基于 3D 打印技术的发射药燃烧增面设计

张洪林, 刘宝民, 马新安, 邓在银, 张 泰
(辽宁抚顺锦州化工有限公司, 辽宁 抚顺 111002)

摘 要: 为了研究提高发射药燃烧增面技术, 根据 3D 打印技术可制造特殊形状物体的原理和发射药平行层燃烧定律, 设计了具有多列环形空槽管状结构的高燃烧增面的整体发射药。分析了整体发射药燃烧和燃气生成量及燃气生成速率随燃烧进行的变化规律。建立了整体发射药燃烧率和燃气生成率随燃烧温度变化的规律。结果表明, 设计的整体发射药具有较高的燃烧增面, 可用于 155 mm 火炮的整体发射药, 燃烧速度比 19 孔冲压发射药的燃烧速度高 3.1 倍。整体发射药在燃烧过程中, 燃气生成速率呈现前低后高的状态, 75.612% 的燃气生成量在整体发射药燃烧的后半程产生, 比 19 孔冲压发射药高 27.575%。

关键词: 3D 打印技术; 整体发射药; 燃烧增面

1 引 言

3D 打印技术的发展, 为设计燃烧增面性较高的发射药提供了可行的技术途径。3D 打印技术是指采用分层加工、迭加成形的方式逐层增加材料来生成实体的制造技术[11-14], 其最突出的优点是无需机械加工或模具, 就能直接从计算机图形数据库中生成各种形状的立体, 从而克服了模具限制, 可制造出复杂形状的物体。因此, 应用 3D 打印技术, 可突破传统发射药型设计限制, 充分利用发射药燃烧过程中燃料变化来实现发射药的高增面性燃烧。本研究提出了基于 3D 打印填充制造的具有多列环形空槽管状结构的高燃

2 整体发射药型设计

发射药燃烧过程中燃气生成量是随火药厚度和沿火药厚度燃烧快慢的变化规律而变化的。对于性质相同的发射药, 其燃烧过程由几层燃烧定律可知, 是按发射药表面平行层逐层燃烧的[15]。

根据 3D 打印技术的特点和发射药增面燃烧需
求，将发射药设计成整体式结构，通过逐层增材的方式按所设计药型完成制造。整体发射药是具有内部环形空槽，径向冲击式增加燃烧点，且可直接用于发射装药的发射药柱。整体发射药局部结构示意图见图 1。整体发射药外形是厚壁管状结构，在管壁中的轴向方向制成多列具有相同宽度，不同高度的环形空槽。为了保证整体发射药的燃烧完全性和燃烧增面性，第二列环形空槽的数量和余环形空槽宽度相同的其它尺寸平均值为在第一列环形空槽的基础上增加，并依次推到其它列环形空槽。各列环形空槽的高度等同列外向火室燃烧面高度的 1/2，两列环形空槽之间的距离与靠近轴线方向的环形空槽火室燃烧面高度相同。整体发射药的外表面进行阻燃涂覆，外表面不燃烧，当燃烧从内孔开始时，燃烧到列环形空槽时，前列环形空槽没有任何剩余残药，使发射药的燃烧始终处于增面燃烧状态。

图 1 整体发射药局部结构示意图
Fig. 1 Schematic diagram of the part structure of integral propellant

设管形结构的整体发射药内孔半径为 r，药柱半径为 R，靠近内孔的第一列环形空槽的宽度为 N_1，火药燃烧层厚度为 a，环形空槽的宽度为 b，环形空槽的高度为 c；第一列与第二列环形空槽的距离为 a_1，N 为整体发射药环形槽列的序号。整体发射药的单位体积结构见图 2。

图 2 整体发射药的单位体积结构
Fig. 2 The structure of unit volume for the integral propellant

因此，整体发射药的环形空槽具有如下特点：

(1) 第 n 列环形空槽的数量为：N_n = 2^{n-1} N_1
(2) 第 n 列环形空槽火药燃烧层厚度为：a_n = a / 2^{n-1}
(3) 第 n 列环形空槽的高度为：c_n = c / 2^{n-1}
(4) 第 n 列环形空槽的内孔半径为：
 \[r_n = r + (\frac{1}{2^{n-1}} - 1) a + (n-1) \] ；
(5) 各列环形空槽的宽度均相等。

3 整体发射药的燃烧规律

3.1 整体发射药相对燃面随燃烧进行的变化规律

假设整体发射药起始燃烧是采用中心点火方式[16]，由管形结构的中心孔道将其内表面点燃，整体发射药的外表面由阻燃涂层不燃烧，则拥有三列环形空槽的整体药例，建立整体发射药相面随燃烧进行的变化规律。

