3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪的合成及其性能

岳守体, 阳世清
(国防科技大学航天与材料工程学院, 湖南 长沙 410073)

摘要: 研究了低感度高氮化合物3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪(BTATz)的合成,并通过元素分析、IR、\(^1^H\)NMR、\(^{13}^C\)NMR等对其结构进行表征和确认; 测试了BTATz的部分理化性能,BTATz在钝感炸药和低特征信号推进剂极具应用潜力。

关键词: 有机化学; 3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪(BTATz); 合成; 性能; 高氮含能材料

中图分类号: O621.3; V512
文献标识码: A

1 引言

四唑、四嗪类化合物是继呋喃化合物后近几年国外研究较多的一类新型高能化合物, 其分子结构中含有大量的N—N和C—N键而具有很高的正标准生成焓,有别于传统的含能物质,其化学潜能主要来源于其正标准生成焓; 同时分子结构中的低碳、氢含量不仅使其具有较高的氮含量而且更易达到氧平衡\(^1\)。这些高氯化合物作为推进剂组分, 可以调节燃烧产物的平均分子量, 有利于提高比冲; 同时又可以减少推进剂的烟雾, 是一类新型高能含能材料。

3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪(BTATz)的显著特点是含氮量高,生成热高, 燃气分子量低, 具有高燃速、低压力指数的特点, 热安定性和化学安定性好, 撞击感度和摩擦感度低于RDX和HMX。美国Los Alamos实验室Hiskey等人\(^2\)将其作为新型高能钝感炸药进行了应用研究, 还将其作为替代HMX和RDX的推进剂组分。研究了含有BTATz推进剂的燃烧性能\(^3\); 美国海军武器水面中心将其应用于新型无烟灭火剂的研究\(^4\)。其合成至今未见国内文献报道, 本实验研究了其合成及其部分性质。

2 合成路线

采用水合肼和硝酸胍为起始原料合成三氨基胍硝酸盐(TAGN), 再环化、氧化脱氢后得到3,6-对(3,5-二甲基吡唑)-1,2,4,5-四嗪(BDT), 进一步与5-氨基四唑(5AT)发生亲核取代得到目标化合物BTATz。反应路线如下:

\[\text{H}_2\text{NNH}_2 \text{NHNH}_2\cdot\text{HNO}_3 \rightarrow \text{BTD} \]

\[\text{CH}_3 \]

\[\text{H}_2\text{NNH}_2 \text{NHNH}_2\cdot\text{HNO}_3 \rightarrow \text{BTATz} \]

\[\text{CH}_3 \]

\[\text{H}_2\text{NNH}_2 \text{NHNH}_2\cdot\text{HNO}_3 \rightarrow \text{BTATz} \]

\[\text{CH}_3 \]

\[\text{H}_2\text{NNH}_2 \text{NHNH}_2\cdot\text{HNO}_3 \rightarrow \text{BTATz} \]

\[\text{CH}_3 \]

\[\text{H}_2\text{NNH}_2 \text{NHNH}_2\cdot\text{HNO}_3 \rightarrow \text{BTATz} \]

\[\text{CH}_3 \]
3 实验部分

3.1 仪器与试剂

Elementar Vario El III 型元素分析仪；XCR-1 型显微熔点仪；Nicolet Avatar 360 型红外光谱仪（KBr 压片）；Varian INOVA-300 型核磁共振仪（溶剂 DMSO-d6，内标 TMS）；上海天平仪器厂 CDR-1 型差动热分析仪（升温速率 10 ℃·min⁻¹）；燃速测试仪；BSD-3 单段爆速仪；MBZ-1HGZ-1 型撞击感度仪。

