文章编号: 1006-9941(1999)04-0159-03

2,4-二硝基间苯二酚的晶体结构

张建国1,张同来1,郁开北2

(1. 北京理工大学机电工程学院,北京 100081;

2. 中国科学院成都分院分析测试中心,四川 成都 610041)

摘要:制备了2,4-二硝基间苯二酚的单晶,并用元素分析、IR和 DSC对它进行了表征。其晶体结构用四圆衍射 仪测定。结果表明,晶体属正交晶系,空间群为 P2,2,2,。晶体学参数为: a = 0.4761(1) nm, b = 0.6378(1) nm, c = 2. 3990 (2) nm, V = 0.7285 (4) nm³, Z = 4, $D_c = 1.825$ g·cm⁻³, $\mu = 0.168$ mm⁻¹, F(000) = 408 $_{\odot}$

关键词: 2,4-二硝基间苯二酚; 晶体结构; 正交晶系 中图分类号: 0614. 24

文献标识码: A

1 引 言

2,4-二硝基间苯二酚是火炸药和火工品制造业常 用的重要中间体,其制备和性能已有文献报道[1]。在 火工药剂领域,它不仅是制造二硝基间苯二酚铅起爆 药的基本原料, 也是 D·S 共沉淀起爆药的晶形控制 剂,还可作为共沉淀剂与叠氮化铅形成共沉淀起爆药, 它的铅、钡盐也可单独作起爆药使用[1,2]。为了研究 2,4-二硝基间苯二酚在共沉淀起爆药中的作用原理, 我们制备了它的单晶,测定了晶体结构。

2 单晶的制备和组成

将适量的2,4-二硝基间苯二酚分散于适量的蒸 馏水中,加热至50℃,使之尽可能完全溶解,得到黄色 透明溶液(pH=3~5);冷却至室温后过滤,将滤液放 置在培养皿中,再置于 25℃的培养箱里,15d 后,得到 桔红色单晶。元素分析结果,实测值(%): C 35.69, H 1.95, N 13.85; 计算值(%): C 35.98, H 2.00, N 13.99 ° DSC: T_{me} 147.3°C, T_{pmd} 151.5°C ° IR: ν_{OH} = $3333 \,\mathrm{cm}^{-1}$, $\delta_{\mathrm{OH}} = 1356 \,\mathrm{cm}^{-1}$, $\nu_{\mathrm{C-O}} = 1223 \,\mathrm{cm}^{-1}$, $\nu_{\mathrm{NO}_2}^{\mathrm{s}} =$ $1642 \,\mathrm{cm}^{-1}$, $\nu_{NO_2}^{as} = 1278 \,\mathrm{cm}^{-1}$, $\nu_{C-H} = 3035 \,\mathrm{cm}^{-1}$, 苯环骨 架振动吸收率为 1612,1270 和 936cm⁻¹。

修回日期: 1999-10-09 收稿日期: 1999-06-18

作者简介: 张建国(1974-),男,硕士,从事含能配合物结构与 性能关系的研究。已获部级科技进步二等奖1项,国防发明专 利 3 项,发表论文 12 篇。

晶体结构测定

选取尺寸为 0.56mm × 0.28mm × 0.24mm 的单 晶,在 Siemens P4 型四圆衍射仪上,用 MoKα 射线(λ =0.071073nm)、石墨单色器,在3.39°≤ θ ≤14.90°范 围内,用28个独立衍射点精确测定取向矩阵和晶胞参 数。在298(2) K 温度下, 以ω扫描方式扫描, 扫描范 $\exists : 1.70^{\circ} \le \theta \le 28.00^{\circ}, h : -1 \sim 6, k : -1 \sim 8, l : -1 \sim$ 31, 共收集衍射点 1653 个, 其中独立衍射点 1391 个。 选取 $I > 2\sigma(I)$ 的 1391 个点用于结构的测定和修正, 全部数据均经 Lp 因子和半经验吸收校正。该晶体属 正交晶系,空间群为 $P2_12_12_1$ 。晶体学参数为: a =0.4761(1) nm, b = 0.6378(1) nm, c = 2.3990(2) nm, V= 0.7285(4) nm³, Z = 4, $D_C = 1.825 \text{g} \cdot \text{cm}^{-3}$, $\mu = 0$. $168 \text{ mm}^{-1}, F(000) = 408_{\odot}$