发射药燃烧遵循几何燃烧定律，U 为发射药速度，t 为燃烧时间，S 为燃烧面积。

整体发射药单位体积起始燃烧面积为 S_0：
\[S_0 = 2 \pi r c (r + b - r_0^2) + 2 \pi a c (r + b) \] ；
\[S = 2 \pi c_0 (r + b + c_0 + 2 a) \] （1）
式中，S_0 是环形空槽端面正在燃烧的面积
S_1 是环形空槽上下两面正在燃烧的面积
S_2 是环形空槽内端面正在燃烧的面积
S_3 是环形空槽内端面正在燃烧的面积
\[S_0 = 2 \pi r (r + b + c + 2 a) \] （2）
当 t < a 时，第一列环形空槽在燃烧，n = 1，
当 (a + a/2) > t > a 时，第二列环形空槽在燃烧，n = 2
当 t > (a + a/2) 时，第三列环形空槽在燃烧，n = 3
因此，当单位体积整体发射药正在燃烧的面积 S 与单位体积整体发射药的空起始面积 S_0，可计算出单位体积整体发射药的相面燃烧面积 S_0 变化规律。
\[\sigma = \frac{S}{S_0} \] （3）

3.2 整体发射药燃烧生成量随燃烧进行的变化规律

与 3.1 假设条件相同，建立整体发射药燃烧生成量随燃烧进行的变化规律。

整体发射药单位体积起始燃烧体积 V_0：
\[V_0 = V_0 - \frac{3}{2} V_0 + \frac{4}{3} V_0 \] （4）
式中，V_0 = \pi (r + a_1^2 - r^2) (2a + c)
$V_{01} = \pi r^2 l$

$V_{02} = \pi (r+a)^2 (r-a) - \pi r^2 l$

$V_{03} = \pi (r+3a/2)^2 (r+3a/2+b)^2 - \pi (r+a)^2 (r-a) - \pi r^2 l$.

当 $t < a$ 时，第一列环形空槽在燃烧，$n=1$，当 $(a+a/2) > t > a$ 时，第二列环形空槽在燃烧，$n=2$，当 $t > (a+a/2)$ 时，第三列环形空槽在燃烧，$n=3$ 所以，由单位体积整体发射药已经燃烧掉的体积 V_{yr} 与单位体积整体发射药的起始体积 V_0 可计算出单位体积整体发射药的相对燃气生成量 ψ 变化规律。

$$\psi = \frac{V_{yr}}{V_0}$$

3.3 整体发射药与 19 孔粒状药的相对燃面和相对燃气生成量变化规律对比

155 mm 火炮用 19 孔粒状药是目前燃烧燃面性较高的粒状发射药 [17]，它是含有 19 个均匀分布的贯通性圆柱形内孔的圆柱形粒状发射药，通过内孔燃烧来不断增大燃烧面积，19 孔粒状药结构见图 3。

图 3 19 孔粒状发射药结构

Fig. 3 The structure of 19 holes granular propellant

以外径 $D=13.48$ mm，内径 $d=0.38$ mm，长度 $L=13.48$ mm，燃壳 $2e_1=1.93$ mm 的 19 孔粒状发射药为例讨论两种发射药的燃烧规律。

为了便于比较整体发射药与 19 孔粒状发射药的燃烧燃面性，用变量参数的相对量来表示，以发射药相对燃烧层厚度 (z) 表征发射药的燃烧进行程度 [18]，分别计算出整体发射药与 19 孔粒状发射药的相对燃面 (a) 和相对燃气生成量 (ψ) 的变化规律。计算方法如下：

（1）相对燃烧层厚度 $Z = \frac{e}{e_1}$，其中 e 为发射药燃烧到 t 时刻已燃烧掉的厚度，e_1 为发射药起始燃烧层厚度。对于整体发射药，$e = ut, e_1 = (2 - \frac{1}{2n^2}) a$

（2）相对燃面 $a = \frac{S}{S_0}$，其中 S 为发射药燃烧到 t 时刻正在燃烧的面积，S_0 为发射药起始燃烧面积，整体发射药 S 和 S_0 的计算公式见公式 (1) 和公式 (2)。

（3）相对燃气生成量 $\psi = \frac{V_{yr}}{V_0}$，其中 V_{yr} 为发射药燃烧到 t 时刻已燃烧掉的体积，V_0 为发射药起始燃烧时的体积，整体发射药 V_0 和 V_{yr} 的计算公式见公式 (4) 和公式 (5)。

以相对燃烧层厚度 (z) 为自变量，按上述计算方法，用示例所给数据计算出两种发射药的相对燃面 (a) 和相对燃气生成量 (ψ) 随相对燃烧层厚度 (z) 变化的趋势。计算得到的 $a-Z$ 曲线和 $\psi-Z$ 曲线如图 4，图 5 所示。

