文章编号:1006-9941(2024)05-0465-10

核壳结构 nAl@Cu(BTC)/Fe(BTC)纳米铝热剂的制备及燃烧性能

史 喆^{1,2},赵媛媛¹,马志伟¹,杨玉林²,张 健²,王旭文²,梁家燕²

(1. 中国五洲工程设计集团有限公司,北京 100053; 2. 哈尔滨工业大学化工与化学学院,新能源转换与存储关键材料技术工业 和信息化部重点实验室,黑龙江 哈尔滨 150001)

摘 要: 为了解决纳米铝热剂的制备工艺中组分分布不均匀和燃烧效率低等问题,采用层层组装技术将铜-均苯三甲酸(Cu(BTC))和铁-均苯三甲酸(Fe(BTC))交替包覆在nAl表面,制备核壳结构nAl@Cu(BTC)/Fe(BTC)纳米铝热剂,并对其结构、形貌、热反应性能(铝热反应温度)和燃烧性能(燃烧时间、点火延迟时间和燃烧温度等)进行研究。结果表明:层层组装技术可以调控 包覆层的厚度和形貌,随着包覆层厚度的增加纳米铝热剂从粗糙疏松逐渐变得光滑致密;交替包覆12层Cu(BTC)/Fe(BTC)的纳米 铝热剂燃烧剧烈,火焰传播速率较快,在0.710 s内火焰达到最大,具有适中的点火延迟时间(0.509 s)、最短的燃烧时间(2.036 s)和 最高的燃烧温度(1425 ℃),此时,Cu(BTC)和Fe(BTC)的协同作用使其铝氧化反应温度峰值降低到552.5 ℃和735.0 ℃。

关键词:核壳结构;纳米铝热剂;nAl@Cu(BTC)/Fe(BTC);层层组装技术;燃烧性能
 中图分类号:TJ55;TQ560.7
 文献标志码:A

DOI:10.11943/CJEM2023268

0 引言

纳米铝热剂是一类特殊的纳米含能材料,通常情况下纳米铝热剂中的金属燃料和金属氧化剂为纳米尺寸的铝粉(nAl)和金属氧化物WO₃、MoO₃、CuO、Bi₂O₃、Fe₂O₃等^[1-2]。纳米铝热剂表面积大、传热和传质过程快,具有高反应活性和高能量密度的特性,被认为是传统含能材料的潜在替代品之一,可作为混合炸药和固体推进剂中的高能添加剂,从而提升火炸药的燃烧和能量释放速率^[3-5]。纳米材料的表界面效应可使铝热剂的性能发生明显改变,例如,nAl颗粒可在活性铝未达到熔融温度时发生铝热反应,并且大幅提升放热量^[6-7]。但是受制备工艺和方法等因素的限制,纳米铝热剂存在混合不均一、各组分分布不均匀等缺点,

收稿日期: 2023-12-25;修回日期: 2024-01-28
网络出版日期: 2024-03-22
作者简介:史喆(1993-),男,工程师,主要从事火炸药工程设计以
及工程技术研究。e-mail:chemshizhe@163.com
通信联系人:杨玉林(1969-),男,教授,主要从事含能材料设计合
成研究。e-mail:ylyang@hit.edu.cn
赵媛媛(1981-),女,正高级工程师,主要从事火炸药工程设计以及
工程技术研究。e-mail:zyy318@126.com

导致其燃烧不稳定,反应不完全,热量释放效率低,进 而影响混合炸药和固体推进剂的使用性能^[8]。

核壳或包覆结构是解决纳米铝热剂混合不均一、各 组分分布不均匀问题的主要方法之一^[9-10]。Séverac 等^[11]采用DNA将CuO与nAI定向组装制备nAI/CuO 纳米复合材料,研究结果显示,DNA使AI粉与CuO的 接触面积增大,放热量较普通物理混合样品显著提 高。Song 等^[12] 通过肽驱动自组装制备核壳结构 nAl/nCuO纳米铝热剂,结果表明复合材料在铝熔化 (660 ℃)前就可以发生铝热反应(554 ℃),核壳结构 nAl/nCuO的总反应热(2070 J·g⁻¹)比普通共混物的总 反应热高 577 J·g⁻¹。He 等^[13]研究发现,核壳结构 AI@PDA(聚多巴胺)@CuO可显著促进AI的燃烧,将其加入到铝基推进剂配方中可提高燃烧速率和热量释 放量,同时AI与CuO之间不同的界面反应可以调控铝 基推进剂的燃烧性能。然而,传统铝基铝热剂体系存 在的最大问题之一是燃烧前铝颗粒过度氧化,导致活 性铝含量降低。

金属有机骨架(MOFs)是一种由金属离子连接、 有机配体支撑、具有三维通道结构的配位聚合物,因其 具有良好的稳定性,燃烧分解后产气量较高,将其代替 金属氧化物与nAl组成新型铝热剂,可大幅提升nAl

引用本文:史喆,赵媛媛,马志伟,等. 核壳结构 nAl@Cu(BTC)/Fe(BTC)纳米铝热剂的制备及燃烧性能[J]. 含能材料,2024,32(5):465-474. SHI Zhe, ZHAO Yuan-yuan, MA Zhi-wei, et al. Preparation and Combustion Performances of Core-Shell Structured Al@Cu(BTC)/Fe(BTC) Nano-Thermite[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2024,32(5):465-474.

