Vol.7, No.2 June,1999

文章编号:1006-9941(1999)02-0089-04

固-液相硝化反应器的放大研究

梁日忠 (华北工学院化学工程系,山西太原 030051)

摘要:以聚苯乙烯和水为介质,在五个几何相似的模拟硝化反应器中,对流体的停留时间分布(RTD)规律及该 系统的放大规律进行了初步研究,确定了固-液相硝化反应器的最佳中试规模为0.040m³,给出了相应的经验式,为 固-液相硝化反应器的放大提供了理论和实验依据。

关键词: 硝化反应器; 放大; 停留时间分布 分类号: 0374; TQ052

1 引 言

在固-液相硝化反应过程中,由于搅拌桨的作用, 固液两相都处于运动状态中,影响硝化反应速率主要 是单位反应物系中两相接触面的大小、物料混合均匀 程度、反应物浓度、反应温度及反应时间等。在由小试 到中试到工业生产的放大过程中,硝化反应器内反应 物的初始浓度和反应温度保持不变,而物料的混合均 匀性和反应时间则会发生变化。在连续硝化的反应过 程中,硝化反应的结果是各反应物经过不同反应时间所 得到的综合结果^[1]。流体的停留时间分布(RTD)作为 描述流体在连续流动反应器中的混合状况是十分有效 的^[2]。对固-液相硝化反应器,研究放大过程中 RTD 的 变化规律,可以合理、精确地描述实际硝化反应器中物 料流动及混合特性,得到最佳中试规模及放大规律。

本研究在五个几何相似的固-液相硝化反应器中, 以聚苯乙烯和水为介质,在固相均匀悬浮的条件下,分 别考察了不同情况下固相和液相的停留时间分布变化 规律,根据流体流动模型参数值,确定放大过程中固-液相硝化反应器的最佳中试规模及放大规律。

2 实验部分 🕗

实验采用与工业硝化反应器几何相似的碟底圆筒 形模拟反应器,内置双排蛇管及推进式搅拌器^[3],体

收稿日期:1997-08-11 修回日期:1998-03-03
基金来源:原兵器工业总公司化工部资助(IGA8944)
作者简介:梁日忠,1965年生,男,副教授,现就读于北京化工 大学化学工程学院,博士生,发表论文 20 余篇。 文献标识码:A

积分别为 0.005,0.018,0.051,0.100 和 0.150m³; 釜 径与釜高之比为 1: 1.2。

实验流程如图1所示,它由模拟硝化反应器、可调 速搅拌系统、转速测试系统、流量稳定及调节系统、物 料回收系统及数据测试系统等部分组成。

参考黑索今生产中,固相原料乌洛托品的粒度和 密度均较小,与液相硝酸的密度比约为0.84。考虑到 实验室研究的条件,选定中空球形颗粒聚苯乙烯为固 相,其粒度分布为60~100目,密度为1050kg/m³;水 为液相。实验中固液比为1:10,两相密度比为1.05, 流体流量按停留时间分别为1200,1500,1800和2400s 来确定。固相 RTD 是在反应器出口处按一定时间间 隔测其浓度而定;液相 RTD 是以 KCl 为示踪剂,检测 反应器出口处的浓度而定。

3 数据处理与实验结果

3.1 流动模型

硝化反应器中流体接近混合均匀,但与完全混合 均匀还有一定差距,尤其对固体颗粒更加显著。本实 验建立了一个带死区、短路和全混流的组合模型,推导 过程见文献[4],结果为

$$E(t) = A\exp(-Bt) \tag{1}$$

式中, $A = \frac{v_1}{v_0} \cdot \frac{1}{\tau}$, $B = \frac{v_1}{v_0} \cdot \frac{V_R}{V_R - V_d} \cdot \frac{1}{\tau}$, v_0 为进入硝化 反应器的总流量, m^3/s ; v_1 为相当于全混流反应器的 流量, m^3/s ;E(t)为停留时间分布密度函数, s^{-1} ; V_R 为硝化反应器的体积, m^3 ; V_d 为死区的体积, m^3 ;t为 反应时间,s; τ 为平均停留时间,s。

第7卷

由此可看出,当 $v_1 = v_0$, $V_d = 0$,即 $A = 1/\tau$, $B = 1/\tau$ 时,该模型即为全混流模型;若 $v_1 < v_0$,即 $A < 1/\tau$ 表示 反应器短路存在;若 $V_d > 0$,且 $v_1 V_R > v_0 (V_R - V_d)$,即 $B > 1/\tau$,表示反应器死区存在;若 $v_1 < v_0$,且 $v_1 V_R < v_0$ ($V_R - V_d$),即 $B < 1/\tau$,表示反应器有短路。