由图 4 可见，整体发射药相对燃面 (a) 在发射药燃烧过程中，随环形空槽列序的增加呈现出阶梯式增大；而 19 孔粒状发射药的相对燃面 (a) 在发射药燃烧过程中是逐渐增加的。在发射药燃烧的后半段，整体发射药的相对燃面 (a) 远大于 19 孔粒状发射药，这是因为整体发射药的结构中预制了不同尺寸的环形空槽，当燃烧每进行到下一列环形空槽时，整体发射药的环形空槽都会依次增加所导致的；而 19 孔粒状发射药的燃烧面积增加只能依靠内燃烧产生的内孔径增大面增加内孔燃烧面积。因此，在发射药燃烧的后半段，整体发射药的相对燃面 (a) 高于 19 孔粒状发射药。

由图 5 可见，整体发射药的相对燃气生成量 (ψ) 在发射药燃烧过程中呈现前高后低的状态，这种状态有利于降低火炮膛压，提高弹丸初速；而 19 孔粒状发射药的相对燃气生成量 (ψ) 在发射药燃烧过程中近似于匀速增加。产生这种现象的原因是由于整体发射药
随燃烧进行环形空槽数量成倍增加，在发射药燃烧的后半段使相对燃气生成量(σ)快速增长。19孔粒状发射药在增大内孔燃烧面积的同时，外径减小导致外表面燃面减小，造成相对燃气生成量(σ)增加速率变化较小。

根据上述计算方法，可计算出整体发射药与19孔粒状发射药不同燃烧阶段相对燃面的变化情况，结果见表1。

表1 整体发射药与19孔粒状发射药不同燃烧阶段相对燃面的变化情况

<table>
<thead>
<tr>
<th>burning stage</th>
<th>Z</th>
<th>integral propellant</th>
<th>19 holes granular propellant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st row empty annular groove burning over</td>
<td>0.5714</td>
<td>1.05068</td>
<td>1.79869</td>
</tr>
<tr>
<td>2nd row empty annular groove burning over</td>
<td>0.8571</td>
<td>2.83094</td>
<td>1.78026</td>
</tr>
<tr>
<td>3rd row empty annular groove burning over</td>
<td>1.0000</td>
<td>7.12803</td>
<td>4.29709</td>
</tr>
</tbody>
</table>

Note: Z is the relative thickness of burning, σ is the relative area of burning surface, Δσ is the change amount of the relative area.

由表1可见，以相对燃面厚度Z=0.5714为燃烧前后半程分界线，整体发射药在燃烧的后半程相对燃面(σ)快速增加，最大相对燃面为7.1280。而19孔粒状发射药在燃烧的后半程相对燃面(σ)增加程度减小，最大相对燃面仅为2.29480，燃烧结束时整体发射药相对燃面比19孔粒状发射药大σ倍。19孔粒状发射药

σ孔粒状发射药=3.1倍，表明整体发射药的燃烧增面性远大于19孔粒状发射药。这是由于整体发射药随燃烧的进行环形空槽数量不断增加而产生的。

根据上述计算方法，可计算出整体发射药与19孔粒状发射药不同燃烧阶段相对燃气生成量的变化情况，结果见表2。

由表2可见，整体发射药在第一列环形空槽燃烧阶段产生的相对燃气生成量为总相对燃气生成量的24.39%，在第二列环形空槽燃烧阶段产生的相对燃气生成量为总相对燃气生成量的57.760%～57.76% = 42.24%。以相对燃面厚度Z=0.5714为燃烧前后半程分界线，即第二、第三列环形空槽为整体发射药的后半程燃烧阶段，其相对燃气生成量之和为33.372% + 42.24% = 75.612%，表明整体发射药燃气生成主要是在燃烧的后半程产生，且相对燃气生成量随燃烧的进行不断增加。而与整体发射药相对燃面厚度相适应的19孔粒状发射药在燃烧的前半程相对燃气生成量为44.746%，在燃烧的后半程，相对燃气生成量之和为30.631% + 17.406% = 48.037%，表明19孔粒状发射药在燃烧的后半程相对燃气生成量增加程度较小。在燃烧的后半程，整体发射药相对燃气生成量比19孔粒状发射药高27.575%（75.612% - 48.037%），表明整体发射药具有较好的燃烧断面均匀性，符合发射药增面性燃烧要求，有利于提高初速，降低膛压。

4 结 论

利用3D打印技术可突破传统发射药在药型设计上的限制，实现高燃烧增面性发射药的结构设计。
表 2 整体发射药与 19 孔粒状发射药不同燃烧阶段相对燃气生成量的变化情况

