第7卷 第2期 1999年6月

Vol. 7, No. 2 June, 1999

文章编号:1006-9941(1999)02-0049-04

六硝基六氮杂异伍兹烷的研究进展(3)

-六硝基六氮杂异伍兹烷晶型研究

欧育湘, 贾会平, 陈博仁, 徐永江, 陈江涛, 郑福平 (北京理工大学化工与材料学院,北京100081)

摘要:研究了六硝基六氮杂异伍兹烷多晶型物的性质、稳定性、晶型转变,介绍了α、β、γ和ε四种晶型的定性和 定量分析方法。

关键词:六硝基六氮杂异伍兹烷;晶型;晶型转变 中图分类号: 0621.145

文献标识码:A

1 引 言

许多炸药具有多晶现象。如 HMX 有 α 、 β 、 δ 和 γ 四种晶型,六硝基□有 HNS-I和 HNS-II 两种晶型。 已知六硝基六氮杂异伍兹烷(HNIW)在常温常压下有 α , β , ε 和 γ 四种晶型。不同晶型炸药的物理性能甚至 化学性能都有可能不同,而这些性质对炸药的应用往 往又是非常重要的。在 HMX 的四种晶型中 β-HMX 密度最高(1.90g/cm3),感度最低,适于应用,故需将 其他晶型的 HMX 转化为 β -HMX。对 HNIW 而言,只 有 ε 晶型的密度超过 2.0g/cm³ (理论密度 2.044g/ $(cm^3)^{[1,2]}$,如果 ε 晶型中混有其他晶型,那么它的密度 就会下降。所以 HNIW 的晶型转变具有十分重要的 实际意义。另一方面,由于各种晶型密度不同,而火炸 药在加工和使用过程中可能因与溶剂接触或环境温度 变化而导致晶型转变,这样不仅达不到火炸药所要求 的性能,反而会因本身体积的增大或变小造成材料开 裂,这种开裂可能会形成热点,使含能材料安定性与安 全性恶化。因此,研究 HNIW 多晶型物的性质及晶型 的相互转变规律十分重要。本文给出 HNIW 四种晶 型的晶体结构,对HNIW 多晶型稳定性和相互转变进 行了分析讨论,最后介绍了 HNIW 四种晶型的定性鉴

收稿日期: 1998-02-10 修回日期: 1998-07-27 基金来源:国防科技预研基金资助(12060451867) 作者简介: 贾会平, 男, 1963 年生, 博士研究生, 1997 年赴美国 研修,发表论文12篇。

别和定量分析方法。

HNIW 各种晶型的物理性质 2

HNIW 结构是六个硝基连接到六氮杂异伍兹烷六 个桥氮原子上构成的,六个硝基相对于五元环和六元 环的空间指向(以及空间堆积)决定了 HNIW 晶型结 构。根据计算并考虑到空间位阻,HNIW 可能有 13 种 晶型异构体。常温常压下已制得 α 、 β 、 γ 和 ε 四种晶 型,其中 α 和 γ 是由于晶格堆积不同形成的^[3]。此 外,已知 HNIW 的 ζ 晶型存在于高压下(>0. 7GPa)^[4],δ晶型出现在 HNIW 分解温度附近(约 203℃)^[5]。ζ晶型和δ晶型的结构还未得到 X 射线衍 射技术的证实。

HNIW 的 α , β , γ 和 ε 晶型的一些性质列于表 1。

3 HNIW 四种晶型的晶体稳定性及相互转 IL^[3~6]

3.1 β晶型

β晶型样品浸泡在不同溶剂中,于不同温度及时 间内的晶型转变列于表2(实验在真空下进行)。

在加热过程中发现,在双(2-氟代-2,2-二硝基乙 醇) 缩甲醛(FEFO) 中 HNIW 四种晶型溶解次序为 β > $\alpha > \gamma > \varepsilon$ 。在给定温度下各晶型溶解的相对难易程度 与其势能面即零点能有关,即势能面越低,HNIW 溶解 过程中所需克服溶解势垒的能量也越大。因此,四种 晶型的热力学稳定次序为 $\varepsilon > \gamma > \alpha > \beta$ 。而根据 DSC 的测试结果,在程序升温过程中(150~190℃),α、β、ε