3.2 模型参数估值

6-

将式(1)所建立的流动模型进行线性化处理得

InE(t) = InA - Bt (2) 把各种实验条件(不同的反应器、不同的搅拌转速、不 同的停留时间等)下的实验数据代入(1)式后,按式 (2)回归可求得模型参数 A 和 B,表 1 列出了0.100m³ 硝化反应器中固液相 RTD 的模型参数值。

根据式(1)计算不同时间的 E(t)。,并与实验值 E(t)。进行比较,表 2 以停留时间为 1800s 为例,列出 部分比较结果。结果表明,除个别数据外,相对误差都 小于 10%,对固液物系而言,该值已很小,表明该模型 计算值与实测值相吻合。

图 1 工艺流程图

1——高位槽;2——转速控制器;3——电机;4——光电转速传感器;5——数字显示仪;

—转子流量计;7——流量调节阀;8——硝化反应器;9——接料釜;10——电导电极;11——电导率仪;

12——信号放大器;13——A/D板;14——计算机;15——打印机;16——放大器;17——记录仪

Fig. 1 Schematic of techonological process

1-lift tank, 2-rotation speed controller, 3-motor, 4-photoelectric rotation speed sensor, 5-digital display,

----rotator flow meter, 7-----flux controller, 8-----nitration reactor, 9-----caldron, 10-----conductance electrode, 11-----conductometer,

12---signal amplifier, 13-A/D board, 14---computer, 15---printer, 16---amplifier, 17---recorder

表1 0.100	n ³ 硝化反应器中固-液相 RTD 的模型参数	女值
----------	-------------------------------------	----

Table 1	Parameters of	solid-liquid	RTD in 0.100m	['] nitration reactor
	1 41 411 000 0 01		1112 III 01 100 III	mer action reactor

		$u = 1.7 \mathrm{m/s}$		$u = 2.4 \mathrm{m/s}$			$u = 3.1 \mathrm{m/s}$			
	au / s	A/s^{-1}	B/s^{-1}	R	A/s^{-1}	B/s^{-1}	R	A/s^{-1}	B/s^{-1}	R
	1200	0.94	1.01	0.999	0.96	1.05	0.999	1.07	1.12	0.999
固	1500	0.79	1.07	0.999	0.96	1.08	0.999	0.97	1.06	0.998
相	1800	0.95	1.00	0.999	0.99	1.06	0.998	1.05	1.03	0.997
	2400	0.94	1.07	0.997	0.96	1.14	0.999	0.92	1.17	0.998
11.	1200	1.05	1.11	0.998	0.77	1.33	0.989	1.05	0.98	0.998
液	1500	0.99	1.47	0.969	0.97	0.99	0.999	0.98	1.15	0.961
相	1800	1.02	1.42	0.955	1.00	1.09	0.951	1.05	0.99	0.998
12	2400	0.99	0.88	0.997	1.03	0.95	0.999	1.04	1.01	0.996

注: u 为搅拌叶轮的叶端线速度, R 为相关系数。

表 2	E(t)	算数值与实验	验数据比较([固相, $ au$ =1800s)
Т	able 2	Comparison	of calculated	$E(t)_{c}$ with
th	e exper	imental E(t)	(Solid phase	$\tau = 1800 s$

_					
	t∕s	$E(t)_{e}$	$E(t)_{c}$	$E(t)_{e} - E(t)_{e}$	$\frac{\left[E(t)_{c}-E(t)_{e}\right]}{E(t)_{e}}$
	100	0.0759	0.0830	0.0071	9.35%
	200	0.0752	0.0818	0.0066	8.78%
	400	0.0780	0.0826	0.0046	5.90%
	500	0.0742	0.0703	-0.0039	-5.26%
	600	0.0684	0.0655	-0.0029	-4.24%
	800	0.0629	0.0642	0.0013	2.07%
	1000	0.0572	0.0551	-0.0021	-3.67%
	1200	0.0516	0.0509	-0.0007	-1.36%
	1400	0.0482	0.0512	0.0030	6.22%
	1600	0.0432	0.0453	0.0021	4.86%
	1800	0.0343	0.0358	0.0015	4.37%

