多孔铜尺度对其叠氨化反应的影响

李 兵, 曾庆轩, 李明愉, 吴兴宇
（北京理工大学爆炸科学与技术国家重点实验室，北京 100081）

摘 要：为了研究多孔铜尺度对叠氨化反应的影响，根据叠氨化铜与单质铜在 50 ℃，0.5 mol·L−1 氨盐溶液中的不同溶解性，利用电感耦合等离子体发射光谱仪 (ICP) 分析了不同粒径的铜颗粒以及粒径在 200 nm 左右，厚度 0.2~0.3 mm，密度为 1.51 g·cm−3 左右的块状多孔铜与气体叠氨化反应的特性，结果表明，当铜颗粒尺寸约 0.5 μm 时，其平均转化率为 93.64%，基本能与气体叠氨化完全反应；当多孔铜厚度为 0.2 mm 时，其叠氨化的转化率大于 97%。

关键词：转化率；铜颗粒；块状多孔铜；气体叠氨化

DOI: 10.11943/j.issn.1006-9941.2016.10.013

1 引 言

铜的叠氨化物存在多种形式，具有爆炸性，其中常有的两种铜叠氨化物是叠氨化亚铜 (CuN₃) 和叠氨化铜 (Cu(N₃)₂) 都具有比叠氨化铝更大的威力，同时对环境更加敏感。因此长期以来对铜叠氨化物的使用受到很大的限制。随着微机电系统 (MEMS) 引信的兴起，以铜叠氨化物为基的起爆药受到了关注。

目前，研究者对铜与气体叠氨化物的“原位”反应进行了大量的研究，对其产物进行了表征。2008 年，Gerald Lab 等将铜沉积于基片上形成铜薄膜，而后通过“原位”合成方法与气体叠氨化反应合成了叠氨化铜薄膜。2010 年，Valerie Pelletier 等人将纳米铜颗粒封装在碳纳米管中，与气体叠氨化反应制备了叠氨化铜，该方法大大降低了叠氨化铜的敏感性。2012 年，Zhang Fang 等人利用阳极氧化铝 (AAO) 作为模板制备了铜纳米线阵列，而后再与叠氨化反应制得了叠氨化铜纳米线阵列。2015年，张植栋、李娜等人通过氢气泡法制备了多孔铜，而后与气体叠氨化反应制得了三维多孔纳米叠氨化物。这为微爆药技术提供了基础。本实验室将块状的纳米多孔铜与气体叠氨化反应制得了块状的铜叠氨化物装药，提高了装药密度，从而大大提高了装药的稳定性和起爆能力。

2 实验部分

2.1 试剂与仪器

试剂：S-4700 型扫描电子显微镜 (SEM)，日本 Hitachi 公司；7000DV 型电感耦合等离子体发射光谱仪 (ICP)，美国 PerkinElmer 公司；XS105 DualRange 型分析天平，瑞士 Mettler Toledo 公司。

仪器：浓盐酸，北京化工厂，分析纯；无水硫酸铜，北京化工厂，分析纯；浓硫酸，北京化工厂，分析纯；去离子水，自制。

2.2 实验过程

块状多孔铜的制备及原位反应过程可参考文献...
[7]. 4 g 叠氮化钠与 20 g 硬脂酸加入至 50 mL 的四口烧瓶内，缓缓通入氢气，同时油浴升温至 130℃后停止通入氢气，装置接口处涂抹凡士林防止叠氮化氢气体制的漏放。反应结束后移除油浴，再次通入氢气吹扫整个反应装置，待降温后小心取出产物。铜与气体叠氮酸的反应如下述方程所示。

\[\text{Cu} + 3 \text{HN}_3 \rightarrow 2 \text{CuN}_2 + \text{NH}_4 + \text{N}_2 \]

\[2 \text{CuN}_2 + 3 \text{HN}_3 \rightarrow 2 \text{Cu}(\text{N}_3)_2 + \text{NH}_4 + \text{N}_2 \]