CHINESE JOURNAL OF ENERGETIC MATERIALS

的燃烧性能,降低 nAI 对表面氧化的高敏感性^[14-15]。 He等^[16]将含能金属-有机骨架(EMOFs)包覆在 nAl表 面制备 nAl@EMOFs 纳米铝热剂,其着火温度为 301.5 ℃,能够进行自持燃烧与多层次能量释放,总放 热高达4142 J·g⁻¹,远高于传统的 Al/CuO 体系。Xue 等^[17]采用原位静电自组装法制备 nAl@Zn-MOFs 和 nAl@Co-MOFs高能纳米铝热剂,与nAl(579.6℃)相 比,nAl@Zn-MOFs和nAl@Co-MOFs的初始放热温度 分别降低约60℃和110℃,且点火延迟时间变短,峰值 压力增高,增压速率得到提升。nAl/CuO和nAl/Fe₂O₃ 是能量释放量高且研究较多的纳米铝热剂材料,但对 nAl/Cu-MOFs和nAl/Fe-MOFs铝热剂的研究较少,含 双 MOFs 的 Cu-MOFs/Fe-MOFs 铝热剂材料更是鲜见 报道。由于双金属氧化物之间的协同作用可大幅提升 铝热反应的反应性,将双金属Cu-MOFs/Fe-MOFs包 覆在nAI表面将有效提升材料的能量释放和燃烧 性能[17]。

因此,本研究将铜-均苯三甲酸(Cu(BTC))和 铁-均苯三甲酸(Fe(BTC))交替包覆在nAl表面,制备 核壳结构nAl@Cu(BTC)/Fe(BTC)纳米铝热剂,通过层 层组装技术调控包覆层的厚度和含量,进而调节其热反 应和燃烧性能,并对其结构、形貌、热反应性能(铝热反 应温度)和燃烧性能(点火延迟时间、燃烧温度和燃烧时 间等)进行研究,再与仅含单金属的nAl@Cu(BTC)、 nAl@Fe(BTC)纳米铝热剂进行对比分析,为含有双 MOFs的nAl@MOFs纳米铝热剂在固体推进剂中的应 用提供思路,同时也为生产燃速可调控固体推进剂的 工艺技术奠定基础。

1 实验部分

1.1 试剂与仪器

试剂:纳米铝(nAl),粒径 50~200 nm,活性铝含 量>82%,广州捷创科技有限公司;聚乙烯基吡咯烷酮 (PVP),平均分子量 40000,Aladdin试剂有限公司;醋 酸铜(Cu(CH₃COO)₂),分析纯,北京伊诺凯科技有限 公司;六水氯化铁(FeCl₃·6H₂O),分析纯,国药集团化 学试剂有限公司;均苯三甲酸(C₉H₆O₆),分析纯,Aladdin试剂有限公司;无水乙醇,天津科密欧化学试剂有 限公司;Ni80Cr20 合金线,上海鸿祝金属材料有限 公司。

仪器:日本理学公司 MiniFlex600-C型X射线衍 射仪(XRD);美国 Thermal Fisher公司 iS8型傅里叶变 换红外光谱仪(FT-IR)结合衰减全反射附件;美国 FEI 公司 FEI Tecnai G2 F20型透射电子显微镜(TEM);美 国赛默飞 ESCALAB 250Xi型X射线光电子能谱仪 (XPS);德国耐驰公司 STA449 F5型同步热分析仪 (TG-DSC);德国 PCO公司 pco.dimax HD+高速摄像 机;德国 InfraTec公司 ImageIR 系列制冷型红外热成 像仪。

1.2 核壳结构 Al@Cu(BTC)/Fe(BTC)纳米铝热剂的制 备过程

图 1 为通过层层组装方法制备核壳结构 nAl@Cu (BTC)/Fe(BTC)纳米铝热剂的制备原理图。首先采用 PVP 材料对 nAl 粉末进行前处理,增强 Cu(BTC)和 Fe(BTC)材料的相容性,使其更易被包覆;将 PVP改性 处理后的 nAl 颗粒交替包覆 Cu(BTC)与 Fe(BTC)层,

Fig.1 Schematic diagram of the preparation route to core-shell structured nAl@Cu(BTC)/Fe(BTC) nano-thermite

得到不同包覆层数的双 MOFs 材料的 nAl@Cu(BTC)/ Fe(BTC)纳米铝热剂。为了进行对比,还制备了分别 包覆 12 层 Cu(BTC)和 Fe(BTC)的单 MOFs 材料 nAl@Cu(BTC)纳米铝热剂和 nAl@Fe(BTC)纳米铝 热剂。

nAl粉末前处理:称取 0.2 g的 nAl,分散于 20 mL 乙醇并超声 30 min;称取 0.1 g PVP完全溶解于 80 mL 乙醇溶液中;将 PVP/乙醇溶液倒入到 nAl/乙醇悬浮液 中,在室温条件下搅拌 6 h;然后在 10000 rmp・min⁻¹ 条件下离心处理 4 min 后去掉上清液,乙醇洗涤 3 次, 得到 PVP改性处理后的 nAl颗粒。

