CL-20 基炸药墨水直写沉积规律

1 引言

传统装药方式（压装法，铸装法）不能达到制造微机电系统（MEMS）火工品小药量高效精密装填的要求，急需发展一种安全、高效、高质量的微装填技术。基于“自由堆积”的直写沉积技术是一种增材制造技术，在电子、陶瓷、生物材料及其他功能材料方面的得到了广泛研究与应用，为含能材料的增材制造直写技术，国内外开展了相关研究工作，取得了积极的进展。随着近几年炸药微器件的快速发展，炸药的直写技术逐渐成为一个研究领域的应用领域，不断产生新的沉积技术和炸药墨水配方，

美国已经将制备的 CL-20、黑索今炸药墨水应用到 MEMS 器件中，近年来，国内也研究了 CL-20 基炸药墨水配方，炸药粒度对爆轰性能影响，模拟 CL-20 基墨水挤出等研究，未见采用不同工艺沉积的墨水沉积规律的报道。高质量直写沉积炸药墨水对爆炸临界尺寸有重要影响，影响装填药条的结构特征主要体现在炸药墨水的流变特性与沉积沉积工艺两个方面。安全、批量沉积，精确，机械化生产优势，但实验中我们发现墨水的流变特性，驱动压力，墨水尺寸大小对沉积速率具有重要影响，挤出速率的稳定直接影响墨水的沉积效率（断裂，孔洞，密度不均等）从而影响炸药爆轰性能。

为此，本研究基于课题组制备出流变性和爆轰性能良好的 CL-20 基热固化炸药墨水，采用 Ansys 的 Fluent 模块模拟 CL-20 基热固化炸药墨水的挤出规律，以直写沉积实验数据对计算模拟进行矫正，应用 Matlab 建立炸药墨水直写沉积规律的数学模型的方法，研究了 CL-20 基热固化墨水直写工艺中挤压压力，挤出径向等条件下的关系。

2 实验与数据

2.1 试剂与仪器

试剂：三氯甲烷，二甲苯，分析纯，成都市科龙试剂厂；聚凝氢氧化钠溶液（GAP，Mn = 4000）；多异氰酸酯（N100，Mn = 750），黎明化工研究院；CL-20（球磨处理，形状见图 1 插图），中国工程物理研究院化工材料研究所。

仪器：Nordson 点胶机器人，JR-V2203ML，美国 Nordson 公司；机械搅拌器，WS2000-M，德国
Wiggins 公司；哈克旋转流变仪，MARS1，德国 Haake 公司。

2.2 实验过程

称取 4.74 g 二甲苯和三氯甲烷混合物（质量比 = 3 : 1）于玻璃杯中搅拌均匀，然后称取 1.35 g 的 GAP 粘结剂和 0.45 g 的 N100 固化剂于玻璃杯中，搅拌均匀后加入 10.2 g 的预制备的微纳米 CL-20，40 r·min⁻¹ 搅拌 10 h，制备出固相量为 85% 的 CL-20 基热固化炸药墨水，处于 45 ℃水浴烘箱中固化一周。

Ansys 模拟仿真驱动压力 100 ~ 600 kPa，黏度为 120 Pa·s 的墨水在体积 10 mL、长 17 cm 的注射器，出口针头长 13 mm，直径 0.25 ~ 1.55 mm 条件下的挤出速率；实验直写沉积长度 6 cm 的线条，直写沉积示意图如图 1 所示，以与出口直径相线段直径的直线速度为最佳挤出速率。采用 Matlab 将不同驱动压力和出口直径的最佳挤出速率建立数学模型，得出最佳挤出速率与驱动压力和出口直径之间的关系，建立直写沉积规律公式。

![Schematic diagram of direct ink writing](image)

Fig. 1 Schematic diagram of direct ink writing

3 结果与讨论

3.1 流变性

在 20 ℃条件下测试制备的 CL-20 基热固化炸药墨水的黏度随剪切力的变化结果如图 2 所示。由图 2 知，CL-20 基热固化炸药墨水的黏度随剪切速率的增加而减小，由于非牛顿流体中假塑性流体，其原因可能是 CL-20 基热固化炸药墨水 GAP 与 N100 未发生固化反应，存在大量溶剂，其结构可能类似于凝胶结构，这种结构的成分和颗粒大小不是完全相同，存在一定强度差异。随着剪切速率增加这些强度不一的结构组成的 CL-20 基热固化炸药墨水状态被打破，固液相分离趋势加重，使黏度降低[11]。在低的剪切速率下，结构破坏程度小，所受阻力大，黏度高；剪切速率增加，炸药墨水结构破坏变大，黏度急剧减小；在高剪切速率下，炸药墨水的结构大部分已被破坏，故其黏度变化缓慢。其流变模型符合幂律模型，本体方程[14]为

\[\eta = 445.4433 \times 10^{-1.5955} \text{Pa·s} \]

