ENERGETIC MATERIALS

文章编号: 1006-9941(2003)02-0085-03

TATB 主要副产物的热性质

李波涛¹,董海山¹,张锦云²

(1. 中国工程物理研究院化工材料研究所,四川 绵阳 621900;

2. 北京理工大学, 北京 100081)

摘要: 使用 DSC 和 TG 研究了三氨基二硝基苯,三氨基二硝基氯苯,二氨基二硝基氯苯,三氯二 硝基苯,四氯二硝基苯等五种 TATB 同系物的热性质。给出了这些化合物的热分析相关数据。

关键词: TATB; 副产物; DSC; TG

中图分类号: TQ560.72

文献标识码: A

1 引言

在传统的以三氯苯为起始原料合成 TATB 的工艺 过程中,伴随有多种芳香族副产物的生成,这些副产物 很有可能混在最终产品中,或多或少的对最终产品 TATB 的各项性能指标产生影响。为了了解它们是如 何影响 TATB 的,有必要对副产物的有关性质进行研 究。通过合成三氨基二硝基苯,三氨基二硝基氯苯,二 氨基二硝基氯苯,三氯二硝基苯和四氯二硝基苯,在确 定其各自的结构与纯度之后对其进行 DSC 和 TG 法测 试。得到了这些化合物的热分析曲线和相关数据,这 些结果尚未见文献报导[1]。

2 实 验

2.1 仪器及条件

(1) 差示扫描量热法(DSC)

ials.or DSC-2 型, 试样量约为 1. 25 mg, 升温速率为 10 °C·min⁻¹, N, 气氛, 试样容器为铝密封池, 参比物 为空铝池。

(2) 热重法(TG)

TGA-2050 型,试样量约为 2~11 mg,升温速率为 10 ℃·min⁻¹,N₂气氛(流速 60 ml·min⁻¹),试样容 器为陶瓷舟。

(3) 显微熔点测定仪为 Mettler FP 5 型。

收稿日期: 2002-09-23; 修回日期: 2003-03-31

作者简介:李波涛(1956-),男,高级工程师,长期从事含能材 料研究。

2.2 实验样品

- (1) 合成的五种化合物结构鉴定为: 1,3,5-三氯-2,6-二硝基苯(TCDNB),1,2,3,5-四氯-4,6-二硝基苯 (BCDNB),3,5-二氨基-2,4-二硝基氯苯(DADNCB), 2,4,6-三氨基-3,5-二硝基氯苯(TADNCB),1,3,5-三 氨基-2,6-二硝基苯(TADNB)。
 - (2) 标准 TATB 由西安 204 所购得。

3 结果与讨论

3.1 合成副产物的熔点

熔点测试结果见表1。

表 1 几种副产物熔点值

Table 1 Melting point of several by-products

0.	副产物名称	文献值/℃	实测值/℃
	TCDNB	131.0 ~ 131.8	131.5
	BCDNB	161.5 ~ 162.8	162.8 ~ 163.8
	DADNCB	-	204.2
	TADNCB	321	>300,无熔点
	TADNB	315	>300,无熔点

从表中数据可以看出:合成副产物的熔点分别与 文献值[2]相同。

3.2 差示扫描量热法(DSC)测试

DSC 能够定量地测定化合物的热力学参数和唯象 动力学参数。采用 DSC 方法对上述五种合成产物进 行了测定,包括 TATB 在内的六种试样的 DSC 数据见 表 2。