水合肼，硝酸铵，乙酰丙酮，N-甲基-2-吡咯烷酮（NMP），环丁砜，二甲基甲酰胺为分析纯；硝酸铯，5-氨基四唑为化学纯。

3.2 实验步骤

3.2.1 TAGN 的合成

将装有温度计、回流冷凝器的 1000 mL 的三口烧瓶中加入 200 mL 蒸馏水，150 mL 85% 的水合肼。磁力搅拌并加入 45 g 硝酸铵，67.5 g 硝酸铯，同时升温使其溶解。当温度为 80 ~ 102 ℃时，有大量气泡产生，反应约 1 h 后至不再产生气泡，用冰水迅速冷却至至大量白色针状晶体产生。过滤，冰水洗涤，干燥得 TAGN 72.5 g（以硝酸铵计算，得率约 78%）。熔点：216 ~ 218 ℃。

TAGN（C₃H₈N₈）元素分析（%）：实测值（计算值）C 7.328（7.19），H 5.425（5.43），N 58.78（58.67）；IR（cm⁻¹）：文献值[5] 3 350，3 200，1 690，1 620，1 394，1 335，1 130，945，920；实测值 3 318，3 211（ν₂-δ），1 684（ν₁-δ），1 614（δ₈-δ），1 383，1 127，949。

3.2.2 BTD 的合成

称量 66.8 g（0.4 mol）TAGN 置于 1000 mL 三口烧瓶中，加入 400 mL 蒸馏水，磁力搅拌，微热使其溶解。量取 85 mL 乙酰丙酮，控制滴加速度，不断搅拌，约 0.5 h 滴加完毕。加热，70 ℃下反应 4 h，冷却，过滤，水洗。干燥，得淡黄色固体产物 3,6-双（3,5-二甲基吡唑）-1,2-二氢-1,2,4,5-四嗪约 45 g，得率 83%（以 TAGN 计算），此化合物容易在空气中氧化变为红色。

将上述 45 g 淡黄色产物搅拌溶解于 300 mL NMP 溶剂中，持续通入 NO₂气体（为保证反应物氧化完全，NO₂气体应过量，与反应物的摩尔比为 4:1）。反应 3 ~ 4 h 后，剧烈搅拌排出多余气体，过滤，冰水洗涤，干燥，得红色粉末状固体 BTD 43 g，得率为 96%。

BTD（C₁₀H₁₂N₆）元素分析（%）：实测值（计算值）N 41.25（41.46），C 53.08（53.32），H 5.285（5.22）；IR（KBr，ν/cm⁻¹）：3 441，3 073，1 682，1 578，1 483，1 424，1 274，1 079，970。

3.2.3 BTATz 的合成

在 1000 mL 烧瓶中将 300 mL 环丁砜，40 g BTD 和 30 g SAT 混合，通入干燥的氮气；缓慢加热到 135 ℃，混合物从最初的橙色溶液逐渐变为黑色溶液，保持温度，反应一定时间后，沉淀开始形成。再继续加热一定时间，冷却至 50 ℃，同时加入 50 mL DMF 防止环丁砜结晶。过滤，用大量 DMF 洗涤，在 100 ℃下烘干数天可得约 30 g 粗产物。将粗产物粉碎，在 50 mL DMF 中加热沸腾 2 h 后，冷却、过滤，用 DMF 洗涤。在 100 ℃真空干燥三天，可得约 18 g 红褐色产物。经测试，熔点为 264 ~ 265 ℃。

BTATz（C₁₂H₁₄N₈）元素分析（%）：实测值（计算值）N 78.90（79.02），C 19.42（19.36），H 1.68（1.62）；IR（cm⁻¹）：3 420，3 000，1 617，1 436，1 127，1 059，983；¹H NMR（DMSO-d₆，δ，ppm）：3.49（s，2H，NH）；¹³C NMR（CDCl₃，δ，ppm）：158.14，151.04。

图 1 BTATz 的 ¹H NMR 谱图（DMSO-d₆/CDCl₃）

Fig. 1 ¹H NMR spectra of BTATz

在其¹H NMR 谱图（图 1）中，四唑环上 N—H 的化学位移在 12.4，为一单峰；由于—NH—上的氢与溶剂 DMSO-d₆ 中的 D 发生交换而使活泼氢的讯号消失，采用 CDCl₃ 做溶剂，在 3.49 附近出现的小包峰为仲胺的共振氢谱。目标产物的¹³C NMR 谱的 158.14，151.04 分别归属于四唑环和四唑环的两个碳原子。

