Vol. 12, No. 4 August, 2004

文章编号:1006-9941(2004)04-0222-05

呋咱及其自由基结构和性质的理论研究

张朝阳,舒远杰,王新锋,黄奕刚,董海山,李金山 (中国工程物理研究院化工材料研究所,四川 绵阳 621900)

摘要:采用 DMol³ 程序对呋咱及其双自由基、单自由基的结构和性质(优化几何、振动分析、热力学、反应活性及稳定性)进行了理论研究。结果表明:呋咱环的共轭性较弱,其强弱及分子的热稳定性次序为呋咱>单自由基>双自由基,且 N—O键可能是环稳定的"薄弱环节"。呋咱环能够从与之相连的氢原子上转移电子,环获得一定量的电子后,稳定度增加。双自由基对亲核、亲电及自由基反应均有一定的活性,单自由基次之,而呋咱最稳定;所有分子上的 N 原子可能对反应有一定活性。

关键词:物理化学;DMol³;呋咱及其自由基;分子结构和性质 中图分类号:O641 文献标识码:A

1 引 言

呋咱类(含氧化呋咱类)炸药是含能材料家族的重 要成员。俄罗斯科学院 Zelinsky 有机化学研究所对呋 咱含能化合物进行了20多年的研究表明:对于设计含 C、H、O、N 原子的高能量密度化合物,呋咱基团是一个 非常有效的结构单元^[1]。事实上,一个氧化呋咱基代替 一个硝基,可以使密度提高 0.06~0.08 g·cm⁻³,爆速 提高 300 m · s⁻¹ 左右^[2];此外,呋咱系列含能化合物的 密度大多在1.80g·cm⁻³以上,有利于提高炸药的爆轰 性能。目前,以3,4-二氨基呋咱(DAF)为原料合成含呋 咱环的氮杂硝胺类含能材料已成为含能材料合成领域 中最活跃的部分,DAF 被认为是推进剂和炸药发展史上 的一个新起点。从结构上看,当呋咱的两个氢原子被不 同的取代基取代时,分子将成为炸药或炸药合成中间 体。有关不同取代基呋咱化合物、呋咱环自由基或离子 的分子特性的系统理论研究还未见报道。而探讨之必 将有助于探索呋咱类炸药的特性、设计呋咱类炸药的合 成工艺及进行呋咱类炸药的分子设计。呋咱自由基是 呋咱类化合物合成或分解过程中可能的中间产物,本文 主要探讨呋咱自由基的结构和性质。

收稿日期: 2003-12-24; 修回日期: 2004-02-16

基金项目:中国工程物理研究院基金项目(No. 42101030404; No. 2002Z0501)

作者简介:张朝阳(1971 -),男,助研,从事含能材料的模拟、 计算与设计。e-mail: ICM@ caep. ac. cn

2 研究方法

本文采用 DMol³ 程序对呋咱双自由基(简称双自由 基,double-radical)、呋咱单自由基(简称单自由基,single-radical)及呋咱的分子特性进行理论研究。DMol³以 密度泛函(DFT)理论为基础,它主要有以下特点^[3,4]: (1) DMol³ 使用原子中心网格的数值函数作为其原子 基,原子的基函数由解不同原子的 DFT 方程得到,并将 其储存为一系列的三次样条函数。这种基组是十分精 确的,高精度的基组减少了重叠效应,于是体系可以得 到准确的描述。基组的长尾表示了正确的电荷分布,因 而可以提高对分子极化描述的精度。(2)在 DMol³中, 电子密度依据以原子为中心的多极部分密度展开,这提 供了一种简洁而精确的表示密度的方法。通过求解 Posson's 方程,可以用电子密度的多极表示来估算库仑 势,从而将库仑势计算这一本来非常耗时的步骤,被中 心势能快速估算这一较快的步骤所代替,这一操作使计 算所用的时间与体系的大小成线性正比。(3) DMol³ 的算法允许对数值积分过程进行高效的并行处理。我 们通过对 TATB(三氨基三硝基苯)的试探性计算发现, 以下计算设置,即 Basis set-DND; Functional-GGA/BL-YP; Quality-Fine; Integration accuracy-Fine; SCF tolerance-Fine; Core treatment-All electron; Real space cutoff-5.5Å 所获得的结果较好(计算键长与实验键长差值在 0.2Å 以内,键角差值在1.5°以内)。因此,本文按照以 上设置进行计算。所有计算在中国工程物理研究院化 工材料研究所 SGI origin 350 服务器上完成。