式中，\(\eta \) 是黏度，\(\text{Pa·s} \)；\(\dot{\gamma} \) 为剪切速率，s⁻¹。对炸药墨水工艺而言，炸药墨水在压力驱动下因在出口处所受剪切作用变大使炸药墨水黏度降低，有利于炸药墨水挤出和直写沉积。

![Graph](image)

Fig. 2 The relation of viscosity vs. shear rate for the CL-20 based thermal curing explosive ink of solid content as 85% at 20 ℃

在剪切频率为 1 Hz 的条件下测试 CL-20 基热固化炸药墨水储能模量 \(G' \) 和损耗模量 \(G'' \) 随剪切力的变化结果如图 3 所示。由图 3 知，当剪切压力小于 650 Pa 时，储能模量 \(G' \) 和损耗模量 \(G'' \) 值相当，CL-20 基热固化炸药墨水呈半固体状态，可塑性小，流变差，直写沉积难度大。当剪切压力大于 650 Pa 后，损耗模
量 G'逐渐大于储能模量 G', 炸药墨水结构破坏加剧, CL-20 基热固化炸药墨水流变性呈现液体性质[15], 可塑性和流变性良好, 适合直写沉积。这可能是因为剪切力随剪切压力变大而变大, CL-20 基热固化炸药墨水黏度随剪切压力变大而变小, 流动性变大。当剪切压力小于 650 Pa 时, 炸药墨水结构破化程度低, 所受形变的储存能量与能量散失相等; 当剪切压力大于 650 Pa 时, 炸药墨水结构破化程度变大, 所受形变的能量损失逐渐大于储存能量, 流变性趋于液体流变性。

3.2 Ansys 模拟仿真

3.2.1 模型建立

CL-20 基热固化炸药墨水从针筒挤出遵循质量守恒、动量守恒和能量守恒三大定律, 以其为基本理论进行模拟仿真[11,16]。

质量守恒方程:
$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0 \quad (2)$$

动量守恒方程:
$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = - \nabla p + \mu \nabla^2 \mathbf{u} \quad (3)$$

能量守恒方程:
$$\frac{\partial \rho \mathbf{u} \cdot \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \cdot \mathbf{u} \mathbf{u}) = - \nabla p + \mu \nabla^2 \mathbf{u} \quad (4)$$

式中, ρ 为 CL-20 基热固化炸药墨水的密度, $g \cdot cm^{-3}$; t 为挤压时间, s; ∇ 为 Hamilton 微分算子; u 为 CL-20 基热固化炸药墨水的挤出速率, $m \cdot s^{-1}$; σ 为表面应力, Pa; g 为重力加速度, $m \cdot s^{-2}$; ∇p 为压强差, Pa; μ 为简化求解过程进行适当的假设。

(1) CL-20 基热固化炸药墨水为无压缩流体;

(2) 忽略 CL-20 基热固化炸药墨水自身重力与惯性影响;

(3) 粘度模型选用 Laminar 模型。

3.2.2 模型求解

为研究 CL-20 基炸药墨水的粘度、驱动压力和出口直径对 CL-20 基炸药墨水挤出速率规律的影响, 模拟仿真当 CL-20 基炸药墨水的粘度为 120 Pa·s, 驱动压力为 100 ~ 600 kPa, 针头直径为 0.25 ~ 1.55 mm 时的挤出情况。

运用 Ansys 根据药筒和出口针头的大小建立模型, 建模时不计壁厚, 并运用 Mesh 工具进行网格划分。图 4 所示, 全部采用六面体网格划分并对边界加密处理。墨水在粘度为 120 Pa·s, 驱动压力为 300 kPa, 出口直径为 0.6 mm 时药筒和针头的压力云

图 5 所示, 因为在出口处直径急剧减小, 墨水的局部阻力急剧增加导致墨水在出口处的压力急剧变小并在出口处与大气压平衡, 压力变化存在压力梯度从而产生使墨水流动的驱动力。挤出速率模拟云图如图 6 所示, 压力梯度越大流速越大, 当无压力梯度时墨水稳定流动。因为流体与筒壁及自身存在摩擦, 导致筒内乳液有力不同, 出现流速从筒壁到筒心呈梯度增加的现象, 流动的轨迹线如图 7 所示。

![图 4 药筒网格模型](image)