从测试数据可以看出:(1)三氨基二硝基苯与 TATB 类似, 无吸热峰出现, 说明在程序升温过程中 不存在熔化或转晶现象。(2) 三氨基二硝基氯苯有一

小的吸热峰,在显微熔点测定仪上未观察到熔化现象, 可能有晶型转化。(3) 比较放热量数据,三氨基二硝 基氯苯,三氨基二硝基苯,二氨基二硝基氯苯都比 TATB 的放热量小得多,其中,三氨基二硝基苯的放热 量最小(491.9 J·g⁻¹),比三氨基二硝基氯苯的放热 量(769.01 J·g⁻¹)小 277.11 J·g⁻¹,说明:分子结 构中增加的一个氯原子对放热量有较大贡献。二氨基 二硝基氯苯的放热量比三氨基二硝基氯苯小 30.08 J·g⁻¹,可以看出:分子中少了一个氨基,对放 热量影响较小。(4) 二氨基二硝基氯苯吸热呈双峰形 状,可能有转晶,存在明显的熔化现象。(5) 三氯二硝 基苯和四氯二硝基苯都存在吸热现象,有确定的熔点。 熔化后,分别在 241.72 ℃和 249.09 ℃出现很小的放 热反应,四氯二硝基苯放热反应之后,在293.64 ℃又 出现一小的吸热峰。四氯二硝基苯出现两个吸热峰, 第一个吸热峰可能是失去晶格内水分子的晶体转化峰 (红外光谱中有水分子引起的鬼峰)。第二个对应的 是晶体熔化峰。(6) 这几种化合物的热安定性,在此 试验条件下,按放(吸)热峰值温度可排序如下:三氨 基三硝基苯 > 三氨基二硝基氯苯 > 三氨基二硝基苯 > 二氨基二硝基氯苯 > 四氯二硝基苯 > 三氯二硝基苯。

表 2 TATB 与合成产物的 DSC 数据

Table 2 DSC data of TATB and synthetic products

化合物名称	吸热峰/℃	放热峰/℃	放热量/J・g ⁻¹
TATB	_	380.00	1081.69
		387.16	
TADNCB	209.93	336.45	769.01
TADNB	-	321.60	491.9
		369.09	
		420.00	. 15
DADNCB	210.04	285.62	738.93
	203.63		ato,
TCDNB	138.27	241.72	3.55
BCDNB	162.87	249.09	3.48
	170.53	etio	
	293.64	70	

3.3 热重法(TG)测试

在程序升温的情况下,测定试样质量变化与温度的关系称为热重法测试。包括 TATB 在内的六种试样的热重法测试数据见表 3。

表 3 TATB 与几种合成产物的热重法测试数据

第 11 卷

Table 3 TG data of TATB and several sythetic products

	化合物	失重起	失重变化	失重峰	峰值时
		始温度	最大温区	值温度	失重速率
	名称 	/℃	18 m	\mathcal{L}	/(%/°C)
	TATB	254.65	343.69 ~ 381.95	370.61	1.872
	TADNB	222.62	315.19 ~ 318.99	317.43	3.387
	TADNCB	215.48	294.56 ~ 332.44	323.79	2.533
Y	DADNCB	166.67	252.36 ~ 285.40	277.52	2.329
	TCDNB	88.09	169.22 ~ 200.68	195.23	2.672
	BCDNB	109.52	177.86 ~ 208.12	202.83	2.959