结果与讨论 3

3.1 优化几何

呋咱及其自由基的结构见图 1。优化的结果如 下:(1)键长(见表1)三个分子环上的N-O键键长 接近或超过其单键键长,C-N键键长接近于其双键 键长,而 C-C 键长处于其单双键之间(C-C 孤立的 单双键键长分别是1.54Å、1.39Å; C-N 孤立的单双 键键长分别是 1.47Å、1.27Å; N-O 孤立的单双键键 长分别是1.36Å、1.19Å); (2) Mulliken 电荷(见表2) 所有分子中的氧、氮原子带负电荷,碳原子的电性视其 是否与氢原子相连而定——与氢原子相连时,带负电; 没有氢原子相连,即自由基时,带正电。(3)键角(见 表3) A_{N5-01-N2}通常是环上最大或较大键角(这与C、 N原子带有同类电荷及二者的成键方式有关),其他键 角会因具体情况而改变。

N2 户当时大大米 图1 呋咱及其自由基的结构(R₁, R₂ = · 或 H)

Fig. 1 Structures of furazan and its radicals ($R_1, R_2 = \cdot$ or H)

表1 呋咱及其自由基环上的各键长

Table 1 Bond lengths on rings of furazan radical	Ì
--	---

bond length	01—N5	01—N2	N2—C3	C4—N5	С3—С4
double-radical	1.397	1.397	1.267	1.267	1.411
single-radical	1.364	1.387	1.269	1.305	1.407
furazan	1.356	1.356	1.304	1.304	1.408

表 2 呋咱及其自由基环上的各原子的 Mulliken 电荷 Table 2 Mulliken charge of atoms on rings of furazan and its radicals

atom	01	N2	С3	C4	N5	net charges on the ring
double-radical	-0.132	-0.005	0.071	0.071	-0.005	0.000
single-radical	-0.126	-0.022	0.035	-0.172	-0.027	-0.312
furazan	-0.121	-0.036	-0.197	-0.197	-0.036	-0.587

表 3 呋咱及其自由基环上各键角

Table 3 Bond angles on rings of furazan and its radicals

(°)

bond angles	N5-01-N2	01—N2—C3	N2—C3—C4	C3—C4—N5	C4—N5—O1	total angles of the ring
double-radical	109.05	105.50	109.98	109.98	105.50	540.01
single-radical	110.52	104.25	112.01	106.78	106.44	540.00
furazan	111.65	105.48	108.70	108.70	105.48	540.01

从几何优化结果我们可以看出:(1)两个自由基 及呋咱为平面分子型分子,表明分子有共轭的可能,但 由于 N-O 键键长接近或超过其单键键长而未能有效 参与共轭,所以整个分子环的共轭性应该较弱,而且 N-O键可能是环稳定的"薄弱环节"。(2) 呋咱环能 够从与之相连的氢原子上转移电子,例如,从双自由基 到单自由基到呋咱,环上负电荷由0增加到0.587。 环获得一定量的电子后,环的稳定度(共轭性)增加, 如从双自由基、单自由基到呋咱分子环上最长键长 C3—C4 与最短键长 N2—C3 的差值依次为: 0.015 4 nm、 0.013 8 nm、0.010 4 nm,环上键长不断趋于平均而共 轭性增加。

3.2 分子特性

3.2.1 分子振动分析

自由基呋咱各种振动频率见表4。从表4可以看 出,三种分子没有出现虚频,表明优化的结构为稳定结 构。此外,随着分子上氢原子的增加,最低波数值及高 频的个数逐渐增加,这正是 C-H 键增加的结果。限 于篇幅,振动的具体分析略去。