Fig. 4 Cartridge mesh model

![图 5 CL-20 基炸药墨水挤出模拟压力云图](image)

Fig. 5 The pressure distribution of simulation squeeze for CL-20 based explosive ink

![图 6 CL-20 基炸药墨水挤出模拟速率云图](image)

Fig. 6 The rate distribution of simulation squeeze for CL-20 based explosive ink

模拟 CL-20 基炸药墨水在粘度为 120 Pa·s 下, 不同驱动压力和出口直径时的挤出情况, 得到不同驱
动压力下墨水在不同出口直径时的挤出速率曲线图如图8。由图8知，墨水挤出速率随出口直径和挤压

图7 CL-20 基炸药墨水挤出率曲线图

图8 模拟不同驱动压力和出口直径下CL-20基炸药墨水挤出率模拟值曲线

图9 实验测试不同驱动压力和出口直径下CL-20基炸药墨水挤出速率曲线图

3.3 挤出速率测定

由于理论模拟是建立在一定假设条件上忽略了一些实际影响因素，不能与实际情况完全匹配，故对

图7 The trajectory figure of simulation squeeze for CL-20 based explosive ink

图8 Simulate curves of squeeze velocity for CL-20 based explosive ink under different driving pressure and outlet diameter

图9 Experimental curves of squeeze velocity for CL-20 based explosive ink under different driving pressure and outlet diameter

3.4 Matlab 优化分析

3.4.1 压差分析

实验测定特定的驱动压力和出口直径下CL-20
基热固化炸药墨水的直写速度，采用 Matlab 二维插值函数得到实验测定范围内所有直写工艺参数如图 10 所示。图 10 中驱动压力和出口直径平面曲线是相同挤出速率在其平面的投影，从图可得相同直写速率对应不同的驱动压力和出口直径的关系，也可根据出口直径和挤出速率两个工艺参数得到直写沉积过程所需挤出速率。据沉积对象和挤出体积不变公式：

\[w \times h \times v = \pi \times d_i^2 \times u_i \times t \]

式中，\(w \) 是沉积对象宽度，\(mm \); \(h \) 是沉积对象高度，\(mm \); \(v \) 是直写沉积速率，\(mm \cdot s^{-1} \); \(u_i \) 是最佳挤出速率，\(mm \cdot s^{-1} \)。应用内部插值函数得到直写参数，直写沉积不同尺寸沟槽结果如图 11 所示，凹槽沉积饱满，说明使用内部插值函数求解的结果能有效指导实验沉积。应用插值函数具有无需建立数学模型得到直写工艺参数值之间未测试的工艺参数值的优点，但存在应用其得到测试数据范围外的的直写工艺值时误差巨大的缺点，为此建立了一种数学模型避免这种缺点。

![Fig. 10 3D interpolation figure of direct writing parameters for CL-20 based explosive ink](image)

图 10 CL-20 基炸药墨水直写参数三维插值图

3.4.2 模型建立

CL-20 基热固化炸药墨水驱动压力、出口直径和最佳挤出速率符合以下数学模型（19）：

(1) 当出口直径无限小时，最佳挤出速率为零；
(2) 当驱动压力无限小时，最佳挤出速率为零；
(3) 出口直径和挤出压力对最佳挤出速率影响因子不同。

基于上述的数学模型，假设最佳挤出速率与驱动压力和出口直径关系式为：

\[u_i = a \times d_i^b \times \rho^c \]

式中，\(a \) 是常数，\(d_i \) 是出口直径，\(mm \); \(b \) 是针头直径对挤出速率的影响因子，\(\rho \) 是驱动压力，\(kPa \); \(c \) 是驱动压力对挤出速率的影响因子。

3.4.3 模型求解

插值优化存在对外部插值求解时得到结果误差较大的缺点，故求解时要求驱动压力和出口直径对直写速率影响的关系式得到更广泛的沉积范围的沉积规律参数与插值优化互补。采用 Matlab 求解得到 CL-20 基热固化炸药墨水的直写速度与驱动压力和出口直径关系式为：

\[u_i = 0.00047 \times d_i^{0.6516} \times \rho^{1.5291} \]

图 12 是 CL-20 基炸药墨水求解公式和实验数据在二维面的对比图，图 12 中实验（蓝色）曲线为公式拟合曲线，虚线（红色）为实验沉积数据拟合曲线，横坐标数据组数为直写实验数据个数。由图知公式求解拟合曲线与实验测定拟合曲线拟合度高，说明在此条件下（驱动压力：30 ~ 650 kPa，出口直径：0.11 ~ 1.55 mm）CL-20 基炸药墨水沉积规律公式能有效给出直写工艺参数，误差较小。虽然此数学模型存在一定的局限性，但对这类炸药墨水直写沉积具有重要的现实意义。根据公式 (7) 应用求解得出的直写参数，直写沉积不同尺寸沟槽结果如图 13 所示，凹槽沉积饱满均匀，沉积质量良好。