该晶体结构由 Patterrson 直接法解出,原子位置均 由差值 Fourier 合成法得到。结构用 130 个参数,由块 矩阵最小二乘法进行优化(对于氢原子采用各向同性 热参数,对于非氢原子采用各向异性热参数)。对于 $I > 2\sigma(I)$ 数据的最终偏差因子 $R_1 = 0.0322$, $wR_2 = 0.0800$; 对所有数据的偏差因子 $R_1 = 0.0453$, $wR_2 = 0.0843$, s = 0.996, 消光系数为 0.095(3), $\omega =$ $1/[\sigma^2(F_0^2) + (0.0488p)^2], p = (F_0^2 + 2F_0^2)/3;$ \pm %优化的最大参数位移(Δ/σ)_{max} = 0.001。最终差值 Fourier 图上最高峰: $(\Delta p)_{max} = 0.166 \times 10^{3} \,\mathrm{e \cdot nm^{-3}}$,最低峰: $(\Delta p)_{\min} = -0.140 \times 10^3 \text{e} \cdot \text{nm}^{-3}$ 。 计算过程在 Eclipes/ 140 计算机上用 Siemens SHELXTL 5.03 程序完成。

4 分子结构描述与讨论

该晶体的分子结构和分子在晶胞中的堆积分别示

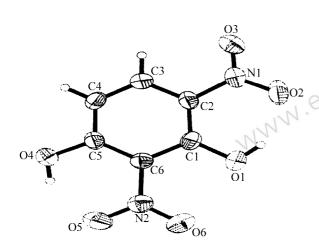


图 1 2,4-二硝基间苯二酚的分子结构

Fig. 1 Molecular structure of 2,4-dinitroresorcinol

表 1 原子坐标和等效温度因子

Table 1 Atomic coordinates and isotropic thermal parameters

			r	
原子	X/nm	Y/nm	Z/nm	$U_{\rm eq}^{1)}/{\rm nm}^2$
01	0.2831(4)	0.0854(2)	0.08702(6)	4.9(4)
H1	0.2387(4)	-0.0117(3)	0.1076(5)	5.9(1)
02	0.3420(4)	-0.1579(3)	0.17027(8)	6.5(5)
03	0.6763(4)	-0.1098(3)	0.22889(7)	5.9(5)
04	0.8706(4)	0.6972(2)	0.09266(6)	4.8(4)
H4	0.8020(4)	0.7187(2)	0.0618(5)	5.8(1)
05	0.5256(4)	0.6251(3)	0.01469(7)	5.9(5)
06	0.2227(4)	0.3819(3)	0.01894(7)	6.1(5)
N1	0.5403(4)	-0.0530(3)	0.18855(8)	4.2(4)
N2	0.4280(4)	0.4690(3)	0.03742(7)	3.8(4)
C1	0.4790(4)	0.2008(3)	0.11152(7)	3.3(4)
C2	0.6132(4)	0.1405(3)	0.16097(8)	3.3(5)
C3	0.8196(5)	0.2637(3)	0.18570(8)	3.7(5)
Н3	0.9040(5)	0.2194(3)	0.21862(8)	4.5(1)
C4	0.8987(5)	0.4477(3)	0.16222(8)	3.9(5)
H4A	1.0359(5)	0.5295(3)	0.17923(8)	4.7(1)
C5	0.7750(5)	0.5149(3)	0.11263(7)	3.4(5)
C6	0.5634(4)	0.3941(3)	0.08779(7)	3.1(4)

注: 1)
$$U_{\text{eq}} = \frac{1}{3} (U_{11} + U_{22} + U_{33})$$

于图 1 和图 2,原子坐标和等效温度因子、键长和键角数据分别列于表 1,表 2 和表 3。

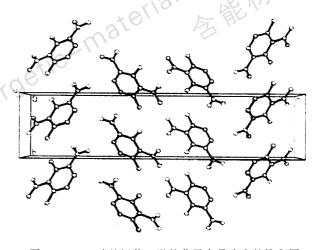


图 2 2,4-二硝基间苯二酚的分子在晶胞中的堆积图 Fig. 2 Packing of 2,4-dinitroresorcinol molecules in crystal lattice