3.2.2 热力学性质

从表5可以看出,三种分子的热力学函数随温度 变化而变化的规律一致。由于缺乏三种分子热力学的 实验参数进行比较,此计算结果可作为探讨分子热力 学性质的理论量。

表 4 呋咱及其自由基的振动频率											20
		Т	able 4	Vibration	frequenc	y of fura	zan and it	s radicals		NO.	cm ⁻¹
double-radical	557.45	597.76	638.93	726.38	769.17	913.89	1248.20	1473.15	1522.02	.0.1	大菜大
single-radical	600.64	645.94	801.84	838.40	894.29	989.25	1079.21	1277.73	1428.46	1535.64	3196.70
furazan	657.96	663.23	811.41	838.30	862.71	909.77	958.64	1041.74	1051.63	1148.63	1331.65
	1444.66	1556.0	3 3181.	78 3195	. 60		/	1.			

表 5 呋咱及其自由基的热力学特性 Table 5 Thermodynamics properties of furazan and its radicals(ZPVE is included)

						e -								
<i>T/</i> K	double-radical				NN.		single-radical			furazan				
	S	Ср	Н	G	S	Ср	Н	G	S	Ср	Н	G		
25.00	177.7	33.3	51.3	46.9	178.5	33.3	84.5	80.0	179.4	33.3	118.4	113.9		
100.00	223.8	33.7	53.8	31.5	224.7	33.5	87.0	64.5	225.5	33.4	120.9	98.3		
200.00	249.3	42.6	57.6	7.7	249.6	41.4	90.6	40.7	250.0	40.4	124.5	74.5		
298.15	268.8	55.9	62.4	- 17.7	268.9	56.5	95.4	15.2	269.1	57.0	129.2	49.0		
400.00	286.9	67.7	68.7	-46.0	287.7	71.6	102.0	-13.1	288.5	75.1	136.0	20.6		
500.00	303.0	76.5	75.9	-75.6	305.0	83.5	109.7	-42.8	306.9	89.7	144.2	-9.2		
600.00	317.6	83.2	84.0	- 106.6	321.0	92.5	118.5	-74.1	324.3	101.1	153.8	-40.8		
700.00	330.8	88.2	92.6	- 139.0	335.8	99.3	128.2	- 106.9	340.5	109.9	164.3	-74.0		
800.00	342.8	91.9	101.5	- 172.7	349.4	104.6	138.4	-141.2	355.7	116.8	175.7	-108.8		
900.00	353.8	94.7	110.9	-207.5	362.0	108.7	149.0	- 176.8	369.8	122.3	187.7	- 145.1		
1000_00	363.9	96.9	120 5	- 243.4	373 6	112_1	160_1	-213 6	382.9	126.9	200_2	- 182.8		

note: The unit of S, Cp is $J \cdot mol^{-1} \cdot K^{-1}$; The unit of H, G is $kJ \cdot mol^{-1}$.

3.2.3 反应活性

采用 Fukui 指数判断反应的活性(见表6,表中的 面及切片图均在 DMol³ 中生成,依照其等势面的高低 来分析)。先看双自由基,它对亲核、亲电及自由基反 应均能表现出一定的活性,且活性位置主要集中在两 个 C 原子处。这可能与两个 C 原子存在未成对电子 有关,而通过亲核、亲电及自由基反应均可能使未成对 电子成对。这一解释在单自由基及呋咱中得到验证: 单的活性位置主要集中在 C 自由基,而呋咱的活性较 弱。此外,所有分子中 N 原子处出现了较高的反应活 性势,这可能与其所带电荷及成键方式有关,如实践中 生成氧化呋咱的反应就发生在此处。这一点,应该予 以关注。

