药学报, 2016, 39(3):1-8.
  CHEN Xi, ZOU Jian-xin, ZENG Xiao-qin, et al. Applications of Mg-based hydrogen storage materials in energetic material
  [J]. Chinese Journal of Explosives & Propellants, 2016, 39 (3):1-8.
- [10] 杨燕京,赵凤起,仪建华,等.纳米储氢材料在推进剂中的应用研究进展[J].含能材料,2016,24(2):194-201.
   YANG Yan-jing, ZHAO Feng-qi, YI Jian-hua, et al. Nanoscale hydrogen-storage materials: recent progresses and perspectives for applications in propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(2):194-201.
- [11] 张志强,王玉平.储氢材料及其在含能材料中的应用[J].精细石 油化工进展,2006,7(11):28-31.
  ZHANG Zhi-qiang, WANG Yu-ping. Hydrogen storage materials and their application in energetic materials[J]. Advances in Fine Petrochemicals, 2006,7(11):28-31.
- [12] Cao W, Song Q, Gao D, et al. Detonation characteristics of an aluminized explosive added with boron and magnesium hydride [J]. *Propellants, Explosives, Pyrotechnics*, 2019, 44 (11): 1393–1399.
- [13] 张冠永,魏晓安,堵平.含硼储氢合金(Mg(BH<sub>x</sub>)<sub>y</sub>)对硝酸酯炸药能量的影响[J].含能材料,2016,24(12):1205-1208.
   ZHANG Guan-yong, WEI Xiao-an, DU Ping. Effect of boron-containing hydrogen-storage-alloy(Mg(BH<sub>x</sub>)<sub>y</sub>) on the explosion energy of nitric ester explosive[J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*),2016,24(12):1205-1208.
- [14] Xue B, Lin M, Ma H, et al. Energy performance and aging of RDX-based TiH<sub>2</sub>, MgH<sub>2</sub> explosive composites [J]. *Propellants*, Explosives, Pyrotechnics, 2018, 43(7): 671–678.
- [15] Xue B, Ma H H, Shen Z W, et al. Effect of TiH<sub>2</sub> Particle size and content on the underwater explosion performance of RDX-based explosives [J]. *Propellants, Explosives, Pyrotechnics*, 2017; 42(7): 791–798.
- [16] Yang Y, Zhao F, Xu H, et al. Hydrogen-enhanced combustion of a composite propellant with ZrH<sub>2</sub> as the fuel[J]. *Combustion and Flame*, 2018, 187: 67–76.
- [17] Cudziło S, Trzciński WA, Paszula J, et al. Effect of titanium and zirconium hydrides on the detonation heat of RDX-based explosives-a comparison to aluminium[J]. *Propellants, Explosives, Pyrotechnics*, 2018; 43(3): 280–285.
- [18] Yuan Chen, Xiang Chen, Dejun Wu, et al. Underwater explosion analysis of hexogen-enriched novel hydrogen storage alloy
   [J]. Journal of Energetic Materials, 2015, 34(1):49-61.
- [19] 余昆,卫九泽,王爱玉,等,GJB2341-95 聚黑类炸药通用规范
  [S].北京:国防科工委军标出版社,1997.
  YU Kun, WEI Jiu-ze, WANG Ai-yu, et al. GJB2341-95 General specificcation for plastic bonded hexogen[S]. Beijing: Military standard publication department of commission of science technology and industry for national defense, 1997.
- [20] 于荫林,吴承云,殷风学.GJB 772A-97 炸药试验方法.方法 701.1[S].北京:国防科工委军标出版社,1997.
  YU Yin-lin, WU Cheng-yun, YIN Feng-xue.GJB 772A-97 Explosive test method. method 701.1[S]. Beijing: Military standard publication department of commission of science technol-

#### CHINESE JOURNAL OF ENERGETIC MATERIALS

含能材料

ogy and industry for national defense, 1997.

- [21] Cook M A, Filler A S, Keyes R T, et al. Aluminized explosives [J]. Journal of Physical Chemistry, 1957, 61(2):189–196.
- [22] Wu Xing liang, Xu Sen, Pan Ai ming, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH<sub>2</sub>(M=Mg, Ti, Zr) of energetic materials[J]. Defence Technology, 2021, (17):1262-1268.
- [23] Cole R H. Underwater explosions [M]. Dover publications, 1965:67-202.
- [24] Miller P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives [J]. *Mrs Online Proceedings Library Archive*, 1995,418:267-453.
- [25] 王秋实, 聂建新, 焦清介, 等. 不同铝氧比六硝基六氮杂异伍兹 烷基含铝炸药水下爆炸实验研究[J]. 兵工学报, 2016(增刊2): 23-28.

WANG Qiu-shi, NIE Jian-xin, JIAO Qing-jie, et al. Experimental research on underwater explosion of CL-20-based aluminized explosives with different Al/O ratios[J]. *Acta Armamentarii*, 2016(Suppl. 2):23-28.