第7卷

晶型均转化为 γ 晶型,而 γ 晶型则未发生向其他晶型的转化。 ε 晶型转化热焓最大,活化能也最高。由此

表1 HNIW 晶型的一些性质							
Table 1 Some properties of HNIW polymorphs							
晶型	空间群	Ζ	晶体密度/g・cm ⁻³ 计質値 ¹⁾	晶体密度/g・cm ⁻³	晶体外观		
α	$\alpha = Pbca$	8	NHE ENER	1.952 ³⁾			
γ	$\gamma = P2_1/n$	4	1.918	1.918			
β	$\beta = Pb2_1a$	4	1.989	1.983			
ε	$\varepsilon = P2_1/n$	4	2.044	2.035	\bigcirc		

注:1)作者根据 X 射线衍射数据计算所得;2)作者用密度瓶法测得;3)含1/2H₂O。

表 2 β 晶型在不同的溶剂、温度下的晶型转变 Table 2 Transformations of β -HNIW in different solvents

at different temperatures					
溶 剂	<i>T∕°</i> C	转化时间/d	最终晶型		
无溶剂	55	10	β		
FEFO	55	4	γ		
FEFO	42	5	γ		
FEFO	38	4	β		
正丁醇	38	4	γ		
聚己内酯三醇(无水)	40	4	β		
聚己内酯三醇(无水)	38	10	$\beta + \alpha$		
聚己内酯三醇(含水)	37	7	α		

纯 β 晶型在 55℃下 10 天不能转化为 α,但在无水 溶剂中,若暴露在空气中则可部分转化为 α。在含水 溶剂中,37℃时也可转化为 α。这是因为 α 晶型会与 水结合而使之稳定,结合的水越多,其势能面越低,也 越稳定(X 射线衍射证实,水可占晶胞空间的 50%)。 55℃时,β 晶型在 FEFO 中可全部转化为 γ 晶型。随 着温度降低(如温度为 38℃),β 晶型因不能获得足够 的能量而无法转化为 γ 晶型。在正丁醇中,β 晶型可 全部转化为 γ 晶型,这可能是正丁醇比 FEFO 更能降 低 $\beta \rightarrow \gamma$ 的转化能垒。一般来讲, $\beta \rightarrow \gamma$ 转化经历 α 晶 型。

由上述讨论可见, $\beta \rightarrow \gamma$ 的晶型转化受溶剂动力学 控制,这可在下面的实验中进一步证实。将 β/γ 混合 物溶于二甲苯中,不发生 $\beta \rightarrow \gamma$ 的转化,而当加入 10% ~30%的苯乙酮时,由于溶解度加大,转化位垒降低,转化可在 24h 内达到平衡。

分析得到四种晶型的热力学稳定次序为

 $\alpha(\mathrm{H}_{2}\mathrm{O})_{n} > \varepsilon > \alpha > \beta > \gamma_{\circ}$

在没有溶剂的情况下,在程序升温过程(DSC)中, β晶型在145℃左右可向γ晶型转变,但该转化很弱, 有时难以发现。

3.2 α晶型

α 晶型如结合了结晶水,在向其他晶型转化过程 中水的失去是一个重要的影响因素。如 α (H₂O)_n在 95℃的二甲苯中搅拌可转化为 γ 晶型,在低于 64℃时 再转化为 ε 晶型(见下述 $\varepsilon \rightarrow \gamma$ 的讨论),而无水 α (100℃干燥 24h)于无水溶剂中即使含有 ε 晶种也不 能转化为 ε 晶型。这是因为 α (H₂O)_n在高温下失水 使其晶格破坏,有利于构象的变化和分子的重新堆积。 在非平衡状态下(DSC)进行的晶型转化研究表明,无 水 α 或 α (H₂O)_n在 107℃均有明显向 γ 晶型转化的 倾向。