表 2 部分键长 Table 2 Selected bond lengths

化学键	键长/nm	化学键	键长/nm
O1 - C1	0.1325(2)	N2 - C6	0.1450(2)
O2 - N1	0.1237(2)	C1 - C2	0.1401(3)
O3 - N1	0.1219(2)	C1 - C6	0.1416(3)
O4 - C5	0.1337(2)	C2 - C3	0.1391(3)
O5 - N2	0.1227(2)	C3 - C4	0.1355(3)
06 - N2	0.1208(2)	C4 - C5	0.1395(3)
N1 - C2	0.1443(2)	C5 – C6	0.1401(3)

表 3 部分键角 Table 3 Selected bond angles

化学键	键角/(°)	化学键	键角/(°)
O3 - N1 - O2	121.7(2)	C3 - C2 - N1	117.2(2)
O3 - N1 - C2	119.3(2)	C1 - C2 - N1	120.9(2)
O2 - N1 - C2	118.9(2)	C4 - C3 - C2	120.6(2)
06 - N2 - 05	121.1(2)	C3 - C4 - C5	120.2(2)
O6 - N2 - C6	120.9(2)	O4 - C5 - C4	115.4(2)
O5 - N2 - C6	118.0(2)	O4 - C5 - C6	124.8(2)
O1 - C1 - C2	123.0(2)	C4 - C5 - C6	119.8(2)
O1 - C1 - C6	120.3(2)	C5 – C6 – C1	120.8(2)
C2 - C1 - C6	116.7(2)	C5 – C6 – N2	119.5(2)
C3 - C2 - C1	121.9(2)	C1 - C6 - N2	119.7(2)

分析以上结果可知:

(1) 尽管苯环上各碳原子所连的基团不同,受到的诱导效应和共轭效应的强弱也不相同。但是,苯环上的六个碳原子与羟基氧原子仍有很好的共面性,其平面方程为:

3.326*X*-3.064*Y*-12.724*Z*=0.4429 其平均偏差为0.00029nm;

- (2)由于取代后硝基的强吸电子效应和酚羟基的 供电子效应,致使苯环母体不能保持正六边形几何构 型,其正六边形平面结构发生了畸变;
- (3)由于各原子间电子云的排斥作用,与苯环相连的2和4位上的两个硝基所在平面与苯环所在的平面间存在一定的夹角,其二面角分别为172.8°和4.2°;
 - (4) 2 和 4 位上两个硝基所处的平面方程分别

为:

2.790X - 3.713Y - 13.522Z = -1.0530-2.991X + 3.130Y + 14.585Z = 0.9495

(5) 实测 C - O 键长为 0.1325nm(O1 - C1) 和 0.1337nm(O4 - C5),介于正常的 C - O 单键(0.1430nm)和 C=O 双键(0.1220nm)的键长之间^[3],说明题称化合物的C - O键具有某些双键特性。

参考文献:

- [1] 艾鲁群. 国外火工品手册[M]. 北京: 国家机械工业委员会兵器标准化研究所,1988,56.
- [2] 刘自汤. 起爆药学实验[M]. 北京:北京理工大学出版 社,1994,63.
- [3] 邢其毅,徐瑞秋,周政,等. 基础有机化学(第二版) [M]. 北京:高等教育出版社,1994,166~434.

Crystal Structure of 2,4-Dinitroresorcinol

ZHANG Jian-quo¹, ZHANG Tong-lai¹, YU Kai-bei²

(1. Department of Mechano-electric Engineering, BIT, Beijing 100081, China;

2. Analysis and Measurement Center, Chengdu Branch of China Science Academy, Chengdu 610041, China)

Abstract: The single crystal of 2,4-dinitroresorcinol was prepared and characterized by elemental analysis, IR and DSC. Its crystal structure was determined by a four-circle X-ray diffractometer. The results show that the crystal is of orthorhombic system. Space group is $P2_12_12_1$ with crystal parameters of a=0. $4761(1) \, \text{nm}$, $b=0.6378(1) \, \text{nm}$, $c=2.3990(2) \, \text{nm}$, $V=0.7285(4) \, \text{nm}^3$, Z=4, $D_c=1.825 \, \text{g} \cdot \text{cm}^{-3}$, $\mu=0.168 \, \text{mm}^{-1}$, F(000)=408.

Key words: 2,4-dinitroresorcinol; crystal structure; orthorhombic system