从表3数据可以看出:(1)三氨基二硝基苯的热 失重变化最大的温区范围极窄,从开始挥发分解到全 部分解完毕,仅相差 3.8 ℃,失重速度快,失重峰值温 度为317.43 ℃。(2) 三氨基二硝基氯苯,在合成的几 种产物中,失重变化最大的温区范围最长,前后相差 37.88 ℃,且失重的峰值温度高于三氨基二硝基苯, 为: 323.79 ℃。由于分子结构中多了一个氯原子,在 热环境中表现出的安定性与三氨基二硝基苯相比要安 定一些。(3) 二氨基二硝基氯苯,由于分子中少了一 个氨基,与三氨基二硝基氯苯相比失重的峰值温度降 低了 46.27 ℃,为 277.52 ℃,失重变化最大的温区过 程也略短一些。(4) 三氯二硝基苯和四氯二硝基苯分 子结构中无氨基,它们的失重峰值温度大幅降低。四 氯二硝基苯分子结构中多了一个氯原子比三氯二硝基 苯的失重的峰值温度高出 7.2 ℃, 为 202.83 ℃。它们 的热安定性比氨化产物要差的多。结合 DSC 的相关 数据可以看出:二者的放热峰值温度远高于 DTG 的 峰值温度,而且放热峰也远小于吸热峰。说明大部分 试样在熔化后都挥发了,此时的放热反应已不是原始 样品,而很可能是形成了少量的更为稳定的残留物。 继续升温,四氯二硝基苯在293.64 ℃又出现一很小的 吸热峰,也说明有新的更为稳定的物质存在。(5) 在 试验条件下,按失重峰值温度可排序如下:三氨基三 硝基苯 > 三氨基二硝基氯苯 > 三氨基二硝基苯 > 二氨 基二硝基氯苯>四氯二硝基苯>三氯二硝基苯,这一 排序与 DSC 法排序一致。

根据热重数据,采用 Freeman-Carroll 法^[3]计算了几种纯物质的动力学参数,其结果见表 4。

表 4 计算得到的几种纯物质的动力学参数 Table 4 Kinetic parameters of several pure materials by calculation

名称	活化能/kJ・mol ⁻¹	反应级数/n
TATB	107.58	0.04
TADNB	166.31	3.05
TADNCB	104.30	0.01
DADNCB	120.05	0.43
TCDNB	114.83	1.99
BCDNB	96.69	2.06
结论		MMN'S.
	TATB TADNB TADNCB DADNCB TCDNB BCDNB	TATB 107.58 TADNB 166.31 TADNCB 104.30 DADNCB 120.05 TCDNB 114.83 BCDNB 96.69

论 结

通过合成方法得到三氨基二硝基氯苯,三氨基二 硝基苯,二氨基二硝基氯苯,四氯二硝基苯,三氯二硝 基苯等五种 TATB 同系物,采用差示扫描量热法和热 重法测试,得到了这五种 TATB 同系物的热分析曲线 及相关数据。从实验现象看出: 苯环分子结构中增加 一个氨基,会大幅度提高其耐热性;在三氨基二硝基 苯分子结构中增加一个氯原子对放热量有较大贡献。

致谢:本文得到了中国工程物理研究院化工材料研究所材料 部相关岗位同志们的大力支持,在此表示衷心的感谢。

参考文献:

- 董海山,胡荣祖,姚朴,等编著. 含能材料热谱集[M]. 北京: 国防工业出版社,2002.
- Macdougoll C S, Jacoks B J. Production and identification of TATB-related sprcies [R]. Mason & Hanger, Silas Mason Company Inc, Pantex Plant report MHSMP-76-30D, 1976.
- [3] 胡荣祖,史启珍主编. 热分析动力学[M]. 北京: 科学 出版社,2001.

Thermal Properties of Main By-products in TATB

LI Bo-tao¹, DONG Hai-shan¹, ZHANG Jin-yun²

- (1. Institute of Chemical Materials, CAEP, Mianyang 621900, China;
 - 2. Beijing Institute of Technology, Beijing 100081, China)

Abstract: By means of DSC and TG thermal properties of by-products such as trichlorodinitrobenzene, tetrachlorodinitrobenzene, triaminodinitrobenzene, triaminodinitrochlorobenzene, diaminodinitrochlorobenzene in TATB were studied. Some related parameters were given in this paper.

Key words: TATB; by-product; DSC; TG

本刊启示2 %

为进一步加强对外学术交流,扩大刊物信息量,本刊从2003年开始拓宽了刊登内容、增加了页 码和英文图文摘要并设置了栏目,现拟从2003年第3期起将页码增至64页并对封面进行改版,考 虑上述种种原因,本刊拟从2003年第3期起将定价调整为8.0元/期。

《含能材料》编辑部