3.2.4 分子稳定性

从前面的优化几何可以看出:一方面,在呋咱及 其自由基分子中,环上 N—O 键的键长接近或超过其 通常值,使得N—O键未能有效参与共轭而使整个环

形成共轭的稳定体系,同时也使得 N-O 键可能成为 所有分子热安定性的"薄弱环节",即导致分子热分解 的"引发点";另一方面,N-O键的键长按从双自由 基、单自由基、呋咱的次序依次减少,环上最长键长与 最短键长的差值也按同样的次序减少,表明分子的稳 定性(共轭性)按同样的次序增加。另外,从电子跃迁 难易(表6中前线轨道的能级差)角度来看,双自由基 最易跃迁($\Delta E = 0.090$ hartree), 单自由基次之($\Delta E =$ 0.105 hartree) 而呋咱最稳定($\Delta E = 0.188$ hartree)。 这个结论也可以从表6的前线轨道图得到:三种分子 的 LUMO 轨道形状非常相似,其能量差距(呋咱最低、 双自由基最高)也不大,为0.024 hartree;而三种分子 的 HOMO 轨道形状存在明显的差异——呋咱为明显 的共轭,单自由基有部分的共轭,双自由基看不到共轭 的迹象,因而其能量的差距(呋咱最低、双自由基最 高)也较大,为0.072 hartree。因此,呋咱最稳定,而双 自由基最不稳定。

4 结 论

(1) 呋咱及其自由基环的共轭性较弱,分子共轭 性强弱及其稳定性次序为呋咱>单自由基>双自由 基,且 N--O 键可能是分子热安定性的"薄弱环节"。

(2) 呋咱环能够从与之相连的氢原子上转移电 子,环获得一定量的电子以后,环的稳定度增加。

(3)双自由基对亲核、亲电及自由基反应均有一定的活性,单自由基次之,而呋咱较稳定;所有分子上的N原子可能对反应有一定活性。

参考文献:

[4] Delley B. In Modern Density Functional Theory: A Tool for Chemistry. In: Seminario J M, Politzer P, Eds. Theoretical and Computational Chemistry[M]. Vol. 2, Elsevier Science Publ.; Amsterdam, 1995.

Theoretical Study on Structures and Properties of Furazan and its Radicals

ZHANG Chao-yang, SHU Yuan-jie, WANG Xin-feng, HUANG Yi-gang, DONG Hai-shan, LI jin-shan

(Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China)

Abstract: The structures and properties (geometrical optimization, molecular vibration, thermodynamics, activation of reaction and stability) of furazan and its radicals are studied theoretically by using $DMol^3$. The calculated results show that there are weak conjugated effects on rings of furazan and its radicals, the N—O bonds are the weakest on rings; the order of molecular stability is furazan > single-radical > double-radical; the rings have a certain ability to accept electrons from H atoms which connect with them and become more stable consequently; the double-radical has some electrophilic, nucleophilic and radical ability, single-radical takes the second place and furazan is the most inertial; N atoms on all molecules probably have certain activations of reactions.

Key words: physical chemistry; DMol³; furazan and its radical; molecular structure and property

为建立读者、作者、编者之间更广泛地联系,加强学术交流,提高编辑部工作质量,《含能材料》将设立"读者·作者 ·编者"栏目,刊登读者对刊载文章的不同看法、意见及其建 议,作者对编辑部工作意见、建议,编辑部工作的相关说明等 内容。编辑部全体工作人员期望通过这个栏目能与全国的 读者、作者协力搭建起百家争鸣、共同进步的平台。

热情欢迎全国的读者、作者的来信!

* 读者·作者·编者 *

《含能材料》编辑部:

.

感谢寄来《含能材料》杂志,翻阅之后,深感内容 切合我们研究的实际问题,特别其中的云爆特性、粉 尘爆轰内容,是研究爆炸效应及其防护领域所必须天 心的。特比致谢。

周丰峻(中国人民解放军 61489 部队) 2004-07-24

226

Sheremeteeev A B. Chemistry of furazans fused to five-membered rings [J]. J. Heterocyclic Chem., 1995, 32: 371-384.

^[2] 欧育湘. 现代炸药合成化学[M]. 北京: 兵器工业出版社,1998.

^[3] Delley B. Analytic energy derivatives in the numerical local-density-functional approach [J]. J. Chem. Phys., 1991,94: 7245.