铜颗粒采用电解 CuSO₄溶液的方法制得，具体如下：电解液由 0.5 mol · L⁻¹ CuSO₄, 1.0 mol · L⁻¹ H₂SO₄ 和 1.0 mmol · L⁻¹ HCl 组成，阴极和阳极之间的距离为 2.0 cm，电解液温度为 25℃，通过改变电流密度 (1.0, 0.24, 0.18 A · cm⁻²) 分别制得约 0.5 μm, 1 μm 和 2 μm 的铜颗粒。原位反应结束后，将产物溶于 50℃、0.5 mol · L⁻¹ 稀盐酸溶液，2 h 后取出溶液将其稀释 10 倍后定容 10 mL，采用 ICP 光谱仪测试虽不能区分溶液中 Cu⁺ 和 Cu²⁺ 内浓度，但能够确定溶液中全部铜离子的浓度。而在相同条件下，制备的铜颗粒或块状多孔铜放入稀盐酸溶液中与之反应，采用 ICP 光谱仪测试溶液中铜离子浓度为 0，说明该条件下铜颗粒和块状多孔铜不与稀盐酸溶液发生反应。通过公式 (1) 即能得到铜颗粒和块状多孔铜的转化率。

\[\alpha = \frac{C_{\text{Cu}}}{100 \times m_{\text{Cu}}} \times 100\% \] \hspace{1cm} (1)

式中，\(\alpha \) 为转化率；\(C_{\text{Cu}} \) 为 ICP 光谱仪测试得到的铜离子浓度, mg · L⁻¹；\(m_{\text{Cu}} \) 为反应前铜的质量, mg。

3 结果与讨论
3.1 铜颗粒与气体叠氮酸的反应转化率

铜颗粒可看作是一种密实固体，对于密实固体与气体的反应可采用恒温吸附模型来描述，该模型是指反应在固体产物层和未反应区之间狭窄边界上发生，随反应的进行，未反应区不断缩小[9]。其示意图如图 1 所示。

![Fig.1 Schematic diagram of unreacted core model](image)

图 1 未反应核模型示意图

可以预见，随着铜颗粒尺寸不断增大，覆盖在铜颗粒表面的叠氮化物产物会阻碍叠氮化氢气体制产生，从而防止内部的铜不发生反应。因此，与气体叠氮氢能够完全反应的铜颗粒尺寸将存在一个临界值。实验中，将 3 种尺寸（0.5, 1, 2 μm）的铜颗粒分别与气体叠氮酸反应 24 h 后得到其转化率，具体结果见表 1。图 2 为 3 种尺寸铜颗粒的 SEM 图，铜颗粒近似作球形。

表 1 不同比例铜颗粒与气体叠氮酸的反应转化率

<table>
<thead>
<tr>
<th>size of copper particles/μm</th>
<th>mass of copper particles/mg</th>
<th>concentration of copper ion/mg · L⁻¹</th>
<th>conversion %</th>
<th>average conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.28</td>
<td>124.6</td>
<td>97.34</td>
<td>95.64</td>
</tr>
<tr>
<td>1</td>
<td>1.35</td>
<td>126.8</td>
<td>93.93</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.53</td>
<td>182.6</td>
<td>72.17</td>
<td>72.42</td>
</tr>
<tr>
<td>2</td>
<td>2.74</td>
<td>199.1</td>
<td>72.66</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.62</td>
<td>141.8</td>
<td>54.12</td>
<td>50.52</td>
</tr>
</tbody>
</table>

![Fig.2 SEM images of copper particles with different size](image)

图 2 不同比例铜颗粒的 SEM 图

Fig.2 SEM images of copper particles with different size
实验表明，将直径 0.5 μm 左右的铜颗粒与气体叠氮酸反应后的产物溶于热的稀盐酸 2 h 后，溶液澄清，无明显残渣；而另外两种尺寸的铜颗粒溶液中有明显残渣。由表 3 也可看出，对于 0.5 μm 左右的铜颗粒，其反应转化率超过 95%。而对于 1 μm 和 2 μm 左右的铜颗粒，其反应转化率仅为 72% 和 50% 左右。因此，可以认为 0.5 μm 左右的铜颗粒基本能够与气体叠氮酸完全反应，而当尺寸增大到 1 μm 后，铜颗粒与气体叠氮酸不能反应完全，再增大尺寸反应程度会进一步减弱。