![Fig. 12 Comparison diagram of the fitting curves for solving formula data and experimental ones of CL-20 based explosive ink](image)

图 12 CL-20 基炸药墨水求解公式与实验数据拟合曲线对比图

Fig. 11 Optical image of direct writing deposition in grooves with different micro sizes based on interpolation simulation

图 11 基于插值优化直写沉积不同微尺寸沟槽的光学图像

Holden Materials www.energetic-materials.org.cn
4 结 论

采用模拟和实验相结合的方法研究 CL-20 基热固化炸药墨水沉积规律，得出以下结论：

（1）相固为量为 85% 的微纳米 CL-20 基热固化炸药墨水具有典型的剪切稀释特性，当剪切应力为 10～350 Pa·s 时，剪切力在 650 Pa 时应力耗散逐渐达到储存稳态。

（2）通过 ANSYS 模拟仿真，CL-20 基热固化炸药墨水的直写速率随驱动压力和出口直径增加而增加，出口直径大于临界尺寸 0.6 mm 时，能量损失相对变小，出口直径对挤出速率影响较大。驱动压力大于临界压力 350 kPa 时，CL-20 基热固化炸药墨水黏度变化影响挤出速率对挤出速率影响较大。

（3）采用 Matlab 对实验数据处理进行插值优化得到实验数据范围内有效得直写沉积参数，求解得出直写参数关系为 $u_i = 0.00047 	imes d_i^{0.6516 \times p^{1.3295}}$ (有效导向栅驱动压力为 30 ～650 kPa，出口直径为 0.11 ～1.55 mm)。扩大了直写沉积范围。

参考文献:

材料.

图 13 基于模型公式直写沉积不同微尺寸沟槽的光学图像

Fig. 13 Optical image of direct writing deposition in grooves with different micro sizes based on fitting formula
Direct Writing Deposition Rule of CL-20 Based Explosive Ink

LIU Yi', ZHENG Bao-hui', LI Xian-yin', MAO Yao-feng', ZENG Xin', LUO Guan', WU Kui-xian', NIE Fu-de', WANG Dun-ju'

(1. Sichuan Co-Innovation Center for New Energetic Materials, Miayang 621010, China; 2. Institute of Chemical Materials, CAEP, Miayang 621999, China)

Abstract: Direct writing technology has the advantages of safety, batch and precise graphics, and it is the trend of future development of precision and efficient charge forming for energetic micro devices. Based on hexanitrohexaazaisowurtzitane (CL-20) based explosive ink, the effect of driving pressure and outlet diameter on the extrusion rate was investigated by the combination method of the simulation using Ansys software and the direct writing deposition experiment. The direct writing deposition data were analyzed by Matlab software. The effective direct writing parameters were obtained by an interpolation analysis method. The mathematical model describing the direct writing deposition rule was established. Results show the prepared CL-20 based explosive ink is a non-Newtonian fluid with a viscosity range of 10 Pa·s to 350 Pa·s. When the shear stress is greater than 650 Pa, the loss modulus is larger than storage modulus gradually. When the driving pressure is greater than 350 kPa, the viscosity of the CL-20 baded explosive ink decreases, making the change rate of the extrusion rate increase. When the outlet diameter is bigger than 0.6 mm, decreasing the extrusion energy loss of the ink decreases makes the change rate of the extrusion rate increase. The established direct writing parameters relation formula is \(u_1 = 0.00047 \times d_1^{0.6356} \times p_{1.5295} \), which indicates that the driving pressure is greater than the effect of outlet diameter on the extrusion rate.

Key words: hexanitrohexaazaisowurtzitane (CL-20); explosive ink; deposition rule; numerical simulation

CLC number: TJ55 Document code: A DOI: 10.11943/j.issn.1006-9941.2017.09.007

《含能材料》“含能共晶”征稿

含能共晶是不同含能分子通过氢键等相互作用力形成的具有稳定结构和性能的分子晶体。含能共晶充分组合了单质含能分子的优点，呈现出低密度、高性能优良的特点，具有潜在的应用前景。含能共晶研究已经引起国内外含能材料学界的高度关注。为推动含能共晶的研究和交流，本刊特推出“含能共晶”专栏，主要征稿范围包括含能共晶晶体设计与性能预测、含能共晶的制备、结构析析、性能等。来稿请注明“含能共晶”专栏。