Cu(BTC)和Fe(BTC)的制备:将10 mmol均苯三 甲酸/乙醇溶液分别与10 mmol FeCl₃/乙醇溶液和 10 mmol Cu(CH₃COO)₂/乙醇溶液混合,于70℃反 应 6 h,离心、乙醇洗涤 2 次、100 ℃干燥后研磨得到 Cu(BTC)和Fe(BTC)配合物。

nAl@Cu(BTC)纳米铝热剂的制备:将 0.2 g PVP 处理后的 nAl转移到烧杯中,加入 40 mL 的 10 mmol Cu(CH₃COO)₂/乙醇溶液,搅拌 20 min后离心去掉上 层液;然后加入 40 mL 的 10 mmol均苯三甲酸/乙醇溶 液,转移到烧杯中,70 ℃反应 30 min,离心、乙醇溶液 洗涤 2 次后得到包覆 1 层 Cu(BTC)的 nAl@Cu(BTC) 纳米铝热剂;上述操作重复 12 次,40 ℃真空干燥 12 h 即可得到包覆 12 层 Cu(BTC)的 nAl@Cu(BTC)纳米 铝热剂,记为 nAl@Cu(BTC)-12。

nAl@Fe(BTC)纳米铝热剂的制备:制备过程同上述 nAl@Cu(BTC)纳米铝热剂,将40 mL的10 mmol Cu(CH₃COO)₂/乙醇溶液替换为40 mL的10 mmol FeCl₃/乙醇溶液,即可得到包覆12层Fe(BTC)的nAl@Fe(BTC)纳米铝热剂,记为nAl@Fe(BTC)-12。

nAl@Cu(BTC)/Fe(BTC)纳米铝热剂的制备:将 0.2 g PVP处理后的nAl转移到烧杯中,加入40 mL的 10 mmol Cu(CH₃COO)₂/乙醇溶液,搅拌20 min后离心 去掉上层液;然后加入40 mL的10 mmol均苯三甲酸/乙 醇溶液,转移到烧杯中,70 ℃反应30 min,离心、乙醇溶 液洗涤2次,得到包覆1层Cu(BTC)的nAl@Cu(BTC) 纳米铝热剂;上述处理得到的nAl@Cu(BTC)置于烧杯 中,加入40 mL的10 mmol FeCl₃/乙醇溶液,搅拌20 min 后离心去掉上层液;然后加入40 mL的10 mmol均苯 三甲酸/乙醇溶液,转移到烧杯中,70 ℃反应30 min,离 心、乙醇溶液洗涤2次、40 ℃真空干燥后得到分别包覆1 层Cu(BTC)和1层Fe(BTC)的nAl@Cu(BTC)/Fe(BTC) 纳米铝热剂;上述操作分别重复2、4、6、8、10、15次,得到 包覆4,8,12,16,20,30层的nAl@Cu(BTC)/Fe(BTC)纳 米铝热剂,分别记为nAl@Cu(BTC)/Fe(BTC)-n(n=4, 8,12,16,20,30)。

1.3 形貌结构及性能表征

利用 XRD 表征样品的物相组成,扫描范围 5°~ 90°,步进角为 0.05°;利用 FT-IR 结合衰减全反射附件 表征样品表面存在的化学键和有机官能团信息,扫描 范围 500~4000 cm⁻¹,分辨率为 0.1 cm⁻¹;利用 XPS 对 样品表面的元素组成、含量以及化学键的种类进行表 征,表面检测深度约为 5~10 nm;利用 TEM 分析纳米 铝热剂的壳层厚度和形貌信息。

采用TG-DSC 表征纳米铝热剂的铝热反应情况, 测试时将约1 mg样品放入带盖的氧化铝坩埚中,在 10 K·min⁻¹的升温速率下加热至1000 ℃,测试气氛为 空气(60 mL·min⁻¹),吹扫气为氮气(20 mL·min⁻¹)。

采用高速摄像机和红外热成像仪测试纳米铝热剂的点火燃烧性能。样品测试时,将30mg样品放置在氮气气氛中,通过Φ0.2mm×15 cm的Ni80Cr20合金点燃,高速摄影机的采样速率为1000 fps,曝光时间为200 μs,热红外成像仪的采样速率为232 fps,记录样品整个燃烧过程的图像和燃烧温度。

2 结果与讨论

2.1 形貌表征

通过 TEM 对原料纳米铝粉及制备得到的核壳结 构纳米铝热剂进行形貌表征,结果如图2。由图2a可 知, nAI 颗粒的粒径在 50~200 nm 之间, 表面带有 3~8 nm的惰性非晶态氧化铝壳层。不同 MOFs 包覆 材料得到的纳米铝热剂的壳层形貌和厚度也不一 致,其中,nAl@Cu(BTC)-12纳米铝热剂的Cu(BTC) 壳层均匀和光滑,厚度在 20~50 nm 之间(图 2b), nAl@Fe(BTC)-12纳米铝热剂的Fe(BTC)壳层较粗糙, 厚度在10~30 nm之间(图 2c),这是因为Cu(BTC)较 Fe(BTC)更易反应生成三维网状配合物包覆在 nAI表 面。当Cu(BTC)和Fe(BTC)同时包覆在nAl表面时,壳 层厚度在10~30 nm之间, 壳层较 nAl@Cu(BTC)-12纳 米铝热剂的更粗糙,这是因为最外层包覆了颗粒状 Fe(BTC)层的原因(图 2d)。上述结果表明,经层层组 装方法包覆 MOFs 材料后, 所有纳米铝热剂均显示典 型的核壳结构,其中nAI颗粒作为核,Cu(BTC)或(和) Fe(BTC)均匀地包覆在 nAI 的表面组成壳, 牛成壳层 包覆较均匀的核壳结构纳米铝热剂。

Fig. 2 TEM images of nAl, nAl@Cu(BTC), nAl@Fe(BTC) and core-shell structured nAl@Cu(BTC)/Fe(BTC) nano-thermite with different number of coating layers