4 BTATz 的性能

BTATz 为红褐色固体，熔点 264 ~ 285 ℃，密度 1.76 g·cm⁻³，撞击感度 H₀为 160 ~ 200 cm（2.5 kg 落锤，试验 100 mg），爆速 7500 m·s⁻¹（密度为 1.75 g·cm⁻³），燃烧性能为 5.66 mm·s⁻¹（0.1 MPa）到 75 mm·s⁻¹。
(19 MPa), 相应的压力指数计算为 0.49。

BTATz 的起始分解温度为 260 ℃左右, DSC 曲线上的分解峰温约 320 ℃。BTATz 的标准生成焓计算值 +883 kJ·mol⁻¹, 燃烧热为 12 204.13 kJ·kg⁻¹。BTATz 不溶于水、丙酮、乙腈、DMF 等溶剂, 可溶于 DMSO、热苯等溶剂, 与硝化棉、硝化甘油及常用催化剂等相容性好。

通过对含 BTATz 的固体推进剂能量性能的计算表明 (计算条件为: ① 温度 298.15 K; ② 燃烧室压强 6.86 MPa; ③ 环境压强 0.1 MPa), BTATz 单元推进剂的理论比冲为 2137.3 N·s·kg⁻¹, 特征速度为 1347.9 m·s⁻¹, 燃烧室温度为 2481.79 K。以 BTATz 部分代替 AP 或 HMX, 比冲和燃温都有所下降, 但能降低燃烧产物中的 HCl 和 H₂O, 同时 CO 和 H₂ 的含量有所下降。在 HTPB/AP/Al (12/70/18) 系统中, 以 BTATz 代替 Al 粉, 能量降低 280 N·s·kg⁻¹, 但燃温降低约 920 ℃。

从 BTATz 性能数据可以看出, BTATz 感度较低, 爆速较高, 热安定性和化学安定性好, 具有高燃速低压力指数的特点, 完全能够满足推进剂应用要求, 可作为低特征信号推进剂高能添加剂材料之一, 降低羽烟的红外辐射同时抑制二次燃烧, 使推进剂综合性能水平有较大提高。

5 结 论

(1) 以水合肼和硝酸胍为起始原料, 经四步反应合成出 BTATz, 通过元素分析、IR、¹H NMR 和¹³C NMR 对其结构进行表征和确认。

(2) 完成了 BTATz 熔点、密度、DSC 热分解、燃烧热、感度、爆速等性能测试, 进行了相容性研究, 为 BTATz 应用研究提供了基础数据。

(3) BTATz 具有高生成焓、高含氮量、低燃速分子量, 低感度以及高燃速低压力指数等特点, 作为新型高氮含能材料具有广阔的应用潜力。

参考文献:

Synthesis and Properties of 3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine

YUE Shou-li, YANG Shi-qing

(College of Aeronautical and Material Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract: An insensitive explosive with high nitrogen content and high standard enthalpy of formation, 3, 6-bis(1H-1, 2, 3, 4-tetrazol-5-yl-amino)-1, 2, 4, 5-tetrazine was synthesized using triaminoguanidine nitrate and 5-aminotetraazolo as starting materials. This synthesis is a four-step process, including cyclization, oxidation and dehydrogenation followed by nucleophilic substitution. The structure of the obtained compound was identified by IR,¹H NMR and¹³C NMR spectra, and element analysis. Some important properties of BTATz have been determined and are as follows: density of 1.76 g·cm⁻³, melting point of 264 ~ 285 ℃, detonation velocity of 7 520 m·s⁻¹, combustion velocity of 5.6 mm·s⁻¹ (101 kPa), pressure exponent 0.49, exothermic peak temperature of 320 ℃ (DSC method). It is expected that BTATz might be promising in applying to insensitive explosives and low signature propellants.

Key words: organic chemistry; 3, 6-bis(1H-1, 2, 3, 4-tetrazol-5-yl-amino)-1, 2, 4, 5-tetrazine (BTATz); synthesis; property; high nitrogen energetic material