3.3 最佳中试规模的确定

在本实验条件下,液相流动模型分布接近于完全 混合,本文不作讨论。

实验中固相初始浓度变化较小, $v_1 \approx v_0$,故对参数 A 不作讨论。

对于参数 B,实验中发现,若 B 值大,表明E(t)-t曲线下降快,即停留时间短的物料所占比率大,故 B 值反映了物料在硝化反应器中停留时间的分布状况。 图 2 及图 3 表明了不同搅拌速度下 B 值随硝化反应器 体积 $V_{\rm R}$ 的变化情况,由图可见,在不同条件下,曲线均 存在一个转折点 $V_{\rm C}$,当 $V_{\rm R} < V_{\rm C}$ 时,B 值变化无明显规 律;当 $V_{\rm R} > V_{\rm C}$ 时,B 值与 $V_{\rm R}$ 呈线性关系,且斜率不 大。因此, $V_{\rm C}$ 值的大小可作为放大过程中最佳中试规 模的硝化反应器的体积。求出不同操作条件的 $V_{\rm C}$ 值 均小于0.040m³,对于本实验系统,可确定固-液相硝化 反应器的最佳中试规模为0.040m³。

3.4 硝化反应器的放大规律

当 $V_{\rm R} > V_{\rm c}$ 时,模型参数 B 与硝化反应器体积 $V_{\rm R}$ 为线性关系: $B = a + bV_{\rm R}, a \downarrow b$ 分别为直线的截距和斜 率,实验中 $a \downarrow b$ 主要受搅拌叶轮的叶端线速度 u 及平 均停留时间 τ 的影响。

设a、b符合下列关系

$$a = a_0 u^{a_1} \tau^{a_2} \tag{3}$$

$$b = b_0 u^{b_1} \tau^{b_2} \tag{4}$$

对于不同实验条件下的 u_{τ} ,将(3)、(4)式作多元回 归处理,可得到 $a_0 = 1.80, a_1 = 0.17, a_2 = -1.11, 复相$ 关系数等于 0.965, 置信水平 0.99 时的临界相关系数 为 0.776; $b_0 = 1.84$, $b_1 = 0.18$, $b_2 = -1.02$, 复相关系 数等于 0.976, 置信水平 0.99 时的临界相关系数为 0.827。所以

$$a = 1.80u^{0.17}\tau^{-1.11}$$
(5)

$$b = 1.84u^{0.18}\tau^{-1.02} \tag{6}$$

由此可知, a₂, b₂ 均小于零, 且其值都在-1 附近, 这表明流量和 a, b 呈线性关系, 流量增大, a, b 值增 大。a₁, b₁都较小, 表明物系基本达到均匀悬浮后, 叶 端线速度对 a, b 影响不大。

因此,可得到固-液相硝化反应器放大参数式:

R

$$= a + bV_{\rm R} \tag{7}$$

4 结 论

(1)对固-液相硝化反应器(内置双排蛇管及推进 式叶轮的碟底圆筒形釜),其最佳中试规模是反应器 体积为0.040m³。

(2)当硝化反应器体积大于最佳中试体积时,流 动模型 *E*(*t*) = *A*exp(-*Bt*)中,参数 *B* 与硝化反应器体 积呈线性关系。用此关系,可指导固-液相硝化反应器 的放大,为预测工业规模硝化反应器的性能提供了理 论模型和实验依据。

本工作是在 0.005 ~ 0.150m³ 的模拟硝化反应器 中进行的,经过四次逐级放大,放大倍数可达 30 倍。 所得初步结果显示,工业规模硝化反应器的模拟性能 是科学的、可信的。如今后能对更多的参数变化和更 大规模的硝化反应器进行研究,将会使结果进一步完善和充实。

参考文庫

- [1] 陈仁学, 化学反应工程和反应器[M]. 国防工业出版 社,1989.
- [2] 陈甘棠. 化学反应工程[M]. 化学工业出版社,1986.
- [3] 叶毓鹏. 炸药工艺设计[M]. 国防工业出版社,1988.
- [4] Liu Youzhi, Liang Rizhong. 3rd ISPE, Beijing, 1995, 210.
- [5] 郭灵虹等. 化学工程[M],1991,19(1):27.
- [6] Liang Rizhong, Liu Youzhi. 3rd ISPE, Beijing, 1995, 200.

Simulative Scale-up of Solid-Liquid Phase Nitration Reactor

LIANG Ri-zhong

(Dept. of Chemical Engineering, North China of Technology, Taiyuan 030051, China)

Abstract: Five geometrically similar nitration reactors filled with polystyrene and water as mediums were used to simulate the rules of residence time distribution(RTD) of the fluid and that of reactor scale – up. The experimental results show that the optimum pilot volume of solid – liquid phase nitration reactor is 0. 040 m³. The relevant empirical formula of scale – up is obtained thereof, which can be used as theoretical and experimental reference for the further investigation.

Key words: nitration reactor; residence time distribution (RTD); scale - up

^[7] Baldi G, Conti R. Design and scale-up of the liquid-liquid gravity settle[J]. Chem. Sci., 1989, 18.