为进一步探究双MOFs材料对nAl的最佳包覆效果, 通过TEM对不同包覆层数的nAl@Cu(BTC)/Fe(BTC) 纳米铝热剂进行形貌表征,结果如图2e~2i所示。随 着包覆层数从4层增加到30层,Cu(BTC)/Fe(BTC)包 覆层的厚度也相应变厚,说明随着包覆层的增加, Cu(BTC)/Fe(BTC)层的含量也逐渐增加(图2e~2i)。 此外,随着包覆层的增加,壳层也逐渐增加(图2e~2i)。 此外,随着包覆层的增加,壳层也逐渐从粗糙、疏松的包 覆层(图2e、2f)变为更光滑更致密的包覆层(图2h)。 但是,当包覆层增加到30层的时候,除了部分 Cu(BTC)/Fe(BTC)材料包覆在nAl表面上,多余的 Cu(BTC)/Fe(BTC)材料以共混的形式与nAl共存(图2i)。

2.2 结构表征

采用 FT-IR 对核壳结构纳米铝热剂的结构进行表征,结果如图 3a 所示,由图 3a 可知 Cu(BTC)和 Fe(BTC)

a. nAI, Cu(BTC), Fe(BTC), nAI@Cu(BTC)-12, nAI@Fe(BTC)-12 and nAI@Cu(BTC)/Fe(BTC)-12 nano-thermite

b. nAl@Cu(BTC)/Fe(BTC) with different number of coating layers

图 3 nAl、Cu(BTC)、Fe(BTC)、nAl@Cu(BTC)-12、nAl@Fe (BTC)-12 和核壳结构 nAl@Cu(BTC)/Fe(BTC)纳米铝热剂的 FT-IR图谱

Fig.3 FT-IR patterns of nAl, Cu(BTC), Fe(BTC), nAl@Cu(BTC)-12, nAl@Fe(BTC)-12 and core - shell structured nAl@Cu(BTC)/Fe(BTC) nano-thermite

的 红 外 特 征 吸 收 峰 基 本 相 同,1500~1750 cm⁻¹、 1300~1500 cm⁻¹、710~770 cm⁻¹ 处 的 吸 收 峰 分 别 为 C=O、O-C-O、C-C、C-H 的 特 征 峰,731~ 1105 cm⁻¹ 处 的 吸 收 峰 归属于C-O-Cu 或(和)C-O-Fe 的特征峰。MOFs包覆在 nAl表面后,nAl@Cu(BTC)-12、 nAl@Fe(BTC)-12 和 nAl@Cu(BTC)/Fe(BTC)-12 纳米 铝 热剂 中 均 出 现 明 显 的 Cu(BTC)和 Fe(BTC) 特征 吸 收 峰(图 3a),说 明 Cu(BTC) 或(和)Fe(BTC) 可 以 通 过 层 层 组 装 法 包 覆 在 nAl表面。另外,随着 Cu(BTC)/Fe(BTC)包覆层的增加,nAl@Cu(BTC)/Fe(BTC)-4 到 nAl@Cu(BTC)/Fe(BTC)-30的 MOFs 特征 吸 收 峰强 度呈 现 增长的 趋势(图 3b),说 明 层层 组 装 法 可 以 调 控 Cu(BTC)/Fe(BTC)包覆层的厚度。

采用XRD研究了双MOFs材料包覆对nAl结构的 影响,结果如图4所示,所有材料在2θ=38.5°,44.7°,

 a. nAl, Cu(BTC), Fe(BTC), nAl@Cu(BTC)-12, nAl@Fe(BTC)-12 and nAl@Cu(BTC)/Fe(BTC)-12 nano-thermite

b. nAl@Cu(BTC)/Fe(BTC) with different number of coating layers

图4 nAl、Cu(BTC)、Fe(BTC)、nAl@Cu(BTC)-12、nAl@Fe(BTC)-12 和核壳结构 nAl@Cu(BTC)/Fe(BTC)纳米铝热剂的 XRD 图 谱

Fig.4 XRD patterns of nAl,Cu(BTC),Fe(BTC),nAl@Cu(BTC)-12, nAl@Fe(BTC)-12 and core-shell structured nAl@Cu(BTC)/Fe(BTC) nano-thermite

65.0°, 78.2°和82.4°处均观察到了AI特征衍射峰, 分 别对应于(111)、(200)、(220)、(311)和(222)晶面 (PDF#89-2769)。由图4a可以看出,nAl@Fe(BTC)-12 样品在 $2\theta=5.3^{\circ}(333), 11^{\circ}(428), 14.2^{\circ}(088), 18.2^{\circ}$ (7911),20.1°(4814),24°(6618)和27.7°(9321)出 现了Fe(BTC)的特征衍射峰,nAl@Cu(BTC)-12的主 要衍射峰出现在 2*θ*=6.68°, 9.48°, 11.62°, 13.44°, 19.08°和 25.94°处,与Cu(BTC)的 XRD 位置相对应, 说明研究成功将 Fe(BTC)和 Cu(BTC)与 nAl 复合。 图 4a 中 nAl@Cu(BTC)/Fe(BTC)-12 纳米铝热剂的 XRD 谱图中同时出现了Al、Cu(BTC)和Fe(BTC)的特征衍射 峰,表示该纳米铝热剂是由Al、Cu(BTC)和Fe(BTC)组成 的。图4b结果进一步显示随着包覆层从4层增加30层, 峰 值 强 度 变 大,表明 Cu(BTC)/Fe(BTC)含量 增 加。 FT-IR和XRD结果表明,通过层层组装方法可以制备得 到不同MOFs种类和不同包覆含量的纳米铝热剂材料。