3.2 块状多孔铜与气体叠氮酸的反应转化率

实验中，将两种厚度（0.2 mm 和 0.3 mm）的块状多孔铜分别反应 1, 2, 4, 8, 16, 24 h 后计算反应转化率。结果表 2 和表 3。图 3 为块状多孔铜的 SEM 图。由图 3 可看出，制备的块状多孔铜基本由 100～200 nm 的铜颗粒构成。图 4 为块状多孔铜的实物图。块状多孔铜的表观密度为 1.51 g·cm^{-3}，通过公式

\[\varepsilon = 1 - \frac{\rho_s}{\rho_0} \]

式中，\(\varepsilon \) 为多孔铜的孔隙率；\(\rho_s \) 为多孔铜的表观密度，g·cm^{-3}；\(\rho_0 \) 为铜的理论密度，g·cm^{-3}。

![图 3 0.3 mm 厚块状多孔铜的 SEM 图](image)

Fig. 3 SEM image of monolithic porous copper with 0.3 mm thickness

![图 4 0.3 mm 厚块状多孔铜的实物图](image)

Fig. 4 Photograph of monolithic porous copper with 0.3 mm thickness

表 2 0.2 mm 厚块状多孔铜不同反应时间下的转化率

<table>
<thead>
<tr>
<th>reaction time /h</th>
<th>mass of porous copper /mg</th>
<th>concentration of copper ion /mg·L^{-1}</th>
<th>conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.83</td>
<td>69.34</td>
<td>83.54</td>
</tr>
<tr>
<td>2</td>
<td>0.86</td>
<td>71.33</td>
<td>89.16</td>
</tr>
<tr>
<td>4</td>
<td>0.95</td>
<td>88.30</td>
<td>91.11</td>
</tr>
<tr>
<td>8</td>
<td>0.98</td>
<td>91.24</td>
<td>93.10</td>
</tr>
<tr>
<td>16</td>
<td>1.04</td>
<td>99.03</td>
<td>95.22</td>
</tr>
<tr>
<td>24</td>
<td>1.05</td>
<td>102.1</td>
<td>97.23</td>
</tr>
</tbody>
</table>

表 3 0.3 mm 厚块状多孔铜不同反应时间下的转化率

<table>
<thead>
<tr>
<th>reaction time /h</th>
<th>mass of porous copper /mg</th>
<th>concentration of copper ion /mg·L^{-1}</th>
<th>conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.94</td>
<td>56.16</td>
<td>59.74</td>
</tr>
<tr>
<td>2</td>
<td>0.52</td>
<td>37.9</td>
<td>72.88</td>
</tr>
<tr>
<td>4</td>
<td>0.69</td>
<td>56.37</td>
<td>81.70</td>
</tr>
<tr>
<td>8</td>
<td>0.58</td>
<td>49.09</td>
<td>84.64</td>
</tr>
<tr>
<td>16</td>
<td>0.64</td>
<td>55.57</td>
<td>86.83</td>
</tr>
<tr>
<td>24</td>
<td>0.60</td>
<td>52.23</td>
<td>87.05</td>
</tr>
</tbody>
</table>

铜与气体叠氮酸反应属于产生固体生成物的气固反应，即当铜和气体叠氮酸反应时，铜被转化为叠氮化亚铜或叠氮化铜固体。在反应初始阶段，由于块状多孔铜的多孔性，叠氮酸气体在多孔内部的扩散阻力较小，能够快速进入到多孔铜内部与之反应。从表 2 和表 3 能够看出，0.2 mm 和 0.3 mm 多孔铜与气体叠氮酸反应 1 h 后的转化率都较大，0.2 mm 厚多孔铜反应 1 h 后的转化率甚至超过 80%，这表明，在反应初期，气体叠氮酸能够快速渗透至多孔铜内部，另一方面也说明铜与气体叠氮酸易反应，因此铜与气体叠氮酸的反应是一个快速反应。根据转化率与时间的关系，通过公式 (3) 可以得出不同时间的转化速率，图 5 和图 6 分别为 0.2 mm 和 0.3 mm 厚块状多孔铜不同反应时间下的转化速率。

\[v = \frac{\Delta \alpha}{\Delta t} \times 100\% \]