3.3 γ 晶型和 ε 晶型

γ 晶型和 ε 晶型存在一个相互转变的临界温度。 在 FEFO 中,将 ε/γ 混合物在 70℃下加热 7 天,γ 晶体 以很低的速率生长,且 ε 晶体并未完全消失。同样,在 60℃下生成的 ε 晶体也伴有少量 γ 晶体。因此可能存 在一个临界温度,在此温度下 γ 与 ε 相互转化速率相 同。实验表明,该温度为 64 ± 1℃。低于此温度时,ε 晶体的生长占优势;如果平衡时间足够长,可全部转 化为 ε 晶体。在异丙醇、苯和二甲苯中均可实现 γ→ε 的转化。在 DSC 曲线上存在一个 ε 晶型转化的温度 (168 °C)。未发现 γ 晶型向其他晶型转化的倾向。

在研究晶型转化过程中,还发现了 ζ 和 δ 晶型。 δ 晶型出现在 α 及 α (H₂O)_{*n*} 的 DSC 曲线上接近分解温 度处,也出现在 α 于二甲苯中向 γ 晶型转化的过程 中,但未分离出 δ 晶型。 ζ 晶型与 γ 晶型在高压下 (0.7GPa)形成可逆转化。在 α , β , γ 和 ε 四种晶型中, 最有实际应用价值的可能是密度最高的 ε 晶型,其次 是 β 晶型。

从上述分析可以看到,虽然各晶型的热力学稳定 性在一定程度上决定了转化方向,但晶型转化过程中 的溶剂动力学效应是很大的。因为在实际生产中的晶 型转化大多是在溶剂或其他液体介质中进行的,所以, 溶剂或液体介质的选择非常重要。

到目前为止,据报道最大的转晶规模是美国 Thiokol 公司的每釜 450kg。该公司将生产的 HNIW 通过 结晶而转化为 ε 晶型,并除去残酸,再通过过筛及在水 浆中磨细来控制晶粒尺寸和外形。粗 ε -HNIW 的粒径 约为 200 μ m,细 ε -HNIW 的平均粒径可控制在 15 μ m 到2~3 μ m 之间,外观也不再有尖锐的棱角^[2]。

4 HNIW 晶型的定性鉴别与定量分析

在 HNIW 的四种晶型中, ε 晶型最具实用价值。 当将其他晶型的 HNIW 转化为 ε 晶型时,不仅要求 HNIW 的纯度,而且要求晶型纯度,这就必须解决如何 鉴别各种晶型以及如何确定 ε 晶型中其他晶型含量这 两个问题。据了解,国内生产厂曾利用不同晶型 HMX 外观不同的特点,在显微镜下辨别 β 晶型以外的其他 晶型,并认为如果其他晶型的量不超过一定值(如 5%)时产品即为合格。文献[8]曾提到 HMX 的各种 晶型可用红外光谱和 X 射线衍射辨认,并指出测定各 晶型 HMX 纯度最灵敏的方法是 DSC 法,四种晶型的 HMX 在相变区内的差热响应明显不同^[8]。显然,这些 方法在原则上都可能用于 HNIW 的晶型鉴别。以下 讨论 HNIW 晶型的定性鉴别与定量分析。

