1 引言

共晶是两种或两种以上的分子通过分子间非共价键作用结合而形成的固定化学计量比的新晶体\(^{[1-5]}\)。由于能够实现分子水平上有效克服现有含能材料缺陷，赋予材料性能，因此共晶技术已经成为构建新型含能材料并改善其性能的一种新方法\(^{[6-10]}\)。目前，共晶已有效调控了炸药理化、安全和爆轰性能，如密度、熔点、分解温度、感度、爆速和爆压等性能\(^{[6-10]}\)。二硝酸胺（ADN）是一种高密度，不含卤素的高能新型氧化剂\(^{[11-12]}\)，可以用来取代推进剂中的高氯酸钠（AP）和硝酸钠（AN）\(^{[11-14]}\)。但是ADN的吸湿性严重限制了其在含能材料领域中的广泛应用\(^{[15]}\)。因此，为了降低ADN的强吸湿性，利用共晶技术从分子层面对其进行改性，可望突破ADN在贮存以及使用中的苛刻要求，并为含能材料吸湿性改性提供一种新的方法。

为此，本研究采用溶剂挥发法制备ADN/18-冠醚-6(18C6)共晶，通过X射线单晶衍射（SXRD）确定其晶体结构，并表征了共晶的吸湿性。

2 实验部分

2.1 试剂与仪器

ADN，99%，参照文献\(^{[12]}\)合成；18C6，99%，分析纯，武汉赛沃尔化工有限公司；无水乙醇，分析纯，天津市化学试剂厂。

荷兰ENRAFNON US CAD 4型四圆单晶X-射线衍射仪；梅特勒-托利多AL204分析天平。

2.2 共晶制备过程

将264 mg 18C6与124 mg ADN溶解于50 mL无水乙醇，过滤后取25 mL溶液放置于30 ℃恒温培养箱，缓慢挥发，大约5天溶液中析出无色棒状晶体。

2.3 吸湿性测定

将一定量完全干燥的ADN/18C6晶体分别放置于广口玻璃瓶中，完全暴露在温度为30 ℃，相对湿度为80%的空气中，12 h后测量重量，记录实验前ADN与ADN/18C6晶体的状态。吸湿率通过以下公式计算：

\[
\omega = \frac{m_2-m_1}{m_1} \times 100\%
\]

式中，\(m_1\)为初始质量，\(g\)；\(m_2\)为吸湿后质量，\(g\)。

3 结果与讨论

3.1 共晶晶体结构

选取尺寸为0.22 mm×0.17 mm×0.13 mm的晶体进行单晶衍射分析，其晶体结构详细参数见表1。
该晶体参数已被剑桥晶体结构数据中心保存（CCDC No. 1560930）。

表 1 ADN/18C6 晶体结构数据

<table>
<thead>
<tr>
<th>structure parameter</th>
<th>ADN/18C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>C₁₂H₁₆N₄O₁₀</td>
</tr>
<tr>
<td>temperature/K</td>
<td>293</td>
</tr>
<tr>
<td>stoichiometry</td>
<td>1:1</td>
</tr>
<tr>
<td>crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>C₂/c</td>
</tr>
<tr>
<td>a/Å</td>
<td>23.935(3)</td>
</tr>
<tr>
<td>b/Å</td>
<td>8.6327(11)</td>
</tr>
<tr>
<td>c/Å</td>
<td>20.324(3)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>112.874(3)</td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
</tr>
<tr>
<td>V/Å³</td>
<td>3869.3(8)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>ρ/g·cm⁻³</td>
<td>1.333</td>
</tr>
<tr>
<td>F(000)</td>
<td>1664</td>
</tr>
<tr>
<td>GoF</td>
<td>1.041</td>
</tr>
<tr>
<td>R₁, wR₁(1 ≤ 2σ(1))</td>
<td>0.0615, 0.1737</td>
</tr>
<tr>
<td>R₁, wR₁(all data)</td>
<td>0.0944, 0.1983</td>
</tr>
</tbody>
</table>

ADN/18C6 共晶单晶衍射结构见图 1，由图 1 可知该共晶的结合比为 1:1。共晶的三维晶体 3D 堆积图见图 2，由图 2 可知该共晶通过氢键作用连接。共晶分子间氢键作用见图 3。由图 3 可知，ADN 分子中 NH₃ 中的 H 原子与晶胞的 O 原子间形成 N—H...O 型的中强氢键（图 3a）, 以及 N(NO₂)₂ 中的 O 原子与晶胞上的 H 之间形成 C—H...O 型的弱氢键作用（图 3b）。这些相互作用力使得 ADN 与 18C6 形成 3D 网状结构，并有序无限延伸，最终堆积形成 ADN/18C6 共晶。

图 1 ADN/18C6 共晶的分子结构
Fig. 1 Molecular structure of ADN/18C6 cocrystal

图 2 ADN/18C6 共晶的三维晶体 3D 堆积图
Fig. 2 3D packing of ADN/18C6 cocrystal in the crystal lattice

图 3 ADN/18C6 共晶分子间氢键作用（Å）
Fig. 3 The intermolecularhydrogen bond interactions of ADN/18C6 cocrystal (Å)

3.2 共晶吸湿性

图 4 为 ADN/18C6 共晶与原料 AND 吸湿前后的状态，由图 4 可知，12 h 后 ADN 吸湿最终完全溶化形成 ADN 水溶液，而共晶晶体表面完整，未发生结块现象，仍能保持其初始状态。采用增重法测试共晶的吸湿性能，绘制吸湿率曲线见图 5，由图 5 可知共晶的吸湿率仅为 1.2%，而 ADN 吸湿率高达 18%。这表明，通过共结晶结构的形成，大幅度降低了 ADN 吸湿性，这可能是因为共晶分子中铵根离子与晶胞中的...
形成多种中强氢键作用，阻止空气中水分子与铵根离子结合，从本质上降低了 ADN 与水分子结合的概率，从而导致共晶吸湿性大幅降低。

分子与铵根离子结合，降低了 ADN 与水分子结合概率，从本质上降低 AND 吸湿性（ADN 的吸湿率为 18%，而 ADN/18C6 共晶吸湿率仅为 1.2%）。这表明，共晶可能是含能铵盐降低吸湿性的有效途径。

参考文献：

CHINESE JOURNAL OF ENERGETIC MATERIALS
Preparation and Characterization of ADN/18C6 Cocrystal

WANG Hao-jing1,2, MA Yuan1, LI Hong-zhen1, YU Yan-wu1, YANG Zong-wei2
(1. College of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China; 2. Institution of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China)

Abstract: The cocrystal of ammonium dinitramide(ADN)/18-crown-6(18C6) was prepared by solvent evaporation method, and its crystal structure was determined by X-ray single crystal diffraction (SXRD). The hygroscopicity of cocrystal was measured by weight gain method. Results show that the cocrystal belongs to monoclinic system, the space group is C_{2}/c with the unit cell parameters of $a=23.935$ (3) Å, $b=8.6327$ (11) Å, $c=20.324$ (3) Å, $\beta=112.874$ (3)$^\circ$, $Z=8$. The formation of the cocrystal mainly depends on medium strong N—H···O hydrogen bonds action. The formation of ADN/18C6 cocrystal structure makes the moisture absorption rate of AND reduce from18% to 1.2%.

Key words: ammonium dinitramide(ADN)/18-crown-6(18C6) cocrystal; preparation; characterization; hygroscopicity

CLC number: TJ55; O62 Document code: A DOI: 10.11943/j.isn.1006-9941.2018.06.013