<table>
<thead>
<tr>
<th>burning stage</th>
<th>integral propellant</th>
<th>19 holes granular propellant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st row empty annular groove burning over</td>
<td>0.5714</td>
<td>0.24388</td>
</tr>
<tr>
<td>2nd row empty annular groove burning over</td>
<td>0.8571</td>
<td>0.57760</td>
</tr>
<tr>
<td>3rd row empty annular groove burning over</td>
<td>1.0000</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>burning stage</th>
<th>Z</th>
<th>ratio of relative gas amount/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st row empty annular groove burning over</td>
<td>0.5714</td>
<td>24.386</td>
</tr>
<tr>
<td>2nd row empty annular groove burning over</td>
<td>0.8571</td>
<td>33.372</td>
</tr>
<tr>
<td>3rd row empty annular groove burning over</td>
<td>1.0000</td>
<td>42.240</td>
</tr>
</tbody>
</table>

Note: ϕ is the relative generation amount of burning gas.

(1) 整体发射药采用内部预制环形空槽结构可有效提高发射药的燃烧增面性，燃烧结束时整体发射药相对燃面比 19 孔粒状发射药大 3.1 倍，具有较高的燃烧增面性。

(2) 整体发射药在燃烧过程中，燃气生成速率呈现前低后高的状态，75.612%的燃气生成量在燃烧的后半程产生，比 19 孔粒状发射药高约 27.575%，具有有利于提高初速，降低膛压的燃气生成规律。

(3) 整体发射药改变了传统发射药设计与制造概念，使发射药与发射药技术得到统一协调，整体发射药广泛应用于现有药筒装药、药包装和模块装药中，将对发射药产生革命性进步。

3D 打印技术为发射药的药型设计开辟了革命性的途径，应用 3D 打印技术可设计制造出符合高增面燃烧要求的发射药，并将改变药筒装药、药包装及模块装药等现有的设计模式，满足提高火炮初速的需求。

参考文献：

[13] Z.M. Bi, Lihua Wang. Advances in 3D data acquisition and processing for industrial applications[J]. Robotics and Computer In-
Abstract: To study the technology of improving the propellant increase burning area based on the principle of manufacturing the special shape objects by the 3D printing technology and the law of propellant burning parallel layers, the integral propellant with high increase burning area having multi empty annular groove tubular structure was designed. The changing rules of area of burning surface and the generation amount of burning gas and generation rate of burning gas for the integral propellant along with burning were analyzed. The calculation method of changing rule of the relative area of burning surface and the relative generation amount of burning gas along with burning were established. The changing rules of the relative area of burning surface and the relative generation amount of burning gas of the integral propellant and 19 holes granular propellant with the relative burning thickness were compared and analyzed. Results show that the designed integral propellant has higher burning area increase. The relative area of burning surface at the end of combustion for the integral propellant used for 155 mm howitzer is 3.1 times more than that of 19 holes granular propellant. The burning gas generation rate of the integral propellant reveals the status of first low and then high in the combustion process. The generation amount of burning gas in the integral propellant combustion after the half is about more than 75.612% of total generation amount of burning gas, 27.575% more than 19 holes granular propellant.

Key words: 3D printing technology; integral propellant; increase burning area

Design of Increased Burning Area of Propellant Based on 3D Printing Technology

ZHANG Hong-lin, LIU Bao-min, MA Xin-an, DENG Zai-yin, ZHANG Chen
(Liaoning Qingyang Chemical Industry Corporation, Liaoyang 111002, China)

Abstract: To study the technology of improving the propellant increase burning area based on the principle of manufacturing the special shape objects by the 3D printing technology and the law of propellant burning parallel layers, the integral propellant with high increase burning area having multi empty annular groove tubular structure was designed. The changing rules of area of burning surface and the generation amount of burning gas and generation rate of burning gas for the integral propellant along with burning were analyzed. The calculation method of changing rule of the relative area of burning surface and the relative generation amount of burning gas along with burning were established. The changing rules of the relative area of burning surface and the relative generation amount of burning gas of the integral propellant and 19 holes granular propellant with the relative burning thickness were compared and analyzed. Results show that the designed integral propellant has higher burning area increase. The relative area of burning surface at the end of combustion for the integral propellant used for 155 mm howitzer is 3.1 times more than that of 19 holes granular propellant. The burning gas generation rate of the integral propellant reveals the status of first low and then high in the combustion process. The generation amount of burning gas in the integral propellant combustion after the half is about more than 75.612% of total generation amount of burning gas, 27.575% more than 19 holes granular propellant.

Key words: 3D printing technology; integral propellant; increase burning area

CLC number: TJ55; O69

Document code: A

DOI: 10.11943/j.issn.1006-9941.2016.05.011