4.1 HNIW 晶型的定性鉴别

晶型定性鉴别最方便的方法是红外光谱法(IR)。 HNIW 四种晶型的红外光谱在特定区域内有特征吸收,这些区域包括 3100 ~ 3000 cm⁻¹、1200 ~ 850 cm⁻¹、 800 ~ 700 cm⁻¹。在 3100 ~ 3000 cm⁻¹吸收区域内, ε 和 α 有一组双峰,而 β 和 γ 为单峰。 α 的一组双峰中,高 波数的吸收较弱; ε 的一组双峰中,高波数的吸收较 强。在 1200~850 cm⁻¹吸收区域内, α 有一个单峰和 形状相似的三组双峰构成的特征吸收, β 则在 1180~ 1150 cm⁻¹内有一组双峰, γ 在 1200~1050 cm⁻¹内有四 个单峰组成的特征吸收, ε 在此区域内有两个单峰和 一组双峰构成的典型吸收。 ε 在 740 cm⁻¹附近还有一 组明显的中等强度的四重峰。根据几个吸收区域内的 特征吸收不仅可清晰地区别各种晶型,而且还可根据 这些吸收峰形状和相对强度变化以及新峰的出现来判 断有何种晶型杂质。例如, 当 ε 晶型中有其它晶型污 染时, ε 的四重峰发生相对强度变化^[9,10]。

热分析也可作为一个区分晶型的方法。Foltz 等 人^[5]利用 DuPont 公司的热分析仪所测的结果表明: γ 晶型在程序升温过程中没有晶型转变的吸热响应; α 晶型向 γ 晶型的转变温度为 172°C (不同文献报道的 数值略有不同),吸热峰较强; β 晶型向 γ 晶型的转变 温度为 146°C,吸热响应较弱; ε 晶型向 γ 晶型的转变 温度为 168°C (升温速率 10°C/min)。作者用 PE 公司 的 DSC-7 热分析仪对 HNIW 所作热分析结果表明,在 DSC 曲线上找不到 β 晶型的吸热响应,而 ε 晶型的吸 热响应呈现为一组相联的宽的双峰(可能 ε -HNIW 中 含有其他晶型)。各晶型 HNIW 的分解放热峰值温度 则相差无几,很难作为区分晶型的依据。

X 射线衍射谱也是区分物质晶型的一种手段。从 理论上讲,物质的任一晶型都有其特定的 X 射线衍射 谱,即由物质晶型衍射花样上各线条的角度位置 θ/2θ 所确定的各晶面间距离 d 值以及它们的相对强度是物 质晶型的固有性质。利用该法定性区分晶型时,各晶 型的衍射线必须有一定的差别。如果吸收位置相近甚 至重叠,则难以将它们分开。用 X 射线衍射谱区分物 质晶型的基本方法是将待测试样的衍射线与已知标准 物的衍射线对照,具体做法是按衍射图谱上晶面间距 的强弱次序检索该晶面间距属于何种晶型,直到所有 的谱线与相对强度一一对应。虽然该法经常用于金属 材料的晶型分析^[11],但能否用于 HNIW 晶型分析,还 有待进一步研究。

由表1可见, HNIW 四种晶型的晶体外观有较大的差别,因此利用显微镜观察晶体,对 HNIW 进行晶型分析也许是一种非常直观而又简便可行的方法。

4.2 HNIW 晶型的定量分析

晶型的定量分析可采用 X 射线衍射法^[11]及红外 光谱法^[12],此处只介绍后者。

红外技术可用于 HNIW 晶型的定量分析,但各晶

出于技术上的考虑,红外技术定量分析一般将样 品制成溶液。但 HNIW 在溶液中其晶型特性消失,故 必须用压片法制备试样,相应的定量分析方法也只能 采用吸光度比法和内标法。

吸光度比法适用于二晶型体系相对含量的比较, へ〇 NNN. 所选定的吸收带的吸光度 A 可写成:

 $A_1 = k_1 c_1 L$, $A_2 = k_2 c_2 L$

二者吸光度之比为: $A_1/A_2 = Kc_1/c_2$

式中, k_1 和 k_2 为吸光系数; c_1 和 c_2 为样品浓度;L为 样品厚度; $K = k_1/k_2$ 。下标 1,2 分别表示体系中的两 种晶型。