为考察 Cu(BTC)/Fe(BTC)材料对 nAl 的包覆效 果,通过 XPS 光谱测定了 nAl, nAl@Cu(BTC)-12, nAl@Fe(BTC)-12和 nAl@Cu(BTC)/Fe(BTC)-12的表 面原子组成,并对 nAl@Cu(BTC)/Fe(BTC)-12纳米铝 热剂进行了 EDS-Mapping 表征,结果分别如表 1 和 图 5 所示。表 1 显示包覆后材料表面C含量明显升, 而Al 含量明显降低, 图 5 显示 Cu、Fe和O元素均匀地分布在 Al 元素的外层, 这都进一步表明 Cu(BTC)/Fe(BTC)材料 对 nAl 的包覆效果较好, 形成了具有完整核壳结构的 nAl@Cu(BTC)/Fe(BTC)-12纳米铝热剂。

同时采用高分辨 XPS 光谱进一步测定了 nAl、 nAl@Cu(BTC)-12、nAl@Fe(BTC)-12和 nAl@Cu(BTC)/ Fe(BTC)-12的化学组成和元素价态,并以C1s=284.8 eV 校正 XPS光谱,结果如图6所示。相比于 nAl粉末的 XPS 总谱,nAl@Cu(BTC)-12纳米铝热剂出现了C、O、Al和 Cu4种元素,nAl@Fe(BTC)-12的 XPS总谱中出现C、O、 Al和 Fe4种元素,n-Cu(BTC)和 Fe(BTC)-12纳米铝热

表1 纳米铝和核壳结构 nAl@Cu(BTC)/Fe(BTC)纳米铝热剂 的表面原子组成

Table 1	Surface	elemental	compositions	of nAl	and	core -
shell struc	tured nA	l@Cu(BTC)/Fe(BTC) na	no-therr	nite	%

camples	surface elemental compositions						
samples	Al	С	0	Ν	Cu	Fe	
nAl	17.25	53.33	29.43	0	0	0	
nAl@Cu(BTC)-12	7.44	73.85	16.26	1.12	1.33	0	
nAl@Fe(BTC)-12	6.38	69.07	21.91	1.24	0	1.39	
nAl@Cu(BTC)/Fe(BTC)-12	5.57	70.46	20.93	1.15	0.51	1.38	

CHINESE JOURNAL OF ENERGETIC MATERIALS

含能材料

图 5 nAl@Cu(BTC)/Fe(BTC)-12的EDS元素分布 Fig.5 EDS spectrums of nAl@Cu(BTC)/Fe(BTC)-12

. XPS full spectra of nAI, nAI@Cu(BIC)-12, nAI@Fe (BTC)-12 and nAI@Cu(BTC)/Fe(BTC)-12

c. Fe 2p of nAl@Fe(BTC)-12

b. Cu 2p of nAl@Cu(BTC)-12

图 6 nAl, nAl@Cu(BTC)-12, nAl@Fe(BTC)-12和核壳结构 nAl@Cu(BTC)/Fe(BTC)-12纳米铝热剂的 XPS 图谱 Fig. 6 XPS patterns of nAl, nAl@Cu(BTC)-12, nAl@Fe(BTC)-12 and core - shell structured nAl@Cu(BTC)/Fe(BTC)-12 nano-thermite

剂出现了C、O、Al、Fe和Cu5种元素(图6a)。

nAl@Cu(BTC)-12的Cu 2p结合能区域XPS光谱 (图 6b)显示,在934.2 eV和954.2 eV处分别出现了 Cu 2p_{3/2}和Cu 2p_{1/2}的特征峰,说明nAl@Cu(BTC)-12 中 Cu 元素主要以Cu²⁺的形式存在。nAl@Fe (BTC)-12在710.6 eV和724.6 eV处分别出现了 Fe 2p_{3/2}和Fe 2p_{1/2}的特征峰,分离量(Δ =2p_{1/2}-2p_{3/2})为 14 eV,说明nAl@Fe(BTC)-12中的Fe元素主要以Fe³⁺ 的形式存在(图 6c)。nAl@Cu(BTC)/Fe(BTC)-12纳 米铝热剂的Fe 2p特征峰位置偏移到710.2 eV、 724.2 eV处,这主要是因为Cu(BTC)和Fe(BTC)之间 发生了相互协同作用(图 6d)。

2.3 热反应性能分析

对所制备核壳结构纳米铝热剂进行 TG-DSC 分析,TG-DSC 图像与热分解反应参数如图 7 和表 2 所示。从图 7a~7b和表 2 可以看出,nAI的铝低温氧化阶段在 630.2 ℃结束,增重 28.8%,高温氧化阶段在 ~800.0 ℃结束,增重 35.6%;相应地,DSC 曲线在 565.0 ℃和 787.5 ℃处显示两个放热峰。由图 7b可知,Cu(BTC)在 312.0 ℃开始分解,370.0 ℃分解完成;相应地,DSC 曲线在 357.4 ℃处存在明显的放热峰;Fe(BTC)材料的分解温度相对较高,分解时间较