[26] 荣吉利,赵自通,冯志伟,等.黑索今基含铝炸药水下爆炸性能的实验研究[J]. 兵工学报,2019,40(11):2177-2183.
 RONG Ji-li, ZHAO Zi-tong, FENG Zhi-wei, et al. Experimental study of underwater explosion performance of RDX-based aluminized explosive [J]. Acta Armamentarii, 2019, 40(11):

2177-2183.

- [27] 冯淞,饶国宁,彭金华,等. CL-20基炸药水中爆炸气泡脉动实 验研究[J].爆炸与冲击,2018,38(4):855-862.
  FENG Song, RAO Guo-ning, PENG Jin-hua, et al. Experimental study of bubble pulsation by underwater explosion of CL-20-based explosives [J]. Explosion and Shock Waves, 2018,38(4):855-862.
- [28] Murata K, Takahashi K, Kato Y. Precise measurements of underwater explosion phenomena by pressure sensor using fluoropolymer [J]. *Journal of Materials Processing Technology*, 1999, 85(1-3):39-42.
- [29] Murata K, Takahashi K, Kato Y. Measurements of underwater explosion performances by pressure gauge using fluoropolymer [C]// The 12th International Detonaation Symposium. San Diego: Department of Energy, 2002;336.
- [30] 胡宏伟,严家佳,陈朗,等. 铝粉含量和粒度对CL-20含铝炸药水中爆炸反应特性的影响[J]. 爆炸与冲击,2017(1):157-161.
   HU Jia-wei, YAN Jia-jia, CHEN Lang, et al. Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum[J]. Explosion and Shock Waves,2017(1):157-161.
- [31] Arnold W, Rottenkolber E. Thermobaric charges: Modelling and testing [C]//The 38th Internationl Annual Conference of ICT. Karlsruhe: Fraunhofer ICT, 2007:26–29.

#### Energy Output Characteristics of RDX-based Composite Explosives Containing Hydrogen Storage Materials

# WU Xing-liang<sup>1</sup>, XU Fei-yang<sup>1</sup>, WANG Xu<sup>1</sup>, DONG Zhuo-chao<sup>1</sup>, MA Teng<sup>1</sup>, LUO Yi-min<sup>1</sup>, XU Sen<sup>1,2</sup>, CAO Wei-guo<sup>3</sup>, LIU Da-bin<sup>1</sup>

(1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2. China National Quality Supervision Testing Center for Industrial Explosive Materials, Nanjing 210094, China; 3. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China)

Abstract: In order to study the energy output characteristics of three composite explosives containing Mg-based hydrogen storage materials, Ti-based hydrogen storage materials and ZrH<sub>2</sub> hydrogen storage materials respectively, a constant temperature detonation heat calorimeter and an underwater explosion system were used to study the detonation heat and underwater energy characteristics of the explosives. The results illustrated an order of the detonation heat in terms of a thermobaric formulation of RDX/hydrogen storage material/AP/others, which was Mg-based sample>Ti-based sample>ZrH,-based sample. Accordingly, the detonation heat for the three explosives were 7587.0606 kJ·kg<sup>-1</sup>, 6416.4741 kJ·kg<sup>-1</sup> and 3950.6279 kJ·kg<sup>-1</sup>. It was indicated that the detonation heat of the explosives containing hydrogen storage materials was positively correlated with the chemical potential of each hydrogen storage material. In underwater explosions, the explosion parameters including peak pressure, impulse, energy flow density and shock wave energy of the composite explosives presented a similar order, that the Mg-based sample was the best and the ZrH<sub>2</sub>-based sample was the worst. Accordingly, the shock wave energy was 1.41 times, 1.26 times and 0.97 times of TNT equivalent for each formula. It was showed that hydrogen storage materials with much higher activity and potential energy could be beneficial for the shock wave in underwater explosion. The contribution to the energy released in underwater explosion of hydrogen storage materials was mainly in the form of bubble pulsation. The bubble energy of the composite explosives containing Mg-based, Ti-based and ZrH<sub>2</sub> hydrogen storage materials were 2.17 times, 1.78 times, and 0.86 times of TNT equivalent respectively, indicating that Mg-based hydrogen storage material had the best energy releasing performance in the secondary reaction, followed by Ti-based hydrogen storage material and ZrH<sub>2</sub>was the worst The trends of the explosion parameters of the composite explosives in detonation heat test and underwater explosion test were consistent. The overall energy level of the explosives was in the order of Mg-based sample>Ti-based sample>ZrH,-based sample. The explosive containing Mg-based hydrogen storage material had the largest energy in underwater explosion, reaching up to 2.02 times of TNT equivalent. The applicability of the ZrH<sub>2</sub> in thermobaric formulation was not strong for both of the energy tested in detonation heat and underwater explosion was lower than TNT.

**Key words:** hydrogen storage materials; detonation heat; underwater explosion; shock wave; bubble pulsation; energy characteristics; TNT equivalent

CLC number: TJ55; O64

Document code: A

**DOI:** 10.11943/CJEM2021126

(责编: 王艳秀)