因吸光系数与浓度有关,因此还不能直接从吸光 度的比求出相对含量,但可根据不同的c₁/c₂和相应的 A1/A2 值作出工作曲线,再由所测得的 A1/A2 值,从工 作曲线得到样品的浓度比。

对于多晶型样品,可用内标法测定各晶型的含量。 即在多晶型样品中混入一定量的纯物质作内标,选定 各自互不干扰的谱线,则可根据各晶型吸光度与标样 吸光度的比 A₁/A₂,从各自的工作曲线求出各晶型的 含量。

参 考 文 献

- [1] Ou Yuxiang, Chen Boren, Jia Huiping, Pan Zelin, Xu Yongjiang. A new energetic material: hexanitrohexaazaisowurtzitane [C]. Proceedings of Sino-Japan Energetic Material Conference. Nanjing, 1996.
- [2] Wardle B R, Hinshaw J C, Braithwaite P, Rose M. Synthe-

sis of the caged nitramine HNIW (CL-20) [C]. Proceedings of the 27th ICT Conference on Propellants, Explosives and Pyrotechnics. Karlsruhe, Germany, 1996.

- Foltz M F, Coon C L, Garcia F, Nichols A L. The thermal [3] stability of the polymorphs of HNIW. Part 1 [J]. Prop. Explos. Pyrotech. ,1994,19: 19~25.
- [4] Russell T P, Miller P J, Piermarini G J, Block S. High pressure transition in γ -HNIW [J]. J. Phys. Chem., 1992,96: 5509 ~ 5512.
- [5] Foltz F M, Coon C L, Garcia F, Nichols A L. The thermal stability of the polymorphs of HNIW. Part $2 \lceil J \rceil$. Prop. Explos. Pyrotech., 1994, 19: 133 ~ 144.
- [6] Russell T P, Miller P J, Piermarini G J, Block S. Pressure/temperature phase diagram of HNIW[J]. J. Phys. Chem., 1993,97: 1993 ~ 1997.
- [7] Jia Huiping, Ou Yuxiang, Chen Boren, Pan Zelin, Xu Yong-jiang. The thermal decomposition of HNIW. In: Feng Changgen, Ou Yuxiang, ed. The theory and practice of energetic materials [D]. Beijing: Beijing Institute of Technology Press, 1996. 15 ~ 24.
- [8] Орлова ЕЮ等. 奥克托今 [M]. 欧荣文译, 欧育湘校. 北京:国防工业出版社,1978.
- [9] Von Holtz E, Ornellas D, Foltz F M, Clarkson J E. The solubility of *e*-CL-20 in selected materials [J]. Prop. Explos. Pyrotech., 1994, 19: 206 ~ 212.
- [10] Foltz F M. Thermal stability of *e*-HNIW in an estane formulation [J]. Propellants, Explosives, Pyrotechnics, 1994,19:63~69.
- [11] 杨于兴等. X 射线衍射分析[M]. 上海: 上海交通大 学出版社,1994.
- [12] 陈英方. 红外和喇曼光谱技术 [M]. 北京: 纺织工业 出版社,1986.

Research Progress of Hexanitrohexaazaisowurtzitane(3)

Studies on Polymorphs of Hexanitrohexaazaisowurtzitane

OU Yu-xiang, JIA Hui-ping, CHEN Bo-ren, XU Yong-jiang, CHEN Jiang-tao, ZHENG Fu-ping (College of Chemical Engineering and Material Sciences, Beijing Institute of Technology, Beijing 100081, China)

Abstract: The physical properties, stabilities and transformations of four polymorphs of hexanitrohexaazaisowurtzitane existing at ambient conditions are discussed. The qualitative identification and quantitative determination of the polymorphs are also involved.

Key words: hexanitrohexaazaisowurtzitane (HNIW); polymorphs; transformation