长,在340.0 ℃开始分解,470.0 ℃分解完成,相应地 DSC曲线在434.5 ℃处有明显的吸热峰。

此外,从图7a~7b和表2还可以看出,nAl@Cu(BTC)-12 纳米铝热剂中,Cu(BTC)材料的分解在320.1℃结束, 质量损失16.3%,该过程发生的反应主要是Cu(BTC)

a. TG curves of nAl, Cu(BTC), Fe(BTC) and core-shell structured nAl@Cu(BTC)/Fe(BTC) nano-thermite

c. TG curves of nAl@Cu(BTC)/Fe(BTC) with different number of coating layers

的热分解,之后 nAl 与残余的 Cu_xO_y和空气中的 O₂发 生铝热和氧化反应,因此 DSC 显示铝的低温和高温氧化 温度分别降低为 560.0 ℃和 757.5 ℃,质量增重分别为 19.0% 和 24.7%。而对于 nAl@Fe(BTC)-12,Fe(BTC) 材料的分解在 420.5 ℃结束,质量损失为 8.9%,与

b. DSC curves of nAl, Cu(BTC), Fe(BTC) and core-shell structured nAl@Cu(BTC)/Fe(BTC) nano-thermite

d. DSC curves of nAl@Cu(BTC)/Fe(BTC) with different number of coating layers

图7 nAl、Cu(BTC)、Fe(BTC)和核壳结构 nAl@Cu(BTC)/Fe(BTC)纳米铝热剂的 TG-DSC 曲线

 $\label{eq:Fig.7} Fig.7 \quad TG-DSC \ curves \ of \ nAl, \ Cu(BTC), \ Fe(BTC) \ and \ core-shell \ structured \ nAl@Cu(BTC)/Fe(BTC) \ nano-thermite$

Table 2 Thermal decomposition reaction parameters of nAl and core-shell structured nAl@Cu(BTC)/Fe(BTC) nano-thermite								
compounds	$T_{\rm p1} \ / \ {}^{\circ}\!{}^{\circ}\!{}^{\circ}$	$T_{\rm d1}$ / °C	$\Delta m_{_1}$ / %	$T_{\rm p2}$ / °C	<i>T</i> _{d2} / ℃	$\Delta m_{_2}$ / %	<i>T</i> _{p3} / ℃	$\Delta m_{_3}$ / %
nAl	_	_	_	565.0	630.2	28.8	787.5	35.6
nAl@Cu(BTC)-12	297.5	320.1	-16.3	560.0	607.5	19.0	757.5	24.7
nAl@Fe(BTC)-12	377.5	420.5	-8.9	557.5	610.0	22.4	755.0	31.3
nAl@Cu(BTC)/Fe(BTC)-4	_	450.0	-8.4	562.5	615.0	24.7	775.3	31.6
nAl@Cu(BTC)/Fe(BTC)-8	390.6	447.5	-13.1	557.1	605.1	20.3	762.5	29.0
nAl@Cu(BTC)/Fe(BTC)-12	347.5	395.2	-22.4	552.5	597.5	12.3	735.0	20.1
nAl@Cu(BTC)/Fe(BTC)-16	345.1	387.5	-22.4	542.5	585.0	13.5	722.5	24.4
nAl@Cu(BTC)/Fe(BTC)-20	342.5	380.0	-29.0	545.2	578.0	9.8	712.3	18.5
nAl@Cu(BTC)/Fe(BTC)-30	327.6	392.0	-37.3	575.0	635.0	3.0	_	8.9

表2 纳米铝和核壳结构 nAl@Cu(BTC)/Fe(BTC)纳米铝热剂的热分解反应参数

Note: T_{p_1} , T_{p_2} and T_{p_3} are the peak temperatures of MOFs decomposition, low temperature oxidation and high temperature oxidation of nAI, respectively. T_{d_1} and T_{d_2} are the end temperatures of MOFs decomposition and low temperature oxidation of aluminum powder, respectively (TG curves). Δm_1 , Δm_2 , and Δm_3 are mass changes based on the two adjacent T_{d_1} , T_{d_2} , and T_{d_3} phases, respectively.

CHINESE JOURNAL OF ENERGETIC MATERIALS

nAl@Cu(BTC)-12(16.3%)相比,说明Cu(BTC)比 Fe(BTC)更易包覆在nAl表面,这也与TEM显示的Cu(BTC)壳层更厚的结果一致(图2b~2c)。DSC(图7b)显示nAl@Fe(BTC)-12中的铝低温和高温氧化分别出现在557.5℃和755.0℃,质量增重分别为22.4%和31.3%(表2)。由于Cu(BTC)和Fe(BTC)之间的协同作用,nAl@Cu(BTC)/Fe(BTC)-12的MOFs材料分解反应在395.2℃结束,质量损失为22.4%,铝氧化反应峰值也进一步降低到552.5℃和735.0℃。以上结果说明,MOFs材料分解产生的M_xO_y与nAl发生的界面铝热反应可降低铝粉的氧化反应温度,而双MOFs材料之间的协同作用较单MOFs材料更能增加nAl的铝热反应和氧化反应性能。

同时从图 7c 中还可发现,随着 Cu(BTC)/Fe(BTC) 包覆层的增加,纳米铝热剂的 MOFs 分解温度逐渐降低,失重从 8.4% 逐渐增加到 37.3%,说明包覆层含量 逐渐增加,这也与 TEM、XRD 和 FT-IR 结果一致。此 外,由于包覆层数的增加,MOFs 反应后生成的 M_xO_y 含量增加,因此 DSC 显示铝的低温氧化温度和高温氧 化温度随之降低(图7d)。这也说明层层组装技术制备的 nAl@Cu(BTC)/Fe(BTC)纳米铝热剂,通过调控包覆层的层数,可实现铝粉热反应性能的可控调节。 但是当Cu(BTC)/Fe(BTC)包覆层数过多,尤其是到达30层的时候,铝的总体氧化增重($\Delta m_2 \pi \Delta m_3$)仅为11.9%。由于铝的氧化增重对于提高能量释放非常关键,因此包覆过多的Cu(BTC)/Fe(BTC)不利于提高纳米铝热剂的放热性能。