式中，\(v \) 表示转化速率，%；\(\Delta t \) 表示时间间隔，h；\(\Delta \alpha \) 表示不同时间的转化率之差。

从图 5 和图 6 可以明显看出，转化速率随反应时间的增加而不断降低。这是因为随着反应时间的增加，块状多孔铜表表面的铜颗粒反应完全，生成铜叠氮酸。
化物，根据铜与铜叠氮化物的密度可计算出颗粒体积将不断增大，使得多孔铜表面的孔隙不断缩小，进而使得气体氢氯酸进入多孔铜内部的扩散阻力不断增加，因此导致转化速率的不断降低。

值得注意的是，反应24 h后，0.2 mm厚的多孔铜转化速率虽然较低，但仍存在一定的转化速率，增加反应时间仍能够继续与气体氢氯酸反应，而对于0.3 mm厚的多孔铜反应速率已经趋近于0，增加反应过程也很难继续反应。这也说明，随着多孔铜厚度的增加，气体氢氯酸渗透进入其内部的阻力增大，不利于反应的进行，多孔铜的孔隙尺寸成为影响其继续反应的主要因素。

图 5 0.2 mm厚多孔铜不同反应时间下的转化速率
Fig. 5 Conversion rate of porous copper with 0.2 mm thickness at different reaction time

图 6 0.3 mm厚多孔铜不同反应时间下的转化速率
Fig. 6 Conversion rate of porous copper with 0.3 mm thickness at different reaction time

4 结论

（1）直径0.5 μm左右的铜颗粒能够与气体氢氯酸完全反应，进一步大颗粒的尺寸则反应不能完全进行，颗粒存在未反应核，不利于形成有效的铜叠氮化物装药，因此为保证多孔铜完全叠氮化，其颗粒尺寸应小于0.5 μm。

（2）对于块状多孔铜与气体叠氮酸的反应，在反应初期，叠氮酸气体能够快速渗透进入多孔铜的内部。反应一段时间后，由于反应产物膨胀，产物层将多孔铜表面的孔隙阻塞，使得叠氮酸气体进入多孔铜内部的阻力增大，最终导致反应愈发难以进行。因此为使更厚的块状多孔铜能够与气体叠氮酸完全反应，适当增大块状多孔铜的孔隙尺寸是十分有必要的。

（3）铜与气体叠氮酸的反应是一个快速反应。因此，块状多孔铜与气体叠氮酸的反应速率由气体叠氮酸在块状多孔铜内部的扩散速率决定。

参考文献：
Influence of Porous Copper Dimension on Its Azide Reaction

LI Bing, ZENG Qing-xuan, LI Ming-yu, WU Xing-yu
(State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

Abstract: To study the influence of porous copper dimension on its azide reaction, according to the different solubleness of copper azides and copper at 50 °C in 0.5 mol · L⁻¹ diluted hydrochloric acid, the reaction characteristics of copper particles with different sizes and monolithic porous copper with particle size of about 200 nm, thickness of 0.2–0.3 mm and density of 1.51 g · cm⁻³ with gaseous diazomide were analyzed by an ICP spectrometer. Results show that when the size of copper particle is about 0.5 μm, the average conversion of copper particle can reach 95.64%, the copper particle can react with gaseous diazomide completely. When the thickness of porous copper is 0.2 mm, the conversion of the azide is greater than 97%.

Key words: conversion; copper particles; monolithic porous copper; gaseous diazomide

CLC number: TJ5; O61 Document code: A DOI: 10.11943/j.issn.1006-9941.2016.10.013