2.4 燃烧性能分析

采用高速摄影机和热红外成像仪对nAl、 nAl@Cu(BTC)、nAl@Fe(BTC)和不同包覆层数核壳结构nAl@Cu(BTC)/Fe(BTC)纳米铝热剂的点火燃烧性能进行分析研究,得到样品的燃烧图像如图8所示,同时分析得到打开电源和材料被点燃出现火星的时间差 (点火延迟时间),材料燃烧过程中的平均燃烧温度(燃烧温度),以及材料被点燃出现火星和样品燃尽的时间 差(燃烧时间),结果如图9所示。由图8和图9可知, nAl粉末在被点燃后虽然可以自持燃烧,但不易被点燃,火焰强度和亮度较低,点火延迟时间为0.900 s,整

图 8 nAl,nAl@Cu(BTC),nAl@Fe(BTC)和不同包覆层数核壳结构 nAl@Cu(BTC)/Fe(BTC)纳米铝热剂的燃烧图像 Fig. 8 Combustion images of nAl, nAl@Cu(BTC), nAl@Fe(BTC) and core-shell structured nAl@Cu(BTC)/Fe(BTC) nano-thermite with different number of coating layers

个燃烧过程持续了4.475 s,最高燃烧温度为1310 ℃; nAl@Cu(BTC)-12纳米铝热剂更易被点燃,燃烧更为剧 烈,只需要0.411 s就被点燃,整个燃烧持续了1.649 s, 最高燃烧温度也略高于 nAl@Cu(BTC)/Fe(BTC)-12,

图 9 nAl、nAl@Cu(BTC)、nAl@Fe(BTC)和不同包覆层数核壳 结构 nAl@Cu(BTC)/Fe(BTC)纳米铝热剂的燃烧性能参数 Fig. 9 Combustion parameters of nAl, nAl@Cu(BTC), nAl@Fe(BTC) and core-shell structured nAl@Cu(BTC)/Fe (BTC) nano-thermite with different number of coating layers

为 1435 ℃; nAl@Fe(BTC)-12 纳米铝热剂燃烧时在 0.300 s达到最大燃烧火焰,然后火焰很快变小,最后 无明亮火焰燃烧,直至熄灭,具有较长的燃烧时间 2.794 s,和较低的燃烧温度1186 ℃。

另外,从图9中可以看出,随着Cu(BTC)/Fe(BTC) 包覆层的增加,纳米铝热剂的点火延迟时间总体呈现 降低趋势,而燃烧温度呈现先升高后降低的趋势,燃烧 时间呈现先降低后升高的趋势,这可以归因于nAl和 分解产物M_xO_y之间的铝热反应,从而使nAl更易点 燃。nAl作为能量提供者,当M_xO_y含量增加到一定量 时使燃烧温度达到最高,但当M_xO_y含量继续增加,Al 含量降低,导致燃烧温度呈现降低的趋势。在所有 nAl@Cu(BTC)/Fe(BTC)到米铝热剂中,包覆12层 MOFs的nAl@Cu(BTC)/Fe(BTC)-12纳米铝热剂燃烧 剧烈,火焰传播速率较快,在0.710 s内火焰达到最大, 具有适中的点火延迟时间0.509 s,最短的燃烧时间 2.036 s和最高的燃烧温度1425℃。

上述结果表明,将Cu(BTC)-12材料引入到 nAl@Fe(BTC)-12纳米铝热剂中,通过Cu(BTC)-12和 nAl@Fe(BTC)-12之间的协同作用可显著提高 nAl@Fe(BTC)-12燃烧性能。当nAl表面包覆 Cu(BTC)/Fe(BTC)后,其燃烧性能可得到提升,燃烧 火焰更加明亮、火焰传播速率更快,点火延迟时间和燃 烧时间降低,燃烧温度升高。

3 结论

(1)选用Cu(BTC)和Fe(BTC)通过层层组装技术 对nAI进行包覆,可以得到nAI@Cu(BTC)/Fe(BTC)纳 米铝热剂。不同包覆材料得到的纳米铝热剂表面壳层 形貌和厚度不一致,且随着包覆层的增加,壳层逐渐从 粗糙疏松的包覆层变为光滑致密的包覆层。

(2)由于Cu(BTC)和Fe(BTC)之间的协同作用, nAl@Cu(BTC)/Fe(BTC)-12纳米铝热剂的铝氧化反 应峰值降低到552.5℃和735.0℃。并且随着包覆层 的增加,纳米铝热剂中的MOFs分解温度逐渐降低,质 量失重从8.4%逐渐增加到37.3%。

(3)Cu(BTC)-12和Fe(BTC)-12之间的协同作 用可显著提高纳米铝热剂的燃烧性能。其中, nAl@Cu(BTC)/Fe(BTC)-12纳米铝热剂燃烧剧烈,火 焰传播速率较快,在0.710s内火焰达到最大,具有适 中的点火延迟时间0.509s,最短的燃烧时间2.036s 和最高的燃烧温度1425℃。

参考文献:

- [1] DAI J, WANG F, RU C, et al. Ammonium perchlorate as an effective additive for enhancing the combustion and propulsion performance of Al/CuO nanothermites [J]. *Journal of Physical Chemistry* C, 2018, 122(188):10240–10247.
- [2] XIA M, YAO Q, YANG H, et al. Preparation of Bi₂O₃/Al core-shell energetic composite by two-step ball milling method and its application in solid propellant[J]. *Materials*(*Basel*), 2019,12(11):1879.
- [3] MA X, LI Y, HUSSAIN I, et al. Core-shell structured nanoenergetic materials: preparation and fundamental properties [J]. *Advanced Materials*, 2020, 32(30); e2001291.
- [4] WU T, JULIEN B, WANG H, et al. Engineered porosity-induced burn rate enhancement in dense Al/CuO nanothermites [J]. ACS Applied Energy Materials, 2022, 5(3): 3189–3198.
- [5] ZHU Y, ZHOU X, XU J, et al. In situ preparation of explosive embedded CuO/Al/CL20 nanoenergetic composite with enhanced reactivity [J]. *Chemical Engineering Journal*, 2018, 354:885-895.
- [6] 王瑞浩,张景林,王金英,等.纳米复合Fe₂O₃/Al/RDX 的制备与 性能测试[J]. 含能材料,2011,19(6):739-742.
 WANG Rui-hao,ZHANG Jing-lin,WANG Jin-ying, et al. Preparation and characterization of nano-composite energetic materials Fe₂O₃/Al/RDX[J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*),2011,19(6):739-742.
- [7] 周超,李国平,罗运军.溶胶-凝胶法制备Fe₂O₃/AI纳米复合材料
 [J].火炸药学报,2010,33(3):1-4.
 ZHOU Chao,LI Guo-ping,LUO Yun-jun. Preparation of Fe₂O₃/ Al nanocomposite by sol-gel method[J]. Chinese Journal of Explosives & Propellants, 2010, 33(3):1-4.
- [8] HE W, LIU P J, HE G Q, et al. Highly reactive metastable intermixed composites(mics): preparation and characterization[J]. Advanced Materials, 2018, 30(41):e1706293.
- [9] 祁振宇,姚维尚,张铭浩,等.高球形度核壳结构超级铝热剂的制

备及点火性能[J].含能材料,2023,31(7):645-653. QI Zhen-yu,YAO Wei-shang,ZHANG Ming-hao, et al. Preparation and ignition performance of super thermite with highly spherical core-shell structure[J]. *Chinese Journal of Energetic Materials*(Hanneng Cailiao),2023,31(7):645-653.

- [10] ZENG C, YANG Z, WEN Y, et al. Performance optimization of core-shell HMX@(Al@GAP) aluminized explosives[J]. Chemical Engineering Journal, 2021, 407(2):126360.
- [11] FABRICE SÉVERAC, ALPHONSE P, ALAIN ESTÈVE, et al. High-energy Al/CuO nanocomposites obtained by DNA directed assembly[J]. *Advanced Functional Materials*, 2012, 22(2): 323–329.
- [12] SONG Z, JIN M, XIAN M, et al. Peptide-driven assembly of Al/ CuO energetic nanocomposite material[J]. Chemical Engineering Journal, 2020, 388, 124225.
- [13] HE W, TAO B, YANG Z, et al. Mussel-inspired polydopamine-directed crystal growth of core-shell n-Al@PDA@CuO metastable intermixed composites[J].*Chemical Engineering Journal*, 2019, 369:1093-1101.
- [14] ZHANG J, WAN J, WANG J, et al. Hollow multi-shelled structure with metal-organic-framework-derived coatings for enhanced lithium storage[J]. *Angewandte Chemie (International ed. in English)*,2019,58(16):5266–5271.
- [15] ZHANG Y, LI Z, GAO F, et al. Two amino acid Cu (II)-MOFs via one-pot method: Exhibiting good catalytic effect on the thermal decomposition of ammonium perchlorate and hexogen [J]. Journal of Solid State Chemistry, 2022, 316:123551.
- [16] HE W, AO W, YANG G, et al. Metastable energetic nanocomposites of MOF-activated aluminum featured with multi-level energy releases[J]. Chemical Engineering Journal, 2019, 381:122623.
- [17] XUE K, LI H, PAN L, et al. Bifunctional core-shell nAl@MOF energetic particles with enhanced ignition and combustion performance [J]. *Chemical Engineering Journal*, 2022, 430 (Part 2):132909.

Preparation and Combustion Performances of Core-Shell Structured Al@Cu(BTC)/Fe(BTC) Nano-Thermite

SHI Zhe^{1,2}, ZHAO Yuan-yuan¹, MA Zhi-wei¹, YANG Yu-lin², ZHANG Jian², WANG Xu-wen², LIANG Jia-yan²

(1. China Wuzhou Engineering Group Corporation LTD, Beijing 100053, China; 2. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract: In order to solve the inhomogeneous component distributions and low combustion efficiency in the preparation process of nano-thermite, the core-shell structured nAl@Cu(BTC)/Fe(BTC) was prepared via a layer by layer assembly technique. The structure, morphology, thermal reaction performance (thermite-reaction temperature) and combustion performance (combustion time, ignition delay time, and combustion temperature, etc.) of nAl@Cu(BTC)/Fe(BTC) were studied. The results show that the thickness and morphology of the coating layer can be regulated during the layer by layer assembly process. As the thickness of the coating layer increases, the nano-thermite gradually changes from rough and loose to smooth and dense. The nano-thermite with alternating 12 layers of Cu(BTC)/Fe(BTC) possesses a severe burning effect with a fast flame propagation rate that reaches the maximum flame within 0.710 seconds. Besides, this sample also achieves a moderate ignition delay time (0.509 s), the shortest combustion time (2.036 s), and the highest combustion temperature (1425 C). Meanwhile, its decomposition peak temperature of aluminum oxidation reaction can be reduced to 552.5 C and 735.0 C due to the synergistic effect of Cu(BTC).

Key words: core-shell structure; nano-thermite; nAl@Cu(BTC)/Fe(BTC); layer-by-layer assembly technology; combustion performance

CLC number: TJ55;TQ560.7

Document code: A

DOI: 10.11943/CJEM2023268